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Pulsed-Beam Propagation in Dispersive Media via
Pulsed Plane Wave Spectral Decomposition

Timor Melamed and Leopold B. Felserfe Fellow, IEEE

~ Abstract—This paper is concerned with the behavior of tran-  medium. Section Il has a summary of the corresponding results
sient wavefields due to a pulsed-beam (PB) wavepacket launchedfor the nondispersive cagéw) = w/c, which can be evaluated
obliquely from a hypothetical aperture plane in a medium with , ¢|o5ed form and permits assessment of the effects of disper-

generic dispersionk(w), where k and w are wavenumber and fre- . L . . .
quency, respectively. This generalizes our previous investigation sion developed by the asymptotics in Section IV. The dispersive

of a PB launched normally from the hypothetical aperture plane. asymptotic plane wave spectrum for the PB initial conditions,
The problem is solved through spectral decomposition into plane obtained by frequency-domain (FD) saddle-point techniques,
waves in the frequency(w) and spatial wavenumber(¢) domains, s parameterized in terms of the saddle point (stationary) fre-
followed b_y asymptotics on the spectre_ll inversion |nteg_rals_, with guenciesy,, which depend on space—time ¢) as well as PB
w synthesis performedbeforeé synthesis. Special attention in the tilt £ tral d pulse | . Th t
transient spectral domain is given to paraxial PB approximations it €, spe_c ra _spreg@, an Pl{ se e_ng : es_e parame ers_
and to criteria for their range of validity, which are expressed in are combined in various nondimensional descriptors that furnish
terms of critical nondimensional estimators that contain the beam  criteria for the domain of validity of the paraxially approximated
parameters as well as the dispersion parameters of the medium. pB. The detailed derivation and interpretation of these criteria,
The resulting PB’s can be used to synthesize transient wavefields 44 the corresponding comparisons with the nondispersive and
excited by arbitrary space—timesource distributions of finite sup- tilted di . Its in [11=[3 titute th incinal
port on a specified aperture plane in the medium. nonufte - |sp_er3|v_e re_su s in [1]-[3] constitute e_prlnC|pa
new contributions in this paper. These spectral footprints are re-
tained in subsequent asymptotics associated with a spectral syn-
thesis that leads to the final space—time tilted paraxial PB at the
|. INTRODUCTION end of Section IV. Brief conclusions are presented in Section V.

Index Terms—Dispersive media, pulsed beam.

E INVESTIGATE here the propagation properties of a

pulsed-beam (PB) wavepacket launched obliquely from
a hypothetical aperture plane into a lossless dispersive homoThe problem of PB wavepacket propagation in a lossless, ho-
geneous unbounded medium characterized generically by fAegeneous, isotropic dispersive medium is defined by the PB
frequency(w)-dependent ambient wavenumbige,). The mo- matched initial distribution in the FD and is Fourier inverted
tivation and direct time-domain (TD) solution strategy havin§fom there into the TD.
been outlined in the abstract, we proceed directly to the contents
that follow. The presentation is based on several previous studies
[1]-[3] to which we refer for background. To make the paper The Fourier transforms
reasonably self contained, we summarize those previous results ( ) /oo

u\r, w) =

Il. FORMULATION OF THE PROBLEM

Time-Frequency Transforms

that are relevant to the understanding of the present results. In u(r, t)e'" dt (1a)
particular, we follow the same sequence of steps as in the anal- L e
ysis of the nontilted PB [3] in order to facilitate assessment of u(r, t) = — / a(r, w)e—m dw (1b)
the tilt effect here, although this may involve similar wording in 2m

the two texts. The problem is formulated in Section II, with defgitpy , — (21, T2, z) denoting conventional Cartesian coordi-

inition of the frequency and wavenumber spectral transformsates define the relations between a TD fiele, ¢) and the
the paraxial PB spe.ctral initia_l conditions., anc_i the spgctral SY&orresponding FD fieldi(r; w). Here and henceforth, a catet
thesis of the resulting paraxial TD-PB field in the dispersivgientifies FD wave fields. To accommodate wave constituents
with evanescent (i.e., complex) spectra as encountered in the
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B. Space-Wavenumber Transforms

Space-wavenumber transforms are required to decoff€dium with
pose fields into plane waves parameterized by their spectjfé‘l")

wavenumbers. Ifi,(z, w) is the FD distribution corresponding
to the TD initial distributior, (x, ¢) for the PB on thez = 0
plane, then the corresponding FD wavenumber spectral am
tude on the initial surface is given by

o

/

d*z i, (, u))e_ik(“’)‘f'I (4a)

13’0(57 w)

oo

with £ = (a1, x2),
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In [4], the initial distribution was defined for aondispersive
k = w/c. The generalization in (8) to arbitrary
requires a dispersion-match&edependent initial field in
order to retain the iso-diffracting property. Insertion of (8) into
(4a) yields the corresponding plane wave spectrum
pli- _

iio(&, w) = (27 3/k) exp[-3 kA€ — ) — FwI].  (9)
The spectral shif§ introduced in (8) and (9) parameterizes the
general class of PB’s whose axistiked with respect to the

- identifying a wavenumber spectral func-nitial distribution planez = 0. Such PB's are required for

tion, £ = (£1, &) denoting the normalized (with respectitp decomposition of arbitrary planar “aperture field” distributions
spatial wavenumber vector, aikdls) denoting the generic fre- into pulsed beam basis functions [5], [6] and their consider-

guency-dependent wavenumber in the ambient medium. The fiPn constitutes the generalization of the nontilted results in
initial field is reconstructed as [1]-[3]. Regardingi,(«, w) as a function ofw, the on-axis

T w Therefore, the maximum frequency of the on-axis signal may

fbo( )

(x = 0) distribution in (8) peaks ab = 0 whered, = 1.
)= 2l [ e w)tee )

Thew dependence of = k(w) and ofu(r) = a(r, w) will

be suppressed unless specifically required for clarity. Also, ift

be estimated by solvingxp(—1/2) = exp(—wT/2), giving
wmax =~ T71. Such a band-limited pulse may be regarded as
_model for a physical (sampled) signal. By applying the in-

tegration limits are omitted on all integrals extending fremo ~ V€TS€ transforrrl(Z) to (8), one obtains the PB initial distribution

to +oo. The plane-wave synthesis of the FD field away frortto(2; t) = Reu,(, t), with

the initial plane is obtained by including the plane wave spec-

tral propagatoexp (ik(z) &, = / do
0

i(r, w) = [k/2n]° / &€ 1, (£)eME=HD  (5) exp {—zw <t—§T) +ik() (E:c%ﬂ‘lw?ﬂ (10)
where
(=V1-¢, &€=¢-¢ Im(>o. (6) D. TD Wavefield

Inserting (5) into (2) yields the formal plane wave spectral rep- In [1] and [2], the TD field was evaluated and interpreted
resentation of the TD analytic field at any observation peint Via the space-time spectral representation in (7), following
the conventional route in which one first performs the spatial
1 00 k(w) 2 2+ A —iwt—l—ik(m);‘)‘,-r
(r,t)=— /0 dw { 2 } / d°g u(g, we the TD. The analysis was carried out for a nontiltedirected
propagating beam witl§ = 0 in the initial distribution (8).
wherek = (£, ¢) is the unit vector along the direction of propthew-integral first, thereby obtaining the wavenumber spectral
agation of the spectral plane wave. representation

v

+

wavenumber synthesis in the FD and thereafter the inversion to
u
) _ o : :
In [3], the order of integration in (7) was inverted, evaluating

C. PB Initial Distribution

To facilitate space—time focusing of the PB wavefield
in the dispersive environment, it is useful to specify FD
“iso-diffracting” initial distributions such that the focusing
distance is independent of frequency (see [4]),

r, t) = / d2¢ E(T, 3 (11)

. .t . .
wherein the spectral wave functiongr, ¢; £) are dispersive
transient plane waves

fio(x, w) = exp[—L k(W) 2 +ik& -z — ST (8)

1

+
U = -
7r

=1 [

2
:| 721/0(6, w)e—iwt-l—ik(w)n-r.
s

(12)

where
2 =z - x,
T > 0 (for w > 0) smoothing parameter;

B =B, +ib;

(with 5. > 0 . N c
forw > 0) frequency-independent parameter; - NONDISPERSIVECASE
E=(£, &) spectral parameter which determines To assess the influence of dispersion on the PB behavior, we

the beam axis tilt, with respect to initial summarize for later comparison the previously obtained results
planez = 0 [see also (16)]. pertaining to the nondispersive cases) = w/c [5], [6], [7].
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A. PB Initial Distribution x, FD beam_ Tor

The nondispersive TD initial distribution is given by (10) with
k(w) = w/e, giving

u.(x, t) =Re J;(:c, t

)
:Rejﬁ— [t—%T—c_l <%/3_1w2—i€'w>}

+ . ) . ) . . . e
_ it i - - ] ; Fig. 1. The beam field in configuration space, with axisalong thex(?, %)
whereé(t) l/mt is the analytics function defined in the direction. The transverse beam coordinates , ., ), definedin (20), are such
lower half of the complex-plane.

thatz,, lies in the plane{f, %), wherex,,, is parallel to thez-plane. The PB
wavepacket adapts locally to the transverse profile of the FD beam.

13)  z,

B. PB Wavefield and Paraxial Asymptotics

Insertingk(w) = w/c into (12), we obtain the nondispersivewhere
TD spectral plane wave

(¢ —ipCH) 0
N w Lo Q - 0 V—_l . 3 —1 |- (19)
E(h t &) = 1 / dw [ } o€, w)e—iwlt—e m T, (z¢ if3)
T Jo

27e
(14) Equation (18) is written in terms of the beam-centered coordi-
nates(ry, , o, , 2) defined for specified by the transforma-

For the Gaussian initial distribution in (8), inserting (9) into (14Y°"
yields

T, cos¥cos @ cos¥sing —sind r1

3 + p Ty, | = —sinp cos @ 0 T2

(r £ &) = / 6’ {t——T—c <;,T+%/3(£_Z)2>} 2 sin ¥ cosp sindsing cos ¥ z
(20)

(15)

where(?, ) are the spherical angles that define the beam di-

where the pnme denotes the derivative with respect to the argu-tlong & 7) (Fig. 1)

ment, i.e. 6’( ) = —1/(wit?). Since the analytic signal decays
with the increase of the negative imaginary partofits argument, cos 9=, cosp=¢,/[f], sing=2£&,/|f. (21)
the most strongly excited spectral plane wave in (15) is the one

with ¢ = &€ where the tran5|ent plane wave delay function hfﬁere thex, coordinate lies along the beam axis whereasand

the form¢ — (i/2)T n -r. The corresponding preferredz,, are orthogonal coordinates in planes perpendiculag.tm

propagation (i.e., beam axis) direction is along the unit vectoview of (19), the quadratic forns;, - Q - ;, in (18) is given by
x7 Q11 + ¥}, Q2. Thus, the transverse coordinate frame=

S _(F 7 T _& (2., x5, ) IS oriented so that,, lies in the plang€, :%) (see
k= 0, (=y1-¢ (16) Fig. 1),
Inserting (15) into (11), we obtain for the spectrally synthe5|zed The main properties of the PB field in (18) (discussed in detail
PB n [7], [6]) are as follows.
1) The tilted PB is astigmatic [7]. In a conventiorfak= 0
+(1_ £ = ip / P2e PB, the elements of) depend only onz, i.e., on the
2nc locationalongthe beam axis, whereas here they depend
- i e i 0 onz = (z, — €|z, . This difference is due to the fact that
6 [t T3 I'—c <”" T+ 3 AE-¢) )} - (7 the& = 0 paraxial initial conditions are given on a plane
normal to the beam axis, whereas here they are defined
The abovementioned localization of the integrand aljost on a plane of constant which is generally inclined with
£ facilitates the approximate evaluation of the integral, which ~ respect to the beam axis. It follows that (18) conforms
leads to the paraxial PB field smoothly with the initial field distributiom, («, ¢) on the
z = 0 plane.
2) For large enoughz,, we may replacez( * =
Lty =, 3¢ Q) 2 — @y, tan ¥ ~ z, so thatQ is simplified and
det Q(0) (18) changes gradually into a conventional PB. This
1 [t gt <Zb 4 %Ib 0. 1'!;):| motivates rewriting the elements €¥in (19) in the form

(18) Qjj = —Z; —iF)™ = 1/R; +i/1; (22)
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whereforj = 10r2,R;(=)isgivenbyR; = (z,—Z;)+ where the prime denotes differentiation with respect t@he
Fj?/(zb —Z;), Z1 = —3:C2 Fy = B.C2 Zy, = —f3;,  fieldin (24) is approximated asymptotically by the lowest order
Fy = f,, andlj(z) = F;(1 4 (= — Z;)?/F?). The saddle-point formula [8]
PB field in (18) may now be written as an astigmatic PB

1/2

whose major axes are oriented alang andxz,, / B(w; r t)e—ié(w;r,t) dw ~ L

’ Q7 (ws; 7, 1)
; ; -B(@g; 7, )T PEITD L 9(0,) =0 @7

$(T t) _ (—Zl — 'LFl)(—ZQ — 'LFQ) .
’ (2 — Z1 — iFy) (2 — Zo — iFy) to yield
+ ] + g i

'6&—%m—§%w> (23) ulr, £ ) ~ Alr, t; e Y (28)

with the spectral phase and the amplitude given by [recall that
wheret,(r) = ¢! (% + 2} /2Ry + 27, /2Rz), Tp(r) = @, depends on all the parameters shown in (26)]

T+ Hap /I + xf, [ Ia). U(r t; £, 8 =0(r, ; &, &, T)

In (23), ¢,(r) is the paraxial propagation delay along the = <t - %T> Ba — k(@,)S, (29)
z, axis, while R; are the wavefront principal radii of cur- +
vature in thex,, directions [see (23)]1},(r) is the temporal Alr, t, &, &) = Bh(@,)[—2miSk" (@,)] /2. (30)

+
half-amplitude length of the§ pulse, which is inversely . . : . . .
oroportional to the pulse amplitude. Thus, the PB field is Equation (26) requires the analytic continuation of the dis

strongest on the beam axis wheffg(r) is minimal and the persion relationk(w) into the complexv plane. The equation

. . . has a real solutiom, if the following three conditions are si-
field decays asl, increases away from the beam axis. The 9

half-amplitude beam width in the,. directions is found by r_nultaneous!y satisfied: 1 = 0 (ten_"np.oral impulse); 2§ =

Nina T — 97 (0). aivina D. ;o o ST Th £ (propagation along the beam axis); and 3) only for propa-
solvingT},(z, ) = 21},(0), giving D;(z) = 2\/cT1(z). The gating beams witif < 1. These conditions ensure that the
collimation lengths in théx;,, z,) cross-sectional planes are °

F and the waists are locatedzt= Z; with the corresponding resulingS = &-r = z, is real. Instead of solving (26) for-
wjidths QW From (23) with (22), one notes that in themally, we shall take advantage of the spatial localization of the
collimation (Fr:esnel) zong, — Z;| < F., the PB profile is Gaus_sian PB. Since the spatially eva_nescent_ part of the spec-
essentially unchanged, whereas outside this zone the b4y in (9) along the transverse off-axis coordinates is propor-

=2 : N

spreads and its profile approaches the far-field diffractidfPn! toexp[—(1/2)k(w)B(€ — £)], the main contribution to

angles (asymptote®); = ZW the field is obtamed from thé =~ £ spectral constituents. AIsp
we assume that is a “small” parameter; the smallness require-

ment is quantified later on [see (50) and (51)]. Eox £ and

IV. DISPERSIVECASE smallT values, we now defing, (r, ¢; £) as the stationaneal

A. Transient Plane Wave Spectrum frequency of the field in (28) foon-axis observation points
1) Formal Solution and Asymptoticsthe TD spectral con- (2, t) = (R-1, 1)
stituents excited by the FD PB initial distribution in (8) with (9) dk — = ct
are given formally by inserting (9) into (12) ‘wl = €, Q= P (31)
W= KT
—5(7“, t &) = l/mdwﬁk(w)e—i‘b(ﬁ@d)7 Imt <0  Asnoted earliery, = % -ris real for|€| < 1. Moreoverz, = ct
TJo defines the wavefront of the PB field ard < ct defines on-axis

(24) points behind the wavefront. Interpretation of (31) is facilitated

O, 6,8 w, T) = w <t _ iT) _ k(w)S‘ through use of space-time rays a_md thew) ldispersion sur-
2 face in Fig. 2 (see [8, sec. 1.6]), with the radius of curvafdre
of the dispersion surfacé:(w) given by

Re(w) = {1+ [k’ (@)]}*/? ek (w). 32

For points near the beam axis, an approximate expression for

S(€ )= Rt SHE- 7 25

Except when required for clarity, we shall not include in the
notation all of the parameters in the argumendof he integral i . e =y
in (24) is evaluated asymptotically by continuing the integrarEHe field in (24) can be obtained by expandiagr, #; £, £)ina

analytically into the complex-plane and applying the saddle- aylor series aboul’ = 0 andf = £. Truncating the expression
point method. The stationary frequengy satisfies the relation after the quadratic term yields (only ty@nd " dependence is

(d®/dw) = 0 atws, so that using (25) srjown) . . R 3 ;
. W(T, &) = lfoo + VT + Pop - (£ — 5) + % o1
t—%T B O -OT+5(E-8 Por- (68 +- -
T = k/(ajs)v (Ds = (DS (’f', t7 67 67 T) (26) (33)
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ck(w)4 is thespectral paraxialphase and
=1 1., - -
ck(a,) qjd_k”(ws)zb [_gT +223(£_£).L.(£_£)
22(,
is the nonparaxial term. Inserting (41) into (44) yields
- it - =T
by =R @Al |+ LD @)
AZb (45)
45" Using (28), we obtain the paraxial approximation for the plane
h \/ wave fielf
N A ir. 1; € §) = BR(@.) [~ 2rizh @.)] /2
[ L~ —
ct, 1N -exp[—iUy(r, 1; & £)] (46)
Y

Wheretifp is given in (43) and the amplitude term is obtained

. . - . . from (30), with the zero-order approximatidfi,= 0, £ = €.

Fig. 2. On-axis PB asymptotics, dispersion surface and space-time rays. ( . . . =

k(w) dispersion surface. The normal to the surface [see (31)] is parallel to the Ve shall examine the parametric regimes for whictin (45)

shpaceat(;rlmwe ray to tlhe observatiogkp[tﬁng. Ct)')]ﬂ%eh c?nstquction_deteéminefs may be neglected, thereby furnishing a criterion for validity of

the saddle-point values.(z, t) andk|[w.(zs, t)]. e local on-axis radius 0 H H 7 ilizi H H _

curvatureR, of the dispe(rsior: curve is also shown [see (47)]. (b) Space—tirr?ge paraX|aI ap_prOXImatlon' UtlllZIrjg th/e(w) dlspersmn sur

ray to the observation poifits, ct). face and recalling (32) and (31) yields the radius of curvature
R, atw, corresponding to the space—tirop-axisobservation

where the Taylor coefficients are given by (see the AppendixPoint (zs, t)

~ _ = - _ (1+§2)3/2 o ct
\ffoo _\IJ|T~:07£:£ = tw, ik(ws)zb (34) R.=R.(@,) = ) Q= o (47)
W10 EaT‘I’|T=o,g=5 ~ 5 Ws (35)  Note thatR,. has the dimensionality ~ t~! (see Fig. 2). Then
Wao =07V ¢g = [4K" (@:)z] ™" (36) from (45) and (47)
- - n _ o 02\-3/2|
o1 =Vell,_g o = —h(@.) (@ — /) (37) Vo =5 (L) R
V11 =0rVEWly_y ¢ g = it(e = #£/Q)/ (2" (@.)=) T it 2 Tl
=0.4= —=——(£-8 (-~ 48
(38) 5, -0 @—#/0 (48)
- ~ _ _ t2 In view of (42), the nonparaxial ter®; may be neglected when
o2 = va’E\MT:O@:E = —k(@s)M + k(@) 22 L |¥,| < 2x. To use this condition in a parametric estimate, we
(39) define a criticabn-axisnondimensional estimator based on the
with equality | ¥ 4| = 27 [note from (20) and (52) that foon-axis
. ST _ observation pointsy = z£/(]
_ {1/3—2(521 +¢3)/¢ —2£165/C? } (40) Op = Vg€ = B)/(2n) = C L ORI
_EE, T if — 2(T2 + ) /T3 = [Wa(§ = 8|/( W)—m( + Q%) TVE R T
and (49)

[ b
(

(z1 +ZZ1/Z)($2+ZZQ/Z):|
@1+2€; [O)(x2+2E,/C) '

(22+2,/C)?
(41)

Via the dependence an-z£/¢, these expressions make evident,, o given space

the skewing effect due ® # 0, when compared with thg= 0
results in [3].

2) Paraxial Approximation and its Domain of Validityin
view of (33), the phas@& may be written in the form

U=0,+ 7, (42)

where

- K@) 1o = 0 (6~ D)+ 568 M-(€-E)
(@3

The condition ¥ 4| < 27, which validates the paraxial approx-
imation in (43)on-axis may now be stated as follows:

Qr < 1. (50)

—timen-axis observation pointR, is de-
termined via (47), and (50) bounds the largest pulse lefigth
which is compatible with the paraxial approximation. Alterna-
tively, keepindgl” constant, inequality (50) defines the maximum
Q = ct/x, i.e., the on-axis space-time region, for which the
paraxial approximation is valid. Behind the wavefront, keeping
2, constant yields the maximum allowable observation tirae
Qz,/c while keepingt constant yields via (49) the maximum al-
lowableR. and the minimum allowable observer locatign=
ct/€Q. The estimates fail for observation points corresponding to
R, — oo, i.e., k" (w,) — 0. This happens near the first arrival
of the signak2 — 1, where dispersion is not yet fully developed
(k(w) — w/c) (see [1, eq. 28]) and also near inflection points
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on the dispersion surface for complex materials. Better asynfjst-order changes in the phase due to the change in the spec-
totics than those based on (27) are required in these transitical stationary frequency, caused by an off-axis observation
regions [2]. point are zero due to the definition of the spectral stationary fre-

For off-axisobservation points, we define an additional critquency in (31) [see also (72)]. Therefore, the paraxial field in
ical nondimensional estimat6}; = |¥,(T = 0)|/(27). Using (46) is given in terms of the on-axis stationary frequegy

(45) and (32) we obtain The paraxial phase also includes the correction teriy2w,
ct2 _oN—3/2 _ _ N due to first-order change in the stationary frequency caused by
Qe = o (1 Q ) |B|[(€ =€) - (2 — 26/OI" <1 the small parameteF [see (35)]. The paraxial phase neglects

(51) changes due to aflecond-ordechanges in the stationary fre-
quency 07, dre, and82) These phase changes are included in
in which the eStlmata@f is evaluated in terms of the on-axis pa'\de and may be neg|ected under conditions (50) and (51)

rameters?, R., andz,. To relate this expression to the beam co- Emphasizing the spectral domam we consider the directional
ordinates in (20), we expreés — z£/¢) in terms of the off-axis

beam coordinates, using (20) as behavior of the spectral plane wavesamvmg from different

_ ) directionst at a fixed space—time poif#, ¢). Viewed from this
(@ — 2£/T) = | &5 f/ cos ¥ —sin q {x“} (52) Perspective, the paraxial phase in (43) peaks at £ and ex-
sin @/ cos ¥ Cos @ | | To2 hibits Gaussian decay f@ away from¢ [recall thats,. > 0

where (9, @) are the spherical angles that define the beam dit (40)]. This decay is due to the complex spectra in (8). The

rection% — (£, 7) via (21). From (51), one has the followingparaXial phase neglects second-order changéslire to&-in-
estimates ’ ' duced changes in the stationary frequency [recall from (26)] that

1) Th . . f i . -axi ws is a function off).
) be ma>;|mum excursion ozftrr](_)m ¢ o_rf-a glt\;]en CI)I 'ax'tj These considerations furnish insight into the contribution of
observation poingz;, s, t); this specifies the allowable he paraxial and nonparaxial phases to the space—time PB field
angular spread that can be included when performing the

‘ ol i 11 th (11) Within the paraxial approximation in (46), the spectral
ransient plane wave superposition in (11) using the Spes%perposition in (11) has the form of an inverse Fourier trans-
tral paraxial phase in (43).

. . form of a Gaussian it¢ — £). Therefore, the resulting PB field
2) T_he_m‘f"x'm””f‘ excurs_lcmb fr_om the b_eam axis for given has the form of a Gaussian in the off-axis parameter in (52) [see
& thisis ebtamed b_y nserting (52? into (51). Moreover, also (62)]. Foon-axisobservation points, = 0, the parameter
for on-axis observation poms, =0t fOI.IOWS from.(52) Q¢ in (51) vanishes, indicating that the paraxial approximation
thatz — #/¢ = 0. Accordingly, on axis, the estimator ; Jjioq 1|l £ values provided that (50) is satisfied. This is at-
Q¢ = 0; off axis, the allewable maximum angular SPreafibuted to the fact that faf” = 0, the nonparaxial phase termin
¢ — ¢ decreases with distance from the beam axis. As tﬂS) which quantifies the deviation of the stationary frequency
(49), Q¢ is parameterized by then-axisobservation point ws from the on-axis frequency,, vanishes on axis. Away from
(7b’. ) hich determines, vid2 = Ct/f‘“ the location the beam axis, increases with; [see (51)] and the paraxial
behind the wayefront and the local radius of curvatlire approximation is valid up to those, that satisfyQ; ~ 1. Be-
of the dispersion surface yond this rangeW¥, has to be taken into account, in addition to
The spectral funct|om in (28) can be regarded either as ab,,. Under condition (50), theonparaxialphase in (45) consists
configuration-space object, whefeis kept constant and the of a second order term iff — £) multiplied by a second-order
space-time observation poi(i, ) is allowed to vary or as term inx; [see (45) with (52)]. Adding this term to the paraxial
a spectral distribution, wher@r, ¢) is kept constant and is approximation in (43) and inserting into (11), we find that the
allowed to vary. Emphasizing the configurational domain, wesulting integral has the form of an inverse Fourier transform.
consider the space—time behavior of a single dispersive spectiaé presence af, in ¥, will result in a PB field having #ourth

plane Wave;“:(r, t €& T propagating in the specified c“rec_orderterm in the transverse coordinatg (a second-order term
tion & = (£, ¢) [note from (26) with (25) thab, and, therefore, from the inversion of the Gaussian times the second-order coef-

(28) with (29) and (30), are all functions Sy — £z + (Al f|C|e4nst in ((512)4(53ee also (63)]), thereby justifying the definitions
The paraxially approximated form in (46) restricts the speci in (43) and (45)

fied propagation angle to a direction close to the directiaf B. Asymptotic Evaluation of TD Spectral Integral
the beam axis [see (51)]. The spectral paraxial phase in (43
is in accord with the nondispersive paraxial delay obtained
second-order approximation ofrin (15) aboutt = £. In view
of (52), the term(x — 2€/¢) in the paraxial phase (43) vanishes
for on-axis observation points whetg = 0. For off-axis obser- + ) * s

vation points wheréx — z£/{) # 0, additional phase is added u(r, t) ~ / "L A(r, 85§ (33)
to the on-axis phase by the linear term(gn- £) in (43) as well
as a second-order term due to the real paMbofThese addi-
tions adjust the on-axis parametgrso as to accommodate t
exact plane wave constant delay surfaces KT [as in (15)]
up to second-order terms (§—¢&) [see (73) and (76)]. Note that Ve, ()ee. =0, & =¢,(r & ). (54)

)I'he formal representation of the TD field is given by the su-
p¥-zrp03|t|on integral in (11). For the spectral distribution in (28)
this yields

We shall evaluate (53) using tiparaxial field in (46). Integral
he (53) has a stationary poigt in the complex domain that sat-
isfies
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The field may again be evaluated asymptotically via the lowestvalid when|R.| — oo because the amplitude in (46) shows
order two-dimensional saddle point formula [8, eq. 4.7.3]  that the asymptotic field amplitude diverges in that limit [see
also the amplitude in (64); for a uniform correction when

+ -~ ' (r £ —
u(r, 1) ~ A(r, t; & T)em V58 (55) £ =0, see [2]].
with 3) Amplitudejl: Inserting (39) together with (30) into (57)
= ~ = ields
Ur, & 1) =Uyr 16, & The_g. s6) 7
and + 2 det Q(z)
+ o Alr, t) = \/ —— \/ . (64)
z(r, HEET)=Alr 56 6 D)l o ima k(@) | det Q(0)

[DetVeVel e 112 N . . ,
Pls, Comparing this result with the one found in[1, eq. (57)], we find

G that by settingS = z 4+ z*/(z — i8) — zin[1, eq. (57)], the
Since the fields in the integrand are approximated by thdWo results are identical for the special cgse- 0. Therefore,
paraxial (quadratic) form, the integration can be performédbe generalized result in (64) is the zeroth-order off-axisrm

exactly. of [1, eq. (57)], a common approximation for the amplitude.
1) Stationary Point: Inserting (43) into (54) yields The paraxial dispersive PB field in (55) with (62) and (64)
_ - can be parameterized in terms of beam widths, wave front radii
Velz + (x __25/0 (€~ §) of curvature, instantaneous frequencies, etc., by using the field
+3(£6-8 M- (£-8le=. =0 (58) envelope and paraxial phase in the manner established in [2] for

the normally(¢ = 0) propagating beam. We shall not pursue

and, therefore, oo . L
this line of investigation here.

£,=E- M (z - 2£/0). (59)

From (59) we note that the displacemengpfrom the on-axis
real valuet is proportional tdz — z£/¢) and, therefore, via (52)  In this paper, we have formulated and asymptotically evalu-

V. CONCLUSION

to zy. ated a direct TD spectral analysis and synthesis procedure for
2) Phasel: The phasel is obtained by inserting (59) into the propagation of a paraxial PB launched obliquely from a
(56) hypothetical aperture plane into a lossless homogeneous un-
i bounded dispersive medium characterized by the generic dis-
U(r, t)= <t -3 T) W persion relatiork:(w). Various critical nondimensional estima-

_ — _ S tors have been shown to play an important role in quantifying the
— k(@) [ —5(@—2€/)- M~ - (—2£/0)] - range of validity of the paraxial approximation. Procedural de-
(60) tails have been summarized in Section | and need not be repeated
ﬂere. We conclude with the observation that the new results de-
veloped in this paper permit the asymptotic representation, via
o o PB superposition [6], of fields excited karbitrary short-pulse
—(@—2/Q)- M~ (z—28/) =% Q= (61) initial source distributions in the dispersive environment. Exten-

where@ is given by (19) and the paraxial phase may be esion of these techniques to lossy dispersive materials is under

pressed in terms of the beam coordinates consideration.

U(r, t) = <t — T) Ws—k(W,) [zb + lxb Q- xb} . (62) APPENDIX
2 2 DERIVATION OF (34)—(41)

The phase in (62) consists of thg _on-axis phaseln order to evaluate the Taylor coefficients in (33), we note
ws(t — (i7/2)) — k(@s)z» and an additional paraxial 4t
off-axis term(1/2)x; - Q - z, [cf. (18) and (23)]. The result in
(62) is valid as long a¥’ satisfies condition (50) and as long as Dslpo ef = Us> S|§=E = % =z (65)
the stationary poin§, satisfies condition (51). Using (59), we ’ . B
find thaté, — £ = M~ - (x — 2£/{) and substituting into (51) 1) Woo: Sampling? in (29) at? = 0 and¢ = £, and using

Utilizing the beam coordinates in (20) as well as relation (5
we find that

we obtain (65) we obtain (34).
£2 _ _ 2) ¥i: Using (29) one finds (only th@ dependence is
Qny = g (14 ) 2[Rollzs-Q > <1 (63) shown)

3
dmz;

- 1. 7 . 5 .
where @, is the critical nondimensional estimator that padr ¥ (1) = —5Ws (T)+ <t - §T> 7w, (1) — Sork[w,(1)]
rameterizes the maximum off-axis excursiag for which

) . ; S . . (66)
the paraxial phase in (62) is valid, i.e., the maximum off-axis )
excursionz, . _ is obtained forQg, =~ 1. For a nondispersive Wheredr = 9/9T. Using ‘
field, thi_s devi_atio_n _is parameterized ly,| << =z, alone. SOk, (T)] = SK [0u(T)|0res(T) = <t _ £T> 076 (T)
When dispersion is introduced, the paramet&rsand 2 play 2
a role in addition toz,. However, the estimate in (63) becomes (67)
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in (66) leads to

Or¥(T) = —2 5,(T) (68)

with the last equality in (67) obtained from (26). Sampling (68) 2

atT = 0, & = £ yields ¥y, in (35).
3) Wyo: Applying 97 to (26) we find (only thel” depen-
dence is shown) .
—1

orws(T) = ———— 69
e TR (69)
andd2.¥ is evaluated using (68)
. i 1
RY(T) = — L 8o, () = —~————. (70
TU(T) = =5 9re(T) —4Sk[6,(T)] 70

The final expression in (36) follows via (65) and (70).

4) Wy;: Using (29) we obtain (only thé dependence is

shown) .
Vel() = (1 5 T) Ve (©) - SO Veklon(©)]
— k[@s()]VeS(€) (71)
andV k(w,) is evaluated using (26) .
t—tr
Veklan (O] = H2Veb©) = —z 5= Vean(©. (72

Inserting (72~) into (71) yields )
Vel (€) = - k(@,)VeS(€) )
= —k(w,)lz —2§/C+ip€-8]  (73)

where the last equality was obtained takiiifom (25), as well
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