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Letters__________________________________________________________________________________________

Preconditioned Iterative Solution of Scattering from Rough
Surfaces

James C. West

Abstract—Extensions to the functionally identical forward–backward
(FB) and method of ordered multiple interactions iterative techniques have
recently been introduced that improve the convergence characteristics with
specific scattering geometries. These extensions are shown to be mathe-
matically equivalent to applying preconditioners to the discretized integral
equation that is iteratively solved. The same preconditioners can be used
with any iterative solution technique. Numerical examples show that the
generalized minimal residual (GMRES) and bi-conjugate gradient–stable
(BICGSTAB) algorithms give similarly rapid convergence when applied to
a preconditioned discretized integral equation.

Index Terms—Electromagnetic scattering by rough surfaces, iterative
methods.

I. INTRODUCTION

Recently, extensions have been introduced to the functionally iden-
tical forward–backward (FB) and method of ordered multiple interac-
tions (MOMI) iterative approaches [both of which are particular imple-
mentations of the symmetric successive overrelaxation (SSOR) algo-
rithm [1]] for rough surface scattering calculations that yield improved
convergence properties for particular scattering geometries. Pinoet al.
[2] used an expanded self-interaction matrix with FB to give a proce-
dure they termed the generalized FB technique that converged rapidly
for a problem class where the original FB algorithm diverged. Adams
and Brown [3] used a banded approximation of a factorized Helmholtz
operator that increased the convergence speed of MOMI when applied
to one-dimensionally rough single-valued surfaces. The convergence
properties of other iterative algorithms can also be accelerated using
these same approaches when applied to the same scattering problems.

II. DEVELOPMENT

The discretized integral equation in rough-surface scattering calcu-
lations takes the form

Zi = v (1)

whereZ is the interaction matrix (the discretized integral equation
kernel),i is the unknown discretized surface current to be found, and
v is the known discretized source vector. Iterative solution algorithms
can be applied to (1) directly or can be applied to the preconditioned
system [4]

M
�1
Zi =M

�1
v (2)

whereM is the preconditioning matrix.M should be chosen both so
that it approximatesZ and so thatM�1

x is computationally inexpen-
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sive to solve, wherex is any vector. Further refinement is achieved
when the preconditioner is factored asM =M1M2 and applied as

M
�1

1 ZM
�1

2 [M2i] =M
�1

1 v: (3)

The iterative procedure then solves for the vectori
0 = M2i and the

final solution is found fromi = M
�1

2 i
0. M1 andM2 are termed the

left and right preconditioners, respectively.
The generalized self-interaction matrix defined by [2], designated

Z
sg , was introduced to allow FB to converge when there is an obstacle

on or near the rough surface. It includes the diagonals ofZ plus a block
self-interaction submatrix corresponding to the obstacle under consid-
eration. Multiplying (1) by the inverse ofZsg gives

[Zsg]�1Zi = [Zsg]�1v: (4)

Some straightforward manipulations show that the generalized FB
equations of [2, eq. (17), (18)] are obtained by applying the standard
FB equations [their (8) and (9)] to (4) here. The generalized self-inter-
action matrix therefore acts as a preconditioner applied to the original
linear system.Zsg is, in fact, a block Jacobi preconditioner [4].

Adams and Brown [3] considered scattering from a randomly rough
single-valued surface with Gaussian statistics. They first factored the
interaction matrix asZ = C+C�C�, whereC+ andC� are the
lower and upper triangular submatrix components ofZ (each including
the diagonal elements), and introduced a banded approximation ofC�

designated by~C. LettingM1 = C+
~C andM2 = C�, (3) becomes

~C�1
C�[C�i] = ~C�1

C
�1

+ v: (5)

Applying Richardson iteration (equivalent to a Neumann expansion
[5]) to (5) gives (5) of Adams and Brown. The factorized Helmholtz-
operation approach is, therefore, equivalent to applying Richardson it-
eration to (1) preconditioned byM = C+

~CC�.
Earlier, Donohueet al. [6] showed that the banded matrix interac-

tion approximation (BMIA) approach for scattering from single-valued
rough surfaces is equivalent to using a banded approximation ofZ as
a preconditioner with Richardson iteration.

III. EXAMPLE

Preconditioners can be used with any iterative procedure. Here we
consider two nonstationary algorithms as well as the stationary FB
technique applied to the same scattering geometry used by Pinoet al.
[2] both with and without the preconditioning included in (1). (The term
“stationary” indicates that the same iteration matrix is used to update
the approximate solution on every iteration.) The nonstationary algo-
rithms used are the generalized minimal residual (GMRES) and bi-con-
jugate gradient–stable (BICGSTAB) methods. Overviews of these al-
gorithms are given in [4] and the particular implementations used here
are described in [1]. For the preconditioned system of (2) these algo-
rithms are formulated in terms of matrix–vector products (involving
the original interaction matrixZ) followed by the preconditioning step.
Block–Jacobi preconditioning is performed by an initial single direct
LU factoring of the preconditioner submatrix blocks followed by back-
substitution during each iteration. The preconditioned nonstationary al-
gorithms are, therefore, orderN2+M3, whereN is the number of un-
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Fig. 1. Scattering geometry.

knowns in the complete system andM is the number of rows included
in the blocks of the preconditioner, the same as the preconditioned FB
technique. The residual vector of the original system that is used for
the stopping test [1], [4] is recovered by multiplying the preconditioned
residual vector byZsg , an orderM2 step that does not add significant
computational expense.

A test scattering configuration similar to that considered by Pino
et al. [2] was generated, shown in Fig. 1. The ship structure used
the same dimensions as that given by Pinoet al. [2], and the surface
to the left and right of the ship structure was realized from the
Pierson–Moskowitz wave-height spectrum assuming a 15 m/s wind
speed. The magnetic field integral equation (MFIE) for describing
vertical polarization scattering from a perfectly conducting interface
was discretized using the same hybrid moment-method/geometrical
theory of diffraction approach used in [1]. Plane wave illumination
from the left at a grazing angle of 10� and a wavelength of 1 m was
assumed. A sampling of 20 pulse basis functions per wavelength was
used, giving 2416 unknowns.

The resulting linear system was first treated using the FB, GMRES,
and BICGSTAB algorithms without preconditioning (i.e., (1) was di-
rectly solved). The convergence histories of the normalized residual
error (RN = kv � Zi

(n)k=kvk, wherei(n) is the approximate so-
lution after thenth iteration) are shown in Fig. 2. The residuals are
plotted versus the equivalent number of matrix–vector (MV) multiply
operations needed both to perform the iteration and to calculate the nor-
malized residual needed to perform a valid stopping test (1.5, 2, and 1
per iteration for FB, BICSTAB, and GMRES, respectively) [1], and the
restart period of GMRES was set sufficiently small (75) with respect
to number of unknowns so that the per-iteration overhead was small
compared to the MV operation time. The discretized MFIE used here
yields interaction matrices that are naturally better conditioned than
that obtained from the EFIE used by Pinoet al. [2], so FB is slowly
convergent but needs 350 MV’s to reach a normalized residual of 10�3.
BICGSTAB convergence is more rapid but quite ragged, reaching the
same residual after 82 MV’s. GMRES is both faster and smoother than
BICGSTAB, reachingRN = 10�3 after 53 MV’s.

The convergence histories of the algorithms when applied with the
preconditioning are shown in Fig. 3. As in [2], the generalized self-in-
teraction block included the matrix elements corresponding to the ship
itself as well as short segments of the sea surface extending 5 m beyond
the left and right limits of the ship. The preconditioned (generalized)
FB technique shows the fastest convergence, needing only 6 MV’s to
reachRN = 10�3. This is followed by GMRES, which reaches the
same level after 10 MV’s and then BICGSTAB, which requires 12 MV
s.

IV. COMMENTS

As seen, both stationary and nonstationary iterative algorithms can
benefit from the use of a carefully chosen preconditioner. Other pre-
conditioners that are available that may prove useful with other scat-
tering problems are summarized in [4]. There are tradeoffs that must
be considered when selecting the underlying technique to be used for a
particular problem. The nonstationary approaches have the advantage
that their convergence properties are much less sensitive to the condi-
tioning of the system ultimately achieved (after preconditioning) [1].

Fig. 2. Convergence of iterative techniques with no preconditioning.

Fig. 3. Convergence of iterative techniques with block Jacobi preconditioning.

This is desirable in cases where it is not cost effective to tailor a pre-
conditioner to every specific problem, or the cost of evaluating the pre-
conditioner is large compared to the cost of an iteration (for example,
if the size of an obstacle is such thatM3 is large compared toN2).
Also, block Jacobi preconditioning combined with nonstationary iter-
ative routines are particularly well suited to parallel processing, where
the true matrix–vector multiplications can be performed much more
efficiently than the FB-substitution operations of FB [4]. On the other
hand, as shown here, the stationary FB or MOMI converges in fewer
MV operations (sometimes as little as one half) when very good condi-
tioning is achieved. This can be important if performing the iterations
themselves is particularly expensive (such as when the interaction ma-
trix elements must be regenerated each time they are used).
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An MFIE-Based Tabulated Interaction Method for UHF
Terrain Propagation Problems

Conor Brennan, Peter J. Cullen, and Luca Rossi

Abstract—Approximations are introduced into a magnetic field integral
equation (MFIE) formulation of a two-dimensional (2-D) terrain scattering
problem, which allow most of the integrals inherent in the MFIE to be per-
formed analytically. The implementation of the method is discussed and an
example is given comparing its performance against a reference solution
and measured data. The new formulation applies to both TM and TE
polarizations and is an improvement over the electric field integral equa-
tion (EFIE) formulation of the tabulated interaction method (TIM) in that
far-field patterns can be calculated analytically leading to increased flexi-
bility of the method.

Index Terms—Integral equation methods, UHF radio propagation.

I. FORMULATION

Referring to Fig. 1 we note that our terrain profile is modeled as a
series of connected perfectly electrically conducting linear segments.
The central point of segmentGL will be denoted by the vector���l. As-
suming time harmonic variations of the formexp(|!t) we can write
the MFIE for the current at point���i 2 GL in the case of TMz polar-
ization (though the analysis for TEz is similar) as

Jz(���i) = Kz(���i)�
�|
2

L 6=L ��� 2G

GijJz(���j) dc (1)

whereJJJ � Jzẑzz;KKK � Kzẑzz and

KKK(���i) = 2n̂nn(���i)�HHH inc(���i) (2)

Gij =H
(2)
1 (�j���i � ���j j)n̂nn(���i) � ���ji (3)

where���ji = ���i����j and� = 2�=� is the wavenumber of the radiation
of wavelength�.

We propose introducing two approximations which will allow the
majority of the integrals occurring in equation (1) to be calculated an-
alytically. This is in contrast to standard moment-method-based solu-
tions, which are effectively forced to calculate such integrals numeri-
cally, a requirement that leads to their well-documented computational
burden. The approximations are

Kz(���i) 'Kz(���l) exp(|��̂��la � ���li) (4)

G

GijJz(���j) dc 'Gll exp(|��̂��ll � ���li)F
L (�̂��l l) (5)

where (5) is derived using the fast far-field approximation (FAFFA) [1]
and

FL (�̂��l l) =
�|

2 G

Jz(���j) exp(|��̂��l l � ���l j) dc: (6)
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Fig. 1. Geometry for terrain propagation problem. Note that terrain profile
consists of large linear segmentsG each with a central point��� . The source is
located at��� . Broken line indicates intervening terrain profile.

To proceed, we define a segment’s far-field pattern; that isFL
q �

FL (êeeL (�q)) for the unit vectorŝeeeL (�q) with q = 1 � � �Q and�q =
q�� where�� = 2�=Q. The unit vectors are defined by

êeeL (�) = x̂xxL cos�+ ŷyyL sin� (7)

wherex̂xxL andŷyyL define a coordinate system relative to segmentGL

as depicted in Fig. 1. If�� is small enough we can interpolate between
the far-field pattern values to give a solution toFL (�̂��l l) for any partic-
ular direction�̂��l l that may arise. Our aim thus becomes the analytical
evaluation of a segment’s far-field pattern.

Inserting (4) and (5) into (1) forces the the current to take a very
specific form over each segment.

Specifically, we can write the current residing on segmentGL in a
simple form as

Jz(���i) '

Q

q=1

AL
q exp(|�êeeL(�q) � ���li) (8)

where

AL
q =  q(�la)Kl �

L 6=L

 q(�ll )Gl lF
L (�̂��l l) (9)

where (see Fig. 1)�la (�ll ) is the angle that the vector���la (���ll )makes
with x̂xxL. The interpolating factors are given by

 q(�) =
j� � �q�1j

��
for �q�1 < � < �q (10)

=
j� � �q+1j

��
for �q < � < �q+1 (11)

=0 otherwise. (12)

This allows us to write, inserting (8) into (6) and recalling the defi-
nition of a segment’s far-field pattern

FL
r =

Q

q=1 G

AL
q exp(|�fffL(q; r) � ���li) dc (13)

where

fffL(q; r) = êeeL(�q) + êeeL(�r): (14)
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It is easy to show that, aŝ���li = �x̂xxL

F
L
r =

Q

q=1

AL
q

a=2

�a=2

exp(|s�f(q; r)) ds (15)

=

Q

q=1

AL
q I(q; r; a) (16)

wheref(q; r) = cos �q+cos �r, a is the arclength of the segment and

I(q; r; a) =
a; f(q; r) = 0

2 sin(a�f(q; r)=2)=�f(q; r); otherwise.
(17)

Solving the problem reduces to calculating the coefficientsAL
q .

Equations (9) and (16) together can be taken to define a matrix
equation for theAL

q . This governing matrix is sparse and can
be solved by a number of different iterative schemes though this
is beyond the scope of this communication. A simple solution
is to truncate the summation of (9) atL� 1, thereby assuming
forward scattering and allowing for the sequential calculation of
the AL

q coefficients. Once known, these coefficients are used via
(16) to trivially calculate the far-field pattern for that segment,
which in turn is used in the calculation of the coefficients as-
sociated with subsequent segments as well as the electric field
above the surface. It is important to note that, considering the
geometry of typical terrain problems, which leads to near-grazing
propagation, the majority of the coefficientsAL

q will equal zero.
Only coefficients pertaining to propagation in the near-horizontal
direction will be excited. Hence, our current description is very
much compressed, a fewAL

q coefficients is all that is necessary
to describe a current residing on a group. In the numerical ex-
ample presented in Section II the maximum number of coefficients
needed to represent the current on any segment was 13. This is
in contrast to a standard pulse-basis approach, which would have
required over 300 unknowns per segment. This compression means
that far-field patterns can be calculated very efficiently indeed and
the complexity of the method reduces toO(M2) where M is
the number of segments used in the problem.

II. I MPLEMENTATIONAL ISSUES ANDNUMERICAL RESULTS

First, one should note that in cases where each segment is the same
lengtha, the quantitiesI(q; r; a), being the essential “building blocks”
of each segment’s far-field pattern as per (16), will be required repeat-
edly throughout the implementation. To ensure efficiency they should
be calculated once for each pair(q; r) and stored in a matrix to be used
as required. Our previous formulation [2] was based on an EFIE and
did not allow a simple analytic formula forI(q; r) such as is given by
(17). Instead these important quantities were numerically tabulated and
imported from problem to problem. Subsequent work [3] has suggested
that such approximate analytical results are possible within the EFIE
framework though they are more complicated than the simple results
presented here.

In addition, when one considers the geometries of typical terrain
profiles it is understood that we only need calculate and store group
far-field patterns for a limited range of near-grazing angles. Hence, we
need only calculate the “building blocks”I(q; r) for pairs (q; r) re-
lating to propagation residing within a few degrees of grazing. The

Fig. 2. Fields (bottom) 2.4 m over terrain profile (top) at 970 MHz. Source
situated at (0.0,45.4). 100 m of terrain added from (0.0,35.0) to (�100.0, 35.0)
as buffer to prevent spurious diffraction due to nonclosed nature of problem.
Terrain was sampled at 50 m intervals and we worked with linear segments 25
m in length. FAFFA was used to explicitly compute current samples and far-field
patterns for first 150 m of profile. Analytic far-field patterns were used for the
rest of the terrain.�� = �=200 and in order to calculate near-field interactions
we usedP = 30 subsegments. The near-field was restricted to the interaction
between adjoining segments.

memory requirements of the TIM are thus of a similar order to the
FAFFA.

The second issue is that the introduction of the approximation (4)
is invalid in the immediate vicinity of the source, rendering (8) and
the subsequent analytical evaluation of the far-field patterns invalid for
segments in this region. This problem is easily rectified by explicitly
calculating current samples in this region using the fast far-field algo-
rithm [1] or some other such fast scheme and numerically calculating
the far-field patterns of these near-source segments.

The final issue is that the geometric approximations underpinning
(5) become less accurate as the “scattering” segmentGL approaches
the “receiving” segmentGL. In the case of such near-neighbor inter-
actions the authors found it useful to subdivide segmentGL into P
subsegmentsGp

L for p = 1 � � �P , each with center���p. We can define

the far-field patternFL (p)
r of each of theP subsegments, thus

F
L (p)
r =

Q

q=1

AL
q exp(|�êeeL (�q) � ���l p)I(q; r; a=P ) (18)
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where each subsegment is now of arclengtha=P . We then use the more
precise relation

G

GijJz(���j) dc '

P

p=1

Glp exp(|��̂��lp � ���li)F
L (p)(�̂��pl)

(19)

whereFL (p)(�̂��pl) can be found by interpolating between theFL (p)
r .

The computational technique outlined in this paper has been used to
calculate fields over several terrain profiles for which experimental data
has been made available. Fig. 2 illustrates the excellent agreement be-
tween the fields predicted by the techniques outlined in this paper and
both the measured data and a slow reference solution which used a for-
ward scattering EFIE-based solution. Our new computational method,
running on an IBM Power PC, took 5 s to give the results shown. This
should be compared with computation times of the order of a day for the
reference solution. Our experience has shown that most practical ter-
rain propagation problems can be accurately analyzed using the TIM.
However, the geometrical approximations underpinning the method be-
come suspect when applied to structures with sharp wedge-like protu-
sions such as buildings etc. In these cases it is advisable to consider a
hybrid FAFFA/tabulated interaction method (TIM) approach allowing
for more accurate near-field analysis in problem areas as required. In
conclusion, the ability to analytically describe the currents residing on
a given segment and, hence, its far-field pattern lends a great flexibility
to our new MFIE-based formulation of the TIM.
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Analysis of Aperture-Coupled Hemispherical Dielectric
Resonator Antenna with a Perpendicular Feed

K. W. Leung

Abstract—The aperture-coupled dielectric resonator antenna (DRA)
with a perpendicular feed is studied theoretically and experimentally.
This excitation scheme has the advantage that it isolates the DRA from
active circuitry and meanwhile fully utilizes the whole feed substrate for
active-circuitry integration. The effects of the slot length, slot offset, and
substrate permittivity on the input impedance are discussed.

Index Terms—Dielectric resonator antennas.

I. INTRODUCTION

The dielectric resonator antenna (DRA) [1] is an attractive radiator
because of having no metallic loss. It offers other advantages such as
small size, light weight, low cost, and ease of excitation. Moreover,
the DRA can be easily integrated with active circuitry and a number of
excitation schemes [2]–[7] were investigated for this purpose. In these
excitation schemes the DRA resides either on the feedline side or on
the ground plane side. The former suffers from the problem of spurious
coupling between the DRA and active circuitry, whereas in the latter
the DRA occupies one side of the feed substrate and, thus, substantially
reduces the usable substrate area. To solve these problems, the aperture-
coupled DRA with a perpendicular feed has been proposed recently [8].
This method is especially useful for implementation of large phased
arrays where a large substrate area is required to accommodate phase
shifters, amplifiers, feed lines, bias lines, etc. Thus far, the study has
been solely experimental and limited to the cylindrical DRA only. In
this letter, the hemispherical DRA version is studied theoretically and
experimentally, with the DRA excited at the fundamental TE111 mode
[5], [9]. The effects of the slot length and offset on the input impedance
are discussed. Moreover, the effect of substrate permittivity, which has
not been investigated in [8] is also reported in this letter.

II. THEORY

The geometry of the antenna configuration is shown in Fig. 1, where
a hemispherical DRA of radiusa and dielectric constant"ra is excited
by a slot of lengthL and widthW . In general the DRA has offsetsyd
andzd from thez-axis andy-axis, respectively. A 50-
 microstripline
of widthWf is printed on the perpendicular feed substrate of dielectric
constant"rs and thicknessd. The cross section of the substrate was
used to feed the slot. At the aperture position, the mircrostripline and
its ground plane are electrically connected to the DRA ground plane.

The approach of [10] is used in the analysis. By using the equiv-
alence principle, the slot is short-circuited and the fields are gener-
ated by two equivalent magnetic currents flowing on adjacent sides
of the DRA ground plane. First consider the feedline part. The mi-
crostripline is assumed to be propagating a quasi-TEM mode of fields
~E� = ~ee�j� x and ~H� = �~he�j� x, where~e(y; z) = eyŷ + ez ẑ
and~h(y; z) = hyŷ + hz ẑ are normalized transverse modal fields [11]
and�f is the propagation constant of the microstripline fields. Sup-
pose there is an incident signal of fields~E+; ~H+, which propagates
from the input microstripline port. Then the reflected signal from the
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Fig. 1. The geometry of the aperture-coupled hemispherical DRA with a
perpendicular feed. (a) Perspective view. (b) Front view.

Fig. 2. Illustration of the surfacesS ; S , andS used in the reciprocity
analysis.

DRA ground plane consists of two parts; partA is a total reflection
caused by the short-circuited slot and partB the fields excited by the
equivalent magnetic currentMy on the substrate side. The total fields
in partA are given by~EA = ~E+

+RA ~E
�, ~HA = ~H+

+RA ~H
� and

in partB by ~EB = RB ~E
�; ~HB = RB ~H

�, whereRA = �1 is the
reflection coefficient of the short-circuited slot andRB is the excita-
tion coefficient of the magnetic current. The total refection coefficient

Fig. 3. Measured and calculated input impedance of the DRA for
L = 11:0; 14:0; and17:0 mm: a = 12:5 mm, " = 9:5, W = 0:9 mm,
" = 2:33; d = 1:57 mm, andW = 4:6 mm.

Fig. 4. Calculated input impedance of the DRA for" = 2:33;6:15; and
10:2: a = 12:5 mm," = 9:5,L = 14:0 mm,W = 0:9 mm, andd = 1:57
mm.

of the incident signal is then given byR = RA + RB = RB � 1.
To determineRB , the reciprocity theorem is applied to~EA; ~HA and
~EB; ~HB as follows:

S

~EA � ~HB � d~S =

S

~EB �
~HA � d~S (1)

whereS is a closed surface consisting of three pieces, namelyS1; S2;

and SW . The surfaceS1 coincides with the DRA ground plane,
whereasS2 is parallel to and displaced fromS1, as shown in Fig.
2. The distanceD between the surfaces is arbitrary, as their terms
are cancelled out each other during the formulation.SW is a side
wall which connectsS1 andS2. It was found that the contributions
of SW to the integrals were zero. OnS1, we have ~EA = 0 but
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n̂ � ~EB = Myŷ on the original slot surfaceS0. Using these facts (1)
is reduced to:

RB =

S

My(y; z)hy(y; z) dS (2)

which is the result of [10].
The next step is to enforce the continuity of tangentialH-fields

across the slot, resulting in an integral equation for the magnetic cur-
rentMy . In addition to (2), we have two equations for the two un-
knownsRB andMy . Use is made of the moment method to expand
the magnetic currentMy asMy(y; z) = �Nn=1 Vnfu(z)fp(y � yn),
wherefu(z) andfp(y) are pulse and piecewise sinusoidal (PWS) func-
tions [5], respectively. Employing the Galerkin’s procedure, two matrix
equations that correspond to the integral equation and toR = RB � 1
are obtained, from which the unknown voltage matrix is solved

[Vn] = f[Y a
mn � Y s

mn] + [�vm][�vn]
tg�1[2�vm] (3)

whereY a
mn andY s

mn are DRA and substrate admittances, respectively,
and�vm is associated with the feedline field. The superscriptt denotes
the transpose of a matrix. Evaluation ofY a

mn is performed in the same
manner as before [5]. However, this is not the case forY s

mn and�vm
because the slot is now on the cross section of the substrate, not on
the substrate ground plane. Evaluation ofY s

mn and�vm thus involves
integrations ofz, which are performed analytically in spatial domain.
On the other hand, the integrations ofy are performed, as usual, in
spectral domain. Finally, the reflection coefficient is given byR =
[�vm]

t[Vn]� 1 from which the input impedance at the slot position is
easily found throughZin = (1 + R)=(1� R).

III. RESULTS

A hemispherical DRA of radiusa = 12:5 mm and dielectric con-
stant"ra = 9:5was measured using an HP8510C network analyzer. To
avoid the air-gap error [12], conducting adhesive tapes were mounted
on a foam board to form the DRA ground plane. The DRA was placed
on the adhesive side of the conducting tapes to remove any possible air
gap between itself and the ground plane. Although an effective air gap
due to the adhesive material may exist, the effect is much smaller than
for an air-filled gap. Fig. 3 shows the measured and calculated input
impedances forL = 11:0; 14:0; and17:0 mm, with the slot located
at the center of the DRA (i.e.,yd = zd = 0). Reasonable agreement
between theory and experiment is obtained. It is observed that the cou-
pling (radius of impedance circle [5]) increases withL, as expected. An
excellent impedance match is obtained forL = 14 mm, at which the
measured and calculated resonant frequencies (minjS11j) are 3.55 and
3.50 GHz (error 1.4%), respectively. The frequencies are very close to
the predicted value given in [5].

Fig. 4 shows the calculated input impedance for different substrate
permittivities withL = 14:0 mm andyd = zd = 0. In each case,
the width of the microstripline is changed to maintain a 50-
 feedline.
With reference to the figure, using a higher"rs results in a stronger cou-
pling. This is because increasing"rs will decrease the effective wave-
length in the slot and, thus, lengthens the slot electrically. The effects
of the slot offsetsyd andzd on the input impedance were also studied.
It was found that the results, like the effect of the slot length, were very
similar to those of the previous configuration [5] and are omitted here
for brevity.
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Traveling-Wave Analysis of a Bifilar Scanning Helical
Antenna

Robert K. Zimmerman, Jr.

Abstract—The bifilar scanning helical antenna is analyzed by consid-
ering the structure to carry a single traveling wave. It is shown that the
relative phase velocity (v/c) must equal unity to yield the scanning features
shown by numerical experiment. This is at complete odds with monofila-
ment helices (Kraus), which display a slow wave structure.

Index Terms—Helical antenna, scanning antennas.

I. INTRODUCTION

Nakanoet al. [1] were the first to document the scanning feature
of bifilar helical antennas with large pitch angles. In their paper,
they numerically analyzed the radiation pattern from a bifilar helix,
as shown in Fig. 1. The helix diameter was about 0.08� with a
pitch angle a of 68�. A six turn helix, with a 400
 resistive
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load at the end, was used to emulate a longer structure. The
resistive load terminates the traveling-wave structure so that the
effects due to reflected waves are minimized—as if the antenna
were much longer. Nakano documented a major conical radiation
lobe that scanned in direction (from backfire to normal) over the
frequency range 1.3–2.5 GHz. This is shown in Figs. 2 and 3. In
the following section, we analyze the structure to show that this
feature is due to wave propagation on the helix withv=c = 1.

II. A NALYSIS

The following analysis will use the helix presented in crossview in
Fig. 4. The notation below will be used:
D diameter of helix (center to center);
S spacing between turns (center to center);
� pitch angle = arctan(S=�D);
L length of one turn;
n number of turns;
A axial length = nS;
� direction of major radiation lobe;
� 180� � �;
p relative phase velocity= v=c.

Consider the condition for the wavefront shown to exist: we must
have the phase delay over pathA plus the phase length over the pathQ
sum to an integral number of wavelengths. If the wave traveling up the
helix has relative phase velocityp = v=c, the total phase length over
pathA (n turns) is

(nL=p�) = n(�D= cos�)=p�

as can be seen with the aid of Fig. 5 showing a turn of the helix “un-
wound.”

The phase length for pathQ is

Q=� = (A cos�)=� = nS(cos�)=� = [n(�D tan�) cos�]=�:

Accordingly, for closure we must have

n(�D= cos�)=p�+ [n(�D tan�) cos�]=� = m

wherem is an integral number of wavelengths. For a first-order lobe
n = m and we have

1=(p cos�) + (tan�)(cos�) = �=�D

which may be immediately solved for�

� = arccos
1

tan�

�

�D
�

1

p cos�
:

Nakano, in Fig. 3, presents his data for the angle� = 180� � �.
Accordingly, the expression for� incorporates a negative sign

� = arccos
�1

tan�

�

�D
�

1

p cos�
:

Fig. 1. Nakanoet al. [1] used a six-turn resistively terminated bifilar helix in
their numerical experiment to emulate the performance of a longer helix.

Fig. 2. Major backfire conical lobe documented by Nakanoet al. in [1].

III. RESULTS

Nakanoet al. [1] used the following values in their paper:

� =68�

D =1:6 cm

� =23 to 12 cm (Frequency= 1:3 to 2:5 GHz):

Using these values with the above equation for�, we may plot the
direction of the major radiation lobe versus frequency as in Fig. 6 for
the valuesp = 0:6�1:0. We see thatp = 1:0 reproduces the scan data
of Nakano (Fig. 3) exactly.

IV. DISCUSSION

The bifilar helical antenna of Nakano operates strictly as a radi-
ating “twisted” parallel transmission line. The relative phase velocity
is p = 1, as would be expected for a transmission line without dielec-
tric loading. This stands at contrast to the monofilament helical antenna
(axial mode) of Kraus [2], which shows a phase velocity between 0.7
and 0.9, self adjusting so as to maintain a maximum endfire condition.
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Fig. 3. The conical radiation lobe of Nakanoet al. [1] scanned from a backfire lobe at 1.3 GHz to a normal lobe at 2.3 GHz.

Fig. 4. Crossview of representative helix radiating in direction�. Nakanoet
al. [1] used the angle� = 180 � �.

Fig. 5. One turn of the helix unwound to display the relation between the sides
and the pitch angle�.

The bifilar helix described here has no phase adjusting mechanism such
as this.

Fig. 6. Calculated lobe direction� versus frequency in gigahertz for values
of p = v=c between 0.6 and 1.0.p = 1:0 duplicates Nakano’s experimental
findings in Fig. 3.
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