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A Hybrid FEM-Based Procedure for the Scattering
from Photonic Crystals Illuminated by a Gaussian

Beam
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Abstract—In this paper, we provide an efficient numerical pro-
cedure for evaluating the field scattered by two-dimensional (2-D)
photonic crystals when they are illuminated by Gaussian beams.
In particular, the incident Gaussian beam is interpreted as a spec-
trum of both homogeneous and inhomogeneous plane waves. The
scattering of each plane wave is analyzed by resorting to a hybrid
technique combining the finite-element method (FEM) with a Flo-
quet modal expansion. Moreover, by applying the standard saddle
point method, the evaluation of the field at a specific point of the
exterior medium is reduced to the contribution of the fundamental
Floquet mode of a single plane wave belonging to the incident spec-
trum, strongly enhancing numerical efficiency.

Index Terms—Artificial crystals, electromagnetic scattering,
FEM.

I. INTRODUCTION

RECENTLY, the interest in photonic crystals has strongly
increased due to the possibility of realizing structures

with specific frequency selective properties [1]. Initial works on
this subject focused on quantum electronic applications such as
spontaneous emission inhibition [2], that plays a fundamental
role in nano-cavity lasers [3] and in solar cells. If a photonic
crystal is properly doped, a forbidden frequency band arises
so that local modes can be trapped around the defects into the
crystal lattice [4], [5]. In applied electromagnetics, photonic
crystals have been used for realizing planar dielectric reflectors
[6] and they have also been employed as substrates for dipoles
and printed antennas to improve radiation performance [7],
[8]. Their usage has also been prospected as stop-band filters
in dielectric waveguides and patch antennas. In fact, photonic
crystals differ from the typical dichroic surfaces because they
preserve the same frequency selective properties independently
on the polarization and direction of incident field [9], [10].

We note that several scattering problems presented in the lit-
erature on this topic have been limited to plane wave illumi-
nation conditions [6], [9], [10]. The purpose of this paper is
to provide an efficient numerical procedure for evaluating the
field scattered by such structures when they are illuminated by
Gaussian beams. An exact solution can be provided by inter-
preting the incident Gaussian beam as a spectrum of both ho-
mogeneous and inhomogeneous plane waves. The scattering
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of each plane wave is analyzed by resorting to a hybrid tech-
nique combining the finite-element method (FEM) with a Flo-
quet modal expansion [11], [12]. However, due to the particular
properties of the photonic crystals, the evaluation of the field
in the exterior medium under Gaussian beam illumination is re-
duced by applying the saddle point method to the contribution
of the fundamental Floquet mode due to a single plane wave be-
longing to the incident field spectrum. This strongly increases
numerical efficiency, actually limiting the computational time.

We note that spectral methods have been widely used in an-
tenna problems in the context of high-frequency techniques for
extending the validity of analytical solutions to the near field.
First, the plane wave far-field transfer function of the structure
is determined; then, this function is used as the kernel of a suit-
able spectral integral to reconstruct the proper Green’s function
of the problem [13]. In our case, the Green’s function for the
problem under investigation is obtained via a numerical proce-
dure.

The paper is organized as follows. In the next section,
we present the specific formulation for the scattering from
a two-dimensional (2-D) photonic crystal illuminated by
a Gaussian beam. In the same section, a hybrid technique
FEM/Floquet modal expansion is employed to determine the
far-field response of the structure to a simple plane wave
illuminating the crystal. This plane wave far-field response is
used to reconstruct the response of the system to a Gaussian
beam illumination in the framework of a spectral method. In
Section III, a high-frequency approximation is devised for
the computation of the fields reflected from and transmitted
through the 2-D photonic crystal. Numerical results will be
shown in Section IV to demonstrate the effectiveness of the
technique and to determine its limits of applicability. Finally,
some concluding remarks are drawn in Section V.

II. FORMULATION

A. Incident Field Spectral Representation

Let us assume a 2-D photonic crystal that is periodic and in-
finite along the direction of an orthogonal reference system,
finite along the direction, and homogeneous along thedirec-
tion, illuminated by a Gaussian beam with arbitrary
angular width and arbitrary mean incidence angle(Fig. 1).
The case of TM polarization will be
considered in the following, being the extension to the TEcase

straightforward. A harmonic time-de-
pendence is assumed and suppressed. The incident
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Gaussian beam can be interpreted as a superposition of plane
waves with the following spectral representation [14], [15]:

(1)

where denotes the phase factor,
being and the wavenumber projection alongand related
to the free-space propagation constantby ; ad-
ditionally, representing the wavelength of the
incident field. Moreover, is the canonical Gaussian func-
tion

(2)

In (2), is a real positive number and . We note
that for the choice , the incident field has uni-
tary value at the origin of the coordinate system.

In (1), the integral is extended to the interval ;
however, most of the energy of the incident field is comprised in
the interval , so that integration can be bounded to
this interval. For out-of-normal incidence,assumes nonzero
value: in this case, evanescent plane waves are present with
propagation constant propagating along and atten-
uating along . For an exact reproduction of the incident field,
the plane waves with should be included in the series;
however, they become significant in the evaluation of the scat-
tered field at distances lower than from the air-photonic
crystal interface, but they do not contribute appreciably to the
correct value of the scattered field for greater distances. In this
sense, they can be neglected without loss of accuracy as will be
shown in Section IV.

A discretization of (1) can be performed if we consider a dis-
crete summation of plane waves equally sampled in the variable

; in particular, the integral operator becomes a discrete series
that can be cast in the following form:

(3)

where is the sampling interval in the wavenumber
domain, and define the direction of each single plane wave
on the plane.

A discussion about the truncation numberof the series in
(3) is in order. Equation (3) can be interpreted as a discrete rep-
resentation of the integral function in (1) in the interval

; as it is well known from signal processing theory, when
a continuous function is discretized, its Fourier transform be-
comes periodic and the sampling interval must be chosen in ac-
cordance with Shannon’s theorem to avoid the “aliasing” error
in the corresponding transform domain. The same problem oc-
curs in our case if we consider that is the Fourier transform
of . In particular, by sampling the spectrum of the in-
cident field, acomb-type field in the space domain is obtained

Fig. 1. Geometry of the problem: a Gaussian beam impinging on a photonic
crystal.

so that the computation of the scattered field is corrupted by
the presence of the fictitious side replicas. This problem is even
worsened when we observe the scattered field at grazing angles
with respect to the air-crystal interface. In Fig. 2 we show the
Gaussian incident field obtained by setting either (con-
tinuous line) or (dashed line). In practical applications,
accurate results are obtained if a high value is used for(typ-
ically ), substantially below the Shannon’s sampling
interval [15]. This results in a prohibitive computational cost for
practical applications. However, as will be shown in Section III,
the computational time can be drastically reduced by resorting
to a high-frequency approximation.

B. FEM/Floquet Modes Procedure

By utilizing a spectral representation for the incident field,
the scattering of a Gaussian beam from the photonic crystal can
be analyzed by considering separately the scattering of both ho-
mogeneous and inhomogeneous plane waves

. This problem can be solved by employing a hy-
brid technique utilizing the FEM in conjunction with a Floquet’s
modal expansion [11], [12]. We note that FEM is particularly
suited to analyze this kind of structures that possess arbitrary
shaped inhomogeneities: in fact, a conformal meshing of the
geometrical features allows us to accurately resolve the fields
within the crystal.

We start by considering the scattering from an infinite,
2-D periodic structure (Fig. 3) illuminated by a plane wave

, which can be either homogeneous or inhomoge-
neous, impinging at an angle that in the most general case
is complex

(4)

where and .
Floquet’s theorem dictates the periodicity of the scattered

field along ; in particular, if is the period along , the scat-
tered fields evaluated at and are identical but for a
phase factor . This allows us to determine the
scattered field by analyzing a basic periodicity cell defined in
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Fig. 2. Incident field representation obtained by using the inverse Fourier
transform of the spectrum. Continuous line:N = 20; dashed line:N = 30.

Fig. 3. Elementary problem: periodicity cell illuminated by a plane wave.

and divided into the following regions: two un-
bounded regions I and III (Fig. 3) and a bounded region II de-
fined in and delimited by the
boundaries and .

In region I, the total field is given by the sum of the inci-
dent and the scattered fields

, while in region III, ,
i.e., the total field coincides with the transmitted field. Each
spectral component of the scattered field can be expanded in
terms of Floquet modes as

(5)

In (5), are the unknown coefficients of the scattered field in
the upper region I; and represent the propagation
constants along and , respectively, whose expressions are
defined as

(6)

if
if

(7)

The total scattered field can be then determined as the
superposition of the contributions due to each plane wave com-
posing the incident field

(8)

A similar analysis holds for the transmitted field in region III,
but for a sign change in .

In region II, the Helmholtz scalar equation must be solved :

(9)

where is the spectral component of the total field,
subject to the appropriate boundary conditions, i.e., the conti-
nuity of the tangential components of the field and its normal
derivatives on and [11]. Additionally, the periodicity of
the field on and must hold along the direction. More-
over, is the wave number of the medium. A weighted
residuals procedure can therefore be applied with identical basis
and weighting functions (Galerkin’s procedure). By employing
a weak form of the Helmoltz equation, a FEM solution can be
issued by discretizing region II into elements where a set
of first order linear basis functions (nodal elements)
is chosen for interpolating the field at the nodes. The total
field can be expressed as

(10)

where is the field value at th node of th element, while
is the number of nodes per element.

A set of linear equations is obtained which can be written in
the following matrix form:

(11)

The unknown column vector of dimension contains the
unknown electric field values at nodal points inside region II.
The column vector contains the values of the Floquet’s coef-
ficients in regions I and III. If the electric field in region I and
region III is expanded in and harmonics, re-
spectively, the total dimension of vectoris .
Submatrices of the global solving matrix assume the following
meaning: is a band matrix representing the conventional FEM
solving matrix with dimensions [16]; submatrix ac-
counts for the imposition of the boundary conditions (continuity
of the normal derivative); sub-matricesand account for the
continuity of the tangential components of the electric field. The
forcing term (excitation vector) is given by the column vectors

and . The former contains only one element different from
zero, i.e.,

(12)
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( is the ordinate of the boundary ), the latter exhibits
nonzero values only at the nodes belonging to the upper
boundary.

For an exact evaluation of the field scattered by a Gaussian
beam, the FEM procedure now described must be applied for
each plane wave belonging to the incident field spectrum so that
a large amount of plane waves must be considered. In the next
section, an asymptotic procedure is devised allowing us to take
into account only one specific plane wave belonging to the in-
cident spectrum.

III. H IGH-FREQUENCYAPPROXIMATION

In the following, we will focus on the scattered field in re-
gion I when the periodic structure is illuminated by a Gaussian
beam being the treatment for the transmitted field in region III
analogous. In the context of a spectral technique, we consider
the complex variable and the change of variables

so that (8) becomes

(13)

By considering real values for, the integral is evaluated
along the path depicted in Fig. 4. Additionally, we operate in
cylindrical coordinates ; consequently, by interchanging
the sum operator with the integration, the total scattered field
can be obtained as

(14)

Equation (14) can be interpreted as a summation of integrals
that can be separately evaluated by applying the saddle point
method. In particular, if we define two functions and

(15)

(16)

we have for a single term

(17)

where denotes the summation of the residues evaluated
at the pole singularities lying in the complex plane region
bounded by the steepest descent path (SDP) and the contour
(Fig. 4). Their contribution is not knowna priori since is
known only numerically and not analytically; however, simple
considerations on the distance at which their value is important
led us to hypothesize that their effect can be neglecteda priori
if one is not interested in the field close to the interface. This
specific aspect will be discussed in detail and numerically
proven in the following section.

In the context of a high-frequency approximation, we note
that , for the specific problem at hand, is a regular and

Fig. 4. Integration contourC and SDP.

slowly varying function in the neighborhood of the saddle points
. Consequently, by taking into account only terms of order

, (14) reduces to

(18)

being the saddle points

(19)

Equation (18) can be furtherly simplified by considering that in
the quantity is present; it approaches

zero when the argument becomes large with respect to, i.e.,
when becomes large. This allows us to consider only the con-
tribution of the fundamental harmonic reducing ex-
pression (18) in the following form:

(20)

where . Equation (20) allows us to compute the field
at a specific observation angle by evaluating the single contri-
bution due to the fundamental Floquet’s harmonic, this latter
being the harmonic evaluated at the saddle point that coincides
with the contribution in the direction of observation. It is worth
noting that if a different observation angle is needed, a different
saddle point (consequently, a different fundamental harmonic)
must be considered.

IV. NUMERICAL TESTING AND RESULTS

We consider a 2-D photonic crystal constituted by a periodic
sequence of lossless dielectric rods of circular
cross section with diameter and refractive index

. The crystal has a hexagonal symmetry and a
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(a)

(b)

Fig. 5. Photonic crystal under investigation. (a) Geometry of a five-layer structure with dielectric cylinders(" = 4). (b) Mesh of the bounded region of the
basic periodicity cell.

five-layer structure is specifically considered [Fig. 5(a)]. The
bounded region of the basic periodicity cell has been meshed
by using 3312 quadrangular elements with 3433 nodes (see
Fig. 5(b)). We use a very refined mesh to guarantee a precise
FEM computation; in this way, the accuracy issues related
to the high-frequency approximation hereafter discussed, are
not affected by the specific FEM implementation employed.
Moreover, the choice of quadrangular elements allows us to
reduce the number of unknowns with respect to a triangular
mesh.

First, the bandgap properties of the structure considered are
shown in Fig. 6. In particular, the ratio of the transmitted power
to the total incident power, computed by using the hybrid
FEM/Floquet modes approach, is shown as a function of the
frequency for a plane wave excitation with an incidence angle

. The existence of a forbidden band in the interval
around is clearly apparent in the same figure. This
result compares well with similar geometries already studied in
the literature [10], confirming the accuracy of the method for
what concerns a single plane wave excitation.

We consider next a Gaussian beam excitation: the results ob-
tained by the high-frequency approximation described above
are compared with the results provided by the spectral proce-
dure that accounts for the presence of all plane waves between

. An exact evaluation of the incident field should in-
clude the presence of the inhomogeneous plane waves: however,
in order to reduce computational costs, only the homogeneous
incident plane waves have been considered; in fact, extensive
numerical tests showed that the presence of these latter can be
neglected without loss of accuracy. In Fig. 7, we show the re-
flected field evaluated at a distance of from the interface
when the incident field has a mean incidence angle
and a standard deviation . The dashed line refers to the
case in which plane waves (both homogeneous and
inhomogeneous) in the incident field expansion are taken into
account; the continuous line refers to the case in which only the
homogeneous plane waves are taken into account, these latter
result to be 800. As can be seen, the difference between the two
cases is very small, allowing us to consider only the homoge-
neous plane waves in the expansion of the incident field.
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Fig. 6. Transmitted power over incident power for a plane wave excitation
against the ratio�=d. The structure is that of Fig. 5; the plane wave is incident
at an angle# = 30 , TE polarization.

Fig. 7. Reflected field evaluated at a distance of0:22� from the interface for
a mean incidence angle# = 30 .

It is important to highlight that the high-frequency approxi-
mation here considered can be applied to the case of photonic
crystals due to the peculiarity of the function which, as
mentioned above, is regular and slowly varying in the neighbor-
hood of saddle points in the forbidden bandgap. In Fig. 8, we
show the behavior of in the neighborhood of the saddle
point for the crystal under investigation.

In the last figures we show the field scattered by the 2-D pho-
tonic crystal in Fig. 5(a) evaluated by using the asymptotic pro-
cedure previously illustrated in comparison with the value com-
puted by employing a large numberof plane waves (this value
can be viewed as exact for becoming larger and larger). In
particular, we compute the erroras

(21)

where is the field computed by using (20) and is the field
evaluated by employing plane waves in the incident field. It is
worth observing that the error arising by using (20) is associated

Fig. 8. Amplitude ofF (�) in the neighborhood of the saddle point for the
crystal under investigation.

Fig. 9. Error arising in the evaluation of the reflected field from the crystal in
Fig. 5 as a function of the distance from the interface. Normal incidence# =
0 ; N = 3000. Continuous line: observation angle' = 5:7 ; dashed line:
observation angle' = 9 .

with the assumption of neglecting the residues in (17). In Fig. 9,
we plot the error as a function of the distancealong a specific
direction belonging to the 3 dB aperture of the reflected beam.
This latter has been determined by evaluating the angle at which
the incident field reduces of 3 dB at a fixed. In particular, in
Fig. 9, the case of normal incidence and standard de-
viation has been considered (with the standard deviation
considered above, the3-dB aperture corresponds to an angle
of approximately 18 symmetric along the mean incidence di-
rection); the observation angle was set equal to (con-
tinuous line) and (dashed line) and in both cases the
field has been compared with the cases of plane
waves. As apparent, the error between the asymptotic procedure
and the exact procedure becomes smaller and smaller for larger
values of . However, it is limited to 10% for within
the half-power aperture of the reflected field.

In Fig. 10, we plot the error as a function of distance but
for a mean incidence angle of 30; the observation angle was
set equal to (continuous line) and (dashed
line). The field has been again compared with data obtained by
considering plane waves. In this latter case the error
is limited to 10% for within the half-power aperture of
the reflected field.
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Fig. 10. Error arising in the evaluation of the reflected field from the crystal
in Fig. 5 as a function of the distance from the interface. Oblique incidence
# = 30 ; N = 3000. Continuous line: observation angle' = 26 ; dashed
line: observation angle' = 39 .

Similar results have been obtained for different values of the
standard deviation of the incident beam. As a general behavior,
we address that the asymptotic procedure provides a good accu-
racy at large distances from the interface; however, the error can
be maintained at a reasonable value at lower distances within
the main beam of the reflected field. Depending on the spe-
cific application, a compromise between accuracy and compu-
tation time can therefore be obtained. Additionally, we note that
the asymptotic procedure here presented can be efficiently em-
ployed at optical frequencies where the operative wavelengths
are very small.

V. CONCLUSION

In this paper, we addressed the problem of the scattering of
a Gaussian beam from 2-D photonic crystal. By interpreting
the incident Gaussian beam as a spectrum of plane waves, the
problem has been reduced to the analysis of the scattering of
a plane wave, which has therefore been solved by a hybrid
technique, which combines the FEM with a Floquet’s modal
expansion. The problem of a correct sampling of the incident
field spectrum has been addressed. The influence of inhomo-
geneous plane waves has been numerically evaluated and it has
been shown that in practical applications they can be neglected
without any loss of accuracy. The bandgap properties of these
structures have therefore been exploited for devising an effi-
cient numerical solution in the high-frequency approximation
by applying the saddle point method: the evaluation of the field
at a specific point of the exterior medium, under Gaussian beam
illumination, is reduced to the contribution of the fundamental
Floquet mode due to a single plane wave belonging to the
incident spectrum strongly enhancing numerical efficiency. The
limits of applicability of the procedure have been discussed.
The promising results obtained lead us to consider a possible

extension of the method to different kinds of illuminations and
scattering structures.
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