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A Hybrid FEM-Based Procedure for the Scattering
from Photonic Crystals llluminated by a Gaussian
Beam

Giuseppe PelosFellow, IEEE Alessandro Cocchi, and Agostino Monorchidember, IEEE

Abstract—in this paper, we provide an efficient numerical pro- of each plane wave is analyzed by resorting to a hybrid tech-
cedure for evaluating the field scattered by two-dimensional (2-D) nique combining the finite-element method (FEM) with a Flo-
photonic crystals when they are illuminated by Gaussian beams. quet modal expansion [11], [12]. However, due to the particular
In particular, the incident Gaussian beam is interpreted as a spec- - Y ; ’ . .
trum of both homogeneous and inhomogeneous plane waves. The_pmpert'es _Of the p_hotomc crystals, _the evalu_atlon. of .the _f'eld
scattering of each plane wave is analyzed by resorting to a hybrid in the exterior medium under Gaussian beam illumination is re-
technique combining the finite-element method (FEM) with a Flo- duced by applying the saddle point method to the contribution
quet modal expansion. Moreover, by applying the standard saddle of the fundamental Floquet mode due to a single plane wave be-
point method, the evaluation of the field at a specific point of the longing to the incident field spectrum. This strongly increases
exterior medium is reduced to the contribution of the fundamental - -, L . .

numerical efficiency, actually limiting the computational time.

Floguet mode of a single plane wave belonging to the incident spec- - .
trum, strongly enhancing numerical efficiency. We note that spectral methods have been widely used in an-

Index Terms—Artificial crystals, electromagnetic scattering, (€Nna problems in the context of high-frequency techniques for
FEM. extending the validity of analytical solutions to the near field.
First, the plane wave far-field transfer function of the structure
is determined,; then, this function is used as the kernel of a suit-
able spectral integral to reconstruct the proper Green’s function

ECENTLY, the interest in photonic crystals has stronglgf the problem [13]. In our case, the Green’s function for the

increased due to the possibility of realizing structurgdroblem under investigation is obtained via a numerical proce-
with specific frequency selective properties [1]. Initial works olure.
this subject focused on quantum electronic applications such aghe paper is organized as follows. In the next section,
spontaneous emission inhibition [2], that plays a fundamenwie present the specific formulation for the scattering from
role in nano-cavity lasers [3] and in solar cells. If a photonig@ two-dimensional (2-D) photonic crystal illuminated by
crystal is properly doped, a forbidden frequency band arisasGaussian beam. In the same section, a hybrid technique
so that local modes can be trapped around the defects into BigM/Floquet modal expansion is employed to determine the
crystal lattice [4], [5]. In applied electromagnetics, photonitar-field response of the structure to a simple plane wave
crystals have been used for realizing planar dielectric reflectdtgminating the crystal. This plane wave far-field response is
[6] and they have also been employed as substrates for dipaleed to reconstruct the response of the system to a Gaussian
and printed antennas to improve radiation performance [Bgam illumination in the framework of a spectral method. In
[8]. Their usage has also been prospected as stop-band fil@estion 1, a high-frequency approximation is devised for
in dielectric waveguides and patch antennas. In fact, phototie computation of the fields reflected from and transmitted
crystals differ from the typical dichroic surfaces because th#yrough the 2-D photonic crystal. Numerical results will be
preserve the same frequency selective properties independesitigwn in Section IV to demonstrate the effectiveness of the
on the polarization and direction of incident field [9], [10].  technique and to determine its limits of applicability. Finally,

We note that several scattering problems presented in the $ieme concluding remarks are drawn in Section V.
erature on this topic have been limited to plane wave illumi-
nation conditions [6], [9], [10]. The purpose of this paper is II. FORMULATION
to provide an efficient numerical procedure for evaluating the . _ _
field scattered by such structures when they are illuminated fy ncident Field Spectral Representation
Gaussian beams. An exact solution can be provided by interdiet us assume a 2-D photonic crystal that is periodic and in-
preting the incident Gaussian beam as a spectrum of both fioite along thex direction of an orthogonal reference system,
mogeneous and inhomogeneous plane waves. The scattefiimite along they direction, and homogeneous along theirec-

tion, illuminated by a Gaussian bea#tt“(x, 3) with arbitrary
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Gaussian beam can be interpreted as a superposition of plant A
waves with the following spectral representation [14], [15]: y

w(z,y) = / U™z, y; @) dex Pl

—o

+eo S
— [ ealo)da ® N

— o0

wherefa(z,y) = exp[—j(ax — fy)] denotes the phase factor, >
beingg anda the wavenumber projection alongandy related O O O O Q O
to the free-space propagation constaily k* = 3% + o?; ad-

ditionally, &k = 27 /Ao, Ao representing the wavelength of the Q O O Q Q
incident field. Moreoverp(«) is the canonical Gaussian func- O O O Q Q Q
tion

k 2 _ =\2
po) = e -HGE @

Fig. 1. Geometry of the problem: a Gaussian beam impinging on a photonic
crystal.

In (2), a is a real positive number and = & sin(¥*). We note
that for the choicé: = a, the incident fieldu'*(z, %) has uni-

. X so that the computation of the scattered field is corrupted by
tary value at the origin of the coordinate system.

. . ; the presence of the fictitious side replicas. This problem is even
In (1), the integral is extended to the mtt_er\}al'r 0, +O<?[; worsened when we observe the scattered field at grazing angles

however, most of the energy of the incidentfield is comprised {f, respect to the air-crystal interface. In Fig. 2 we show the

th_e if“e“’a'[@ —k, a+k], so that_intggration can be bounded ®aussian incident field obtained by setting eithee= 20 (con-

this interval. For out-of-normal incidence, assumes nonzero line) orN = 30 (dashed line). In practical applications,

value: |n.th|s case, evanescent plang waves are present Wil e results are obtained if a high value is usedvidtyp-

propagation constarjty| >  propagating along and atten- ically N > 200), substantially below the Shannon’s sampling

uating alongy. For an exact reproductu_)n of the !nC|dent f',eminterval [15]. This results in a prohibitive computational cost for
the plane waves withy| > & should be included in the series;

h hev b anif i th uati tth %ractical applications. However, as will be shown in Section 11,
owever, they vecome signi icant in the eva ”a“F’” oft € SCfe computational time can be drastically reduced by resorting
tered field at distances lower thay10 from the air-photonic

to a high-frequency approximation.
crystal interface, but they do not contribute appreciably to the 9 quency approximat

correct value of the scattered field for greater distances. In t@_s FEM/Floquet Modes Procedure

sense, they can be neglected without loss of accuracy as will be o ) o ]
shown in Section IV. By utilizing a spectral representation for the incident field,

A discretization of (1) can be performed if we consider a didbe scattering of a Gaussian beam from the photonic crystal can

crete summation of plane waves equally sampled in the variaBfe @nalyzed by considering separately the scattering of both ho-
«; in particular, the integral operator becomes a discrete serf@@geneous and inhomogeneous plane WaVeS(z, y; ) =

that can be cast in the following form: p(a) fo(z,y). This problem can be solved by employing a hy-
brid technique utilizing the FEM in conjunction with a Floquet’s
_ Nt a(c; — a)? modal expansion [11], [12]. We note that FEM is particularly
u(z,y) = Z 5 exp [—T} suited to analyze this kind of structures that possess arbitrary
a 70

i=1 shaped inhomogeneities: in fact, a conformal meshing of the
x exp[—j(aiz — Biy)|Aa (3) geometrical features allows us to accurately resolve the fields
within the crystal.
whereAo = 2k/N is the sampling interval in the wavenumber e start by considering the scattering from an infinite,
domain.«; andg; define the direction of each single plane wave_p periodic structure (Fig. 3) illuminated by a plane wave
on thezy plane. Um<(z,y: ), which can be either homogeneous or inhomoge-

A discussion about the truncation numi@érof the series in neous, |mp|ng|ng at an ang&e that in the most genera' case
(3) is in order. Equation (3) can be interpreted as a discrete rePromplex

resentation of the integral function in (1) in the interj@al —

k, a+k]; asitis well known from signal processing theory, when Uim(a;, yia) = p(a)e—j(a“’—r@y)g (4)

a continuous function is discretized, its Fourier transform be-

comes periodic and the sampling interval must be chosen in adierea = —k cos andg = ksin.

cordance with Shannon’s theorem to avoid the “aliasing” error Floquet’s theorem dictates the periodicity of the scattered
in the corresponding transform domain. The same problem dield alongz; in particular, ifd is the period along:, the scat-
curs in our case if we consider thaty) is the Fourier transform tered fields evaluated at andz + d are identical but for a

of «¢(x, y). In particular, by sampling the spectrum of the inphase factoexp(jkdcos). This allows us to determine the
cident field, acombtype field in the space domain is obtainedcattered field by analyzing a basic periodicity cell defined in
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A The total scattered field®(x, %) can be then determined as the
o~ superposition of the contributions due to each plane wave com-
.g posing the incident field
Q Foo
g w(z,y) = U(z,y; o) dex

ale o)
£ [T ¥ e
2 - m=—oo
[ » w ¢ Ikm ()T o —ivm () g, (8)
-10 -5 [¢] 5

X (wavelenghts) A similar analysis holds for the transmitted field in region Il

. ut for a sign change i
Fig. 2. Incident field representation obtained by using the inverse Fourg 9 9€ Mnn.

transform of the spectrum. Continuous lifé:= 20; dashed lineN = 30. In region II, the Helmholtz scalar equation must be solved :
V2 + k2 (2,5)| U (z,5;0) = 0 ©)
f/{ whereU'(z, y; «) is the spectral component of the total field,
U™xy; ¢) . . ”» . .
A v subject to the appropriate boundary conditions, i.e., the conti-
' nuity of the tangential components of the field and its normal
Region I derivatives o’y andl' g [11]. Additionally, the periodicity of

e e the field onI"';, andI'r must hold along the: direction. More-

Q ) ) O e, y over, ks(x,y) is the wave number of the medium. A weighted
1 \ k N 4 residuals procedure can therefore be applied with identical basis
: D L»

Q <> Regmn i Bk < and weighting functions (Galerkin’s procedure). By employing
) B i x a weak form of the Helmoltz equation, a FEM solution can be
""“\ ) (\ i, issued by discretizing region Il intd/ elements where a set
b k Q/ \\7) of first order linear basis funcnorWz( ,y) (nodal elements)
-------------------- is chosen for interpolating the field at t?¢, nodes. The total
Ty Region III field can be expressed as
M N
< d > Ut (z,y; ZZUZWZ z,y) (10)
=1 j=1

Fig. 3. Elementary problem: periodicity cell illuminated by a plane wave. . . . . .
wherev} is the field value ajth node ofith element, whileV,

is the number of nodes per element.
A set of linear equations is obtained which can be written in
e following matrix form:

(0 € z £ d) and divided into the following regions: two un-
bounded regions | and Il (Fig. 3) and a bounded region I d({;-h
finedin (0 < z < d;yr < y < yg) and delimited by the
boundaried’r,I'r,I'r;, andl'p. A Bl1Tv I
In region I, the total field is given by the sum of the inci- [5 f} [E} = [ﬁ}
dent and the scattered field&°t(x, y; o) = U™ (z,y;a) + - = o
U?(z,y; ), while in region lIl, U (z, y; ) = U¥(z,y;a), The unknown column vectaE of dimensionV,, contains the
i.e., the total field coincides with the transmitted field. Eacbhinknown electric field values at nodal points inside region II.
spectral component of the scattered field can be expandedlite column vectol” contains the values of the Floquet's coef-
terms of Floquet modes as ficients in regions | and Ill. If the electric field in region | and
N region lll is expanded iBM; + 1 and2M g + 1 harmonics, re-
. = ik (@)% — i (@) spectively, the total dimension of vectiris 2(My + Mg +1).
U(w,ys) = D pla)dp,(a)e Fn(@7em im0, (5) Submatrices of the global solving matrix a(ssume the foIIZJWing
meaning:D is a band matrix representing the conventional FEM
In (5), AL, are the unknown coefficients of the scattered field iRolving matrix with dimensions/,, x N, [16]; submatrixC ac-
the upper region Ik, («) and~,, («) represent the propagationcounts for the imposition of the boundary conditions (COI’]tInUIty
constants along: andy, respectively, whose expressions aréf the normal derivative); sub-matricgisandB account for the

11)

m=—0o<

defined as continuity of the tangential components of the electric field. The
5 forcing term (excitation vector) is given by the column vectors
k(o) = <$) +a (6) 1 andP. The former contains only one element different from

zero, i.e.,

[ VE =R (a) if k> kn(a) .
m{@) = { —iVEL () — k2 if k< kn(a). 0 Loy = =/ 0d (12)
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(yu is the ordinate of the boundaty;;), the latter exhibits
nonzero values only at th&;; nodes belonging to the upper
boundary.

For an exact evaluation of the field scattered by a Gaussian
beam, the FEM procedure now described must be applied for
each plane wave belonging to the incident field spectrum so that
a large amount of plane waves must be considered. In the next
section, an asymptotic procedure is devised allowing us to take 2
into account only one specific plane wave belonging to the in-
cident spectrum.

\

A W2 Re®)

[ll. HIGH-FREQUENCY APPROXIMATION
SDP
In the following, we will focus on the scattered field in re-

gion | when the periodic structure is illuminated by a Gaussian
beam being the treatment for the transmitted field in region IlI
analogous. In the context of a spectral technique, we consider _
the complex variablé = ¢ + j¢” and the change of variables™9: 4 Integration contout” and SDP.
a = ksin € so that (8) becomes

slowly varying function in the neighborhood of the saddle points

I &,. Consequently, by taking into account only terms of order
u®(z,y) = /Cp(g) Z ArIn(S)Cijkm(f)x (]gp)—l/Q7 (14) reduces to
x ¢~ EY L cos(€) dE. (13) I —27 cos? (g
w(p, )~ > pé)AL(E) T@())
By considering real values faot, the integral is evaluated m=—0co J s
along the pattt” depicted in Fig. 4. Additionally, we operate in e~Ikp 18
cylindrical coordinatesp, ¢); consequently, by interchanging x cos(€s)- /Tp (18)
the sum operator with the integration, the total scattered field . .
can be obtained as beingé, the saddle points
+o0 1 2mm
5 s = - —. 19
o) = 3 [ roan© to =™ fsn(e) ~ 7 (19)

m=—0ocG

Equation (18) can be furtherly simplified by considering that in
F(¢,) the quantityp(k sin ¢ —2mm/d) is present; it approaches
(14)  zero when the argument becomes large with respectdoi.e.,

V\fhenm becomes large. This allows us to consider only the con-

Equation (14) can be interpreted as a summation of integr . - . )
that can be separately evaluated by applying the saddle pglrﬁ%utmn of the fundamental harmonjen = 0) reducing ex

method. In particular, if we define two functiodg ¢) and f(£) préssion (18) in the following form:

w 3Pk (€) sin oty (€) cos ] |, cos() dg.

— 2
F(&) = p(&) A, )k cos(£), (15) w?(p,0) = %ﬁg(f)p(/ﬂ cos ) A (kcos )k
F€) = —jlkm(©)sing + (& cose]  (16) FeoTse
e—Ikp
we have for a single term x COS(ﬁs)—M (20)
/ F(g)epf(f) d¢ = F(S)epf(f) ¢ + Z Res (17) wherey, = 90— ¢. Equation (20) allows us to compute the field
c SDP at a specific observation angle by evaluating the single contri-

where> " Res denotes the summation of the residues evaluatEHF'on due to the fundamental Floquet's harmonic, this latter

at the pole singularities lying in the complex plane regio eing the harmonic evaluated at the saddle point that coincides

bounded by the steepest descent path (SDP) and the cqfhtod}'ith the contribution in the direction of observation. It is worth
(Fig. 4). Their contribution is not knowa priori sinceF(¢) is noting that if a different observation angle is needed, a different

known only numerically and not analytically: however, Simplgaddle point (consequently, a different fundamental harmonic)

considerations on the distance at which their value is importarHPSt be considered.

led us to hypothesize that their effect can be negleatpdori

if one is not interested in the field close to the interface. This

specific aspect will be discussed in detail and numerically We consider a 2-D photonic crystal constituted by a periodic

proven in the following section. sequenceéd = 0.46)) of lossless dielectric rods of circular
In the context of a high-frequency approximation, we noteross section with diametdp = 0.2162 and refractive index

that F'(£), for the specific problem at hand, is a regular anl = 2 (¢,. = 4). The crystal has a hexagonal symmetry and a

IV. NUMERICAL TESTING AND RESULTS
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(b)

Fig. 5. Photonic crystal under investigation. (a) Geometry of a five-layer structure with dielectric cyliadets 4). (b) Mesh of the bounded region of the
basic periodicity cell.

five-layer structure is specifically considered [Fig. 5(a)]. The We consider next a Gaussian beam excitation: the results ob-
bounded region of the basic periodicity cell has been meshmihed by the high-frequency approximation described above
by using 3312 quadrangular elements with 3433 nodes (see compared with the results provided by the spectral proce-
Fig. 5(b)). We use a very refined mesh to guarantee a precthee that accounts for the presence of all plane waves between
FEM computation; in this way, the accuracy issues relatéd—k, a+k]. An exact evaluation of the incident field should in-
to the high-frequency approximation hereafter discussed, atade the presence of the inhomogeneous plane waves: however,
not affected by the specific FEM implementation employedh order to reduce computational costs, only the homogeneous
Moreover, the choice of quadrangular elements allows us iteident plane waves have been considered; in fact, extensive
reduce the number of unknowns with respect to a triangulanmerical tests showed that the presence of these latter can be
mesh. neglected without loss of accuracy. In Fig. 7, we show the re-
First, the bandgap properties of the structure considered 8eeted field evaluated at a distance®22X from the interface
shown in Fig. 6. In particular, the ratio of the transmitted powavhen the incident field has a mean incidence amjle= 30°
to the total incident power, computed by using the hybridnd a standard deviatian = %. The dashed line refers to the
FEM/Floquet modes approach, is shown as a function of tbase in whichV.= 1200 plane waves (both homogeneous and
frequency for a plane wave excitation with an incidence anglehomogeneous) in the incident field expansion are taken into
¥ = 30°. The existence of a forbidden band in the intervaccount; the continuous line refers to the case in which only the
around\/d = 2 is clearly apparent in the same figure. Thiflomogeneous plane waves are taken into account, these latter
result compares well with similar geometries already studiediiasult to be 800. As can be seen, the difference between the two
the literature [10], confirming the accuracy of the method farases is very small, allowing us to consider only the homoge-
what concerns a single plane wave excitation. neous plane waves in the expansion of the incident field.
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against the ratid./d. The structure is that of Fig. 5; the plane wave is incident
at an angle}? = 30°, TE. polarization. 15
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o

\\\ 0 -
\ 0 5 10 15 20 25 30 7
\ P/
\\ Fig. 9. Error arising in the evaluation of the reflected field from the crystal in
N Fig. 5 as a function of the distance from the interface. Normal incidénce
) i 5 T ?} 0°, N = 3000. Continuous line: observation angfe = 5.7°; dashed line:

observation angle = 9°.

X (wavelenghts)

with the assumption of neglecting the residues in (17). In Fig. 9,
we plot the error as a function of the distancalong a specific
direction belonging to the-3 dB aperture of the reflected beam.

It is important to highlight that the high-frequency approxi:rhis latter has been determined by evaluating the angle at which

mation here considered can be applied to the case of photott% incident field reduces of 3 dB at a fixgdIn particular, in

- - : Fig. 9, the case of normal incident& = 0°) and standard de-

crystals due to the peculiarity of the functidf(¢) which, as ~ %" i ) _ o
mentioned above, is regular and slowly varying in the neighbo\f'—at'qn a = k has been considered (with the standard deviation
nsidered above, the3-dB aperture corresponds to an angle

hood of saddle points in the forbidden bandgap. In Fig. 8, Wi i . o .
show the behavior of'(£) in the neighborhood of the saddle?! 2pproximately 18 symmetric along the mean incidence di-
rection); the observation angle was set equat te 5.7° (con-

oint for the crystal under investigation. _ : X
P y J nuous line) andy = 9° (dashed line) and in both cases the

In the last figures we show the field scattered by the 2-D phg d has b 4 with th Mo |
tonic crystal in Fig. 5(a) evaluated by using the asymptotic pr eld has been compared with the casesof= 3000 plane

cedure previously illustrated in comparison with the value con\ﬁ‘fa&’?ﬁ' As aptparent,dthe ebrror between ﬁ?e aS)éjmptotlllc pfrocledure
puted by employing a large numh®&rof plane waves (this value and the exact procedure becomes smaller and smaler for farger

. . it is limi 0 = ithi
can be viewed as exact f&¥ becoming larger and larger). In:’r?luﬁsl fOfp : Howevetr, itis f“trﬂ'ted f}o 10 d/of'folg 18 within
particular, we compute the erreras € hall-power aperture of the refiected field.

In Fig. 10, we plot the error as a function of distance but
lun — 1| for a mean incidence angle of 3the observation angle was
€= Tloo (21)  set equal tap = 26° (continuous line) angp = 39° (dashed
line). The field has been again compared with data obtained by
whereu® is the field computed by using (20) ang: is the field consideringV = 3000 plane waves. In this latter case the error
evaluated by employingy plane waves in the incident field. Itisis limited to 10% forp > 22X within the half-power aperture of
worth observing that the error arising by using (20) is associattie reflected field.

Fig. 7. Reflected field evaluated at a distanc® @2\ from the interface for
a mean incidence angt&# = 30°.
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A
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pA
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Fig. 10. Error arising in the evaluation of the reflected field from the crystal
in Fig. 5 as a function of the distance from the interface. Oblique incidence
¥% = 30°, N = 3000. Continuous line: observation angle= 26°; dashed
line: observation angle = 39°. [71
(8]

Similar results have been obtained for different values of the
standard deviation of the incident beam. As a general behavior[,9]
we address that the asymptotic procedure provides a good accu-
racy at large distances from the interface; however, the error can
be maintained at a reasonable value at lower distances Withh:L]O]
the main beam of the reflected field. Depending on the spefi1]
cific application, a compromise between accuracy and compu-
tation time can therefore be obtained. Additionally, we note thaf; ,
the asymptotic procedure here presented can be efficiently em-
ployed at optical frequencies where the operative wavelengtH$3]
are very small. [14]

[15]

V. CONCLUSION [16]
In this paper, we addressed the problem of the scattering of
a Gaussian beam from 2-D photonic crystal. By interpreting
the incident Gaussian beam as a spectrum of plane waves, the
problem has been reduced to the analysis of the scattering of
a plane wave, which has therefore been solved by a hybrid
technigue, which combines the FEM with a Floquet’s modal

979

extension of the method to different kinds of illuminations and
scattering structures.
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