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Antenna Pattern Synthesis Utilizing Spherical Bessel
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Abstract—Pattern synthesis of linear antennas utilizing the
spherical bessel functions is presented. This leads to antenna
current distribution by the Legendre polynomials of the first kind,
which are of finite support. Some examples are given to illustrate
this procedure.

Index Terms—Antenna pattern synthesis.

I. INTRODUCTION

T HE inverse Fourier transform of the current distribution on
an antenna structure yields the far-field pattern. Since the

current distribution is of spatially finite duration, its transform
cannot strictly be band limited. Indeed, the far-field exists for
the angular variable from to . However,
the value of between to or ( between to ) is of
interest to us as this is the visible region of the far field and the
invisible region is given by .

We are often given the far-field pattern between
in the visible region and the objective is to synthesize the current
distribution that is going to match the given field in the visible
region. A popular technique is to expand the far field in term of
a set of orthogonal basis functions and then obtain the current
distribution by the truncation of the inverse Fourier transform
of each orthogonal functions between suitable spatial intervals.
This procedure is only approximate [1]–[3]. Borgotti [4] used a
generalization of the Woodward–Lawson [5] synthesis method
for a wide class of apertures. By resorting to a rather general type
of bi-dimensional Fourier series expansion, the aperture distri-
bution is obtained as a superposition of orthogonal constant am-
plitude linearly phased components whose complex amplitude
coefficients are the values of the radiation pattern in a regular
lattice of “cardinal points” on which the desired function is ex-
actly matched. Hence, there is no guarantee that the aperture
distribution will be of finite support.

Another approach is usually to solve the antenna pattern syn-
thesis problem in terms of an optimization (either by linear pro-
gramming or quadratic error minimization) procedure. In this
procedure, the error between the given field pattern and the pat-
tern produced by a current distribution obtained from the min-
imization technique is reduced. One problem with such a tech-
nique is that it may lead to supergain conditions for the cur-
rent distribution (i.e., the radiated power may be relatively small
compared to the power fed to the antenna), which is updated iter-
atively [1]–[3]. A third approach is to expand the current distri-
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Fig. 1. Antenna geometry and the coordinate system.

bution into a set of orthogonal polynomials and then their trans-
form would match the pattern. Rhodes [6] utilized the prolate
spheroidal functions to match the antenna pattern and, hence,
its transform is guaranteed to be of finite support. In this paper,
we present the spherical Bessel functions as they are easy to
compute numerically instead of the prolate spheroidal functions.
Some of the salient features of this alternate approach (use of the
spherical Bessel functions) are also presented.

II. A NTENNA PATTERN SYNTHESIS BY SPHERICAL BESSEL

FUNCTIONS

Consider a linear antenna of total electrical length ex-
tending from to as shown in Fig. 1. The electrical length
is defined by the physical length over the wavelength. The cur-
rent distribution on the antenna is given by . We assume that
the current distribution on the antenna can be expanded in terms
of the Legendre polynomials, i.e.,

for (1)

where are the unknown coefficients for the Legendre polyno-
mials. The far-field pattern from the current distribution is given
by the Fourier transform, i.e., (with )

with (2)
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Fig. 2. Convergence of the far-field pattern for one (small dash); two (large dash); and three (solid) terms.

By substituting (1) into (2), one obtains

(3)

Next, we introduce the Fourier transform relationship between
the Legendre polynomials and the spherical bessel functions
of the first kind . The Fourier transform pair is given by

for
otherwise

(4)

and

(5)

Substitution of (5) into (3) results in

(6)

To obtain the expansion coefficients, we multiply both sides
of (6) by Lu and integrate from to . By utilizing
orthogonality relationship for the spherical Bessel functions [7]

for

for (7)

one obtains

Lu (8)

The current distribution is then computed from (1) and the far-
field pattern is given by (6) in the entire region .

On the other hand, if we expand the far-field pattern into a
series of spherical Bessel functions, then

Lu (9)

where

Lu (10)

and the current distribution on the antenna is given by

with (11)

By using the orthogonality property of the Legendre polyno-
mials

for

for
(12)

it is seen that

(13)
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Fig. 3. Convergence of the synthesized current for one (small dash), two (large dash), and three (solid) terms.

III. PROPERTIES OF THEPROPOSEDMETHODOLOGY

Even though the current converges in thenorm, the pattern
converges in the uniform norm. This can be shown through

(14)

By applying the Schwartz inequality, one obtains

(15)

Note that the right-hand side goes to zero as and, there-
fore, the series expressing converges uniformly. Hence, the
spherical bessel functions are complete over the class of square
integrable functions whose transforms are of finite support [8].
This is different from the case where we expand the current in
terms of piecewise constant pulse functions so that they are or-
thogonal. Hence, the completeness of spherical bessel functions
in approximating the pattern is different from the use of piece-
wise pulse functions which results in the set for

to being complete [8].

IV. EFFICIENCY OF THESYNTHESIS PROCEDURE

The efficiency is defined as the power radiated by the antenna
divided by the input power to the antenna. A high efficiency will
indicate that most of the power fed to the antenna will radiate.
This is in contrast to the supergain condition, which often arises
in array pattern synthesis. During the supergain condition, an

arbitrary-shaped radiation pattern can be realized, however, a
large portion of the power fed to the antenna does not get ra-
diated, rather remains stored as reactive energy in the system.
Under those conditions, the current distribution on the antenna
is very large in magnitude requiring high-input power, but the
radiated power is very small. This is the reason it is necessary to
evaluate the radiation efficiency in any antenna synthesis proce-
dure. We define the efficiency by

(16)

By utilizing the orthogonality relationships of the spherical
Bessel functions we obtain

(17)
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Fig. 4. Synthesized far-field pattern in the entire visible region for example 1 (solid) synthesized far-field pattern in the entire visible region for example 2 (dotted).

We would like to restrict further the domain of the numerator
to to instead of to illustrate how efficient this
particular design has been. Hence, we define

(18)

V. EXAMPLES

As a first example, consider the synthesis of a far-field pat-
tern, which is assumed to be of uniform amplitude unity for

and zero everywhere else, so that

for
otherwise.

Then, using (10), one computes. Here, half the electrical
length in radians of the antenna is chosen as . This
assures that the dominant part of the pattern given by has
its first null at 0.1, thus yielding a value of equal to 10 and
a physical length of the antenna .

In evaluating the antenna current distribution, only a few
terms of in the summation (10) are of numerical significance.
The odd terms of are all zero, as the pattern is symmetrical
about . The values of obtained for the even terms are
given in Table I.

TABLE I
COEFFICIENTS FOR THELEGENDREPOLYNOMIALS

From Table I, it is seen that convergence is very rapid and
only a few terms of the summation in (10) are needed. The ap-
proximation to the far field is given by Fig. 2. It is seen that as
the number of terms in (10) is increased, the convergence of the
pattern is very rapid. The addition of terms greater than three
does make no visual change of the graph. Similarly, the current
distribution on the structure is shown in Fig. 3 as the number of
terms are increased. The current distribution on the structure is
real, for this example. The synthesized pattern in is
shown in Fig. 4 to illustrate its deviation from that of the uniform
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Fig. 5. Synthesized far field pattern in part of the visible region.

Fig. 6. Magnitude of the synthesized current distribution.

pattern. The antenna efficiencyfor this example is given by
(13) and is approximately 100%. However, has been com-

puted to be 0.96. This implies that 96% of the input power is
radiated and focussed in .
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Fig. 7. Phase of the synthesized current distribution.

For the second example, we assume that the far-field pattern
is of uniform amplitude of unity between
and zero everywhere else so that

elsewhere.

In this case, is chosen as 10 or as before. The
synthesized far-field pattern is shown in Fig. 4 as the dotted
pattern. In this case, the current distribution is complex and its
magnitude is identical to that of Fig. 3, as expected. For this
example, has been computed to be approximately one.

For the last example, we consider a linearly tapered field pat-
tern of the form

for
otherwise.

For this case, we choose or equivalently . The
synthesized far-field pattern is shown in Fig. 5 for the visible
region. The complex current distribution is shown in Fig. 6 for
its magnitude and Fig. 7 for its phase. For this example, the first
21 coefficients of have any significant values (i.e.,

). The antenna efficiency is computed , i.e.,
99.9% of the power is radiated in the visible region.

VI. CONCLUSION

A method is presented for synthesizing a continuous current
distribution to fit any given far-field antenna pattern through the
use of the spherical Bessel and Legendre function pair.
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