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Adaptive Multiscale Moment Method (AMMM)
for Analysis of Scattering from
Perfectly Conducting Plates

Chaowei Su and T. K. Sarkarellow, IEEE

Abstract—Adaptive multiscale moment method (AMMM)
is presented for the analysis of scattering from a thin perfectly
conducting plate. This algorithm employs the conventional
moment method and a special matrix transformation, which is Y
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derived from the tensor products of the two one-dimensional (1-D)
multiscale triangular basis functions that are used for expansion
and testing functions in the conventional moment method. The
special feature of these new basis functions introduced through

this transformation is that they are orthogonal at the same scale ; ; 9.scale

except at the initial scale and not between scales. From one scale to ‘

another scale, the initial estimate for the solution can be predicted j ]

using this multiscale technique. Hence, the compression is applied Samemmemees ] 1-scale
directly to the solution and the size of the linear equations to :

be solved is reduced, thereby improving the efficiency of the ' 0-scale

conventional moment method. The basic difference between this o 0.8 1

methodology and the other techniques that have been presented

so far is that we apply the compression not to the impedance Fig. 1. The multiscale basis functiodsy;®(x) on the domain [0,1].

matrix, but to the solution itself directly using an iterative solution

methodology. The extrapolated results at the higher scale thus

provide a good initial guess for the iterative method. Typically, electrically large complex objects it is a big computational

when the number of unknowns exceeds a few thousand unknowns, challenge. Recently, many researchers have tried to solve
:‘:naat;'k’:esgg;'oor; ttl'qr;;erﬁé‘t%%%dfs %?rréirtz'éyiﬁhgo[ciité'xeﬂ::ttr'@;iy directly these large computationally intensive problems by the
larger ’problems, where the matrix solution time is of concern. combination of the (,:Onvem'onal method of momems (MoM)
Two numerical results are presented, which demonstrate that the @nd other new techniques. In these new techniques there are the
AMMM is a useful method to analyze scattering from perfectly impedance matrix localization method (IML) [6]-[9]), the fast
conducting plates. multipole method (FMM) [10]-[12], the complex multipole
Index Terms—Electromagnetic scattering, method of moments. beam approach (CMBA) [13], the matrix decomposition
algorithm (MDA) [14], and its multilevel cousin: a multilevel
matrix decomposition algorithm (MLMDA) [15], [16], wavelet
method [17]-[21], [36], etc. A detailed discussion of these fast
HE moment method is one of the most popular numesolution methods for efficiently solving large electromagnetic
ical techniques to analyze the scattering and radiation frqnoblems is provided in [22].
complex structures, which has been in use over the past 30 yeardnother method is the adaptive multiscale moment method
[1], [2]. However, when the size of scatterers or radiators ({MMM) proposed by the authors [23]-[27], which is a hybrid
electrically large and even resonant, the moment method bechnique combining the multigrid method with the compres-
comes computationally too expensive (too much memory asibn methodology. The distinction of this method over other is
CPU time) to analyze them. that the compression is used directly on the solution itself, even
In order to overcome the difficulty of the moment methodhough it is unknown.
many types of hybrid approaches that are based on high-freAs we know, the multilevel or the multigrid technique has
guency and low-frequency techniques have been proposedbeen widely used in solving the differential equations and inte-
review of these hybrid techniques can been found in [3]-[5dral equations [28]-[32]. Kalbasi and Demarest [33], [34] ap-
Although these hybrid techniques can deal with scattering aplied the multilevel concepts to solve the integral equation by
radiating complex objects, for the solution of scattering fronihe moment method on different levels, which has been called
the multilevel moment method (MMM). MMM can predict rea-
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Fig. 2. The illustration of coefficient matrices, the right arrays and the unknowns.

by using a few basis functions introduced through the tensorOur motivation in the present paper is to apply a 2-D
product. The wavelet method is an important digital compre8&MMM to analyze scattering by thin perfectly conducting
sion method to compress the data. Hence, many researclpates. Section Il introduces the 2-D multiscale basis according
[17]-[21], [36] chose the wavelet basis function or wavelet-likid the tensor product of the 1-D multiscale triangular basis. A
basis function in the moment method because the impedaeP function can be approached approximately by the linear
matrix will be sparse. They used the wavelet method to comembination of 2-D multiscale basis. Section Il directly dis-
press the impedance matrix and not the solution. Hence, ttretizes the EFIE based on the tensor product of the triangular
scaling function in a wavelet method is neglected and so is thasis by Galerkin method and presents the formula of the linear
relationship between the scaling function and the solution. equations for the 2-D multiscale basis. Then the 2-D AMMM
In AMMM, the authors proposed a special kind of multiis presented to solve the linear equations. Our goal is to reduce
scale basis functions on a bounded region, which is similar tlae matrix solution time for large problems. Section IV presents
a wavelet-like basis functions. For one-dimensional case (1-b)0 numerical examples for analyzing scattering from perfectly
the multiscale basis functions possess three important propge#nducting square plates.
ties. First, they are equivalent to the triangular basis functions
on the bounded interval. Second, these new basis functions ardl. 2-D MULTISCALE BASIS FUNCTIONS AND FUNCTION
orthogonal among themselves on the new scale and are zero APPROXIMATION

at the nodes of the previous scgle..However, they are_not Orhe multiscale basis functions in AMMM [23], [24] are based
thogonal between the scales. Third, if the unknown solution hgg e yse of a uniform grid and the conventional triangular basis

a linear behavior, then the number of basis functions will Ngl,tions. They can be obtained from the usual triangular basis
increase at the higher scale when the scale is increased. I!):)?fhe use of a full-rank matrix transformation: that is
the two-dimensional (2-D) case [27], the basis functions con- ’

structed by the Fensor product of t_wo multiscale.basis fuqctions \I,ﬁ V(x) = T(N, V)<I>?A+2V N(z) 1)
possess three important properties. The solution on different
scales corresponds to the solution at the different level grids\,Up,ere@};?V/\’(x) = (¢1(x), -+, prav N ()T is the uni-
the m_ulf[igrid method. Therefore, AMMM possesses three chagym triangular basislfﬁr’ V(x) = (1(x), -, Prpov p ()T
acteristics. is the multiscale basis functions. The superscfigtenotes the
1) The moment matrix on the multiscale basis can be coffianspose of a matri¥V is the number of the initial division of
puted directly from the original moment matrix utilizingthe interval.V' is the number of the largest scale and the interval
the conventionally used triangular basis through a badgsdivided intol + 2V N points. 7(N, V) is a full-rank matrix.
transformation matrix. Hence, conventional codes usirfgd. 1 shows all of the multiscale basis functioh§ *(x) on [0,
triangular patches can be used to evaluate the MoM mH-
trix. For the 2-D case, the basis functions can be constructed by a
2) When the scale is increased, the initial guess for the sot@nsor product. Suppose the multiscale basis function and the tri-
tion utilized in an iterative solver at the new scale can b@hgular basis function for the-directed components of the cur-

obtained from the initial guess of the multigrid method aients onastructure bV (z) = ($1(x), -+, Pryov n(2))7,
the new scale. L Ny = (pi(x), -, praavn(x)?, respec-

3) The size of the linear equations are reduced througitiely. The multiscale basis function and the triangular
thresholding the small coefficients of the unknowibasis function for they-directed component of the so-
solution bya priori threshold. lution are Up"V(y) = (i(w), -, Yreav ()T,



934 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 6, JUNE 2000

120 ; R e — F and > have the following relationship:
4 ] 1 1 T 1
Bl S e A R FY =T/ (N, V)F2T(M, V) 4
Kl ) 1
A S thbhirai e R where
o 1 1 t
I EEhn i i S R Javw) o S meevw)
PR S S R Y PR S A A P2 = ; . :
(o] 1 i
.irg 3 A s s N SR PSR J@ipovn, 1) o f(@1g2v N, Yigov M)
S il 3 ¢ 1
2 D._____: VVVVV . T R fl,l f1,1+2VM
: | l | ; _
[ 1 1 ¢ ]
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Fig. 3. The bistatic RCS of a 1.1 square plates by a normally incident plane f1H+2VN s f1H+2VN 142V M

wave versus the scattering anglege:= 0° plane. The circle, triangle, and cross A
signals denote the results for the threshotd 0.01, 0.05, 0.1. The soldiline  The geometrical means of the coefficiedd!, '~ has been

denotes the result of the conventional moment method. described in [27]. After filtering out some of the relatively small
. elements inf!! through a threshold, we can obtain the new
L My = (pi(y), -+, Pryovm(¥))T, respectively. modified matrix
The basis functions in 2-D’s can be written in the form of a Jid Jad
1,1 1,142V N
tensor product -
142V N 142V M = : : )
o5 N (@) @ @5 M (y) e e
142V N, 1 142V N, 142V N
P1(z) X
. where
= : (P1(y) - brpov m(¥)),
II
Pryav () P iy IS, ik >
for the triangular form " 0, |} j| <e.

oMV oMV
n (@) @Yy ) The reconstructed image ¢fz, v) is defined by

P1(z) )
= ; (1) - Yraavar (), P2 = (T'(N, V) FET (M, V). (6)
Pry2v N@) The compression ratio is defined as the number of elem@énts
for the multiscale form which is zero over the total number of eleme(itst+ 2" N)
The relation between the multiscale basis and the mangu'g?(zaverage error and the maximum error betwgft} and
basis is given by L2} are defined as follows:

o V(z) @ UV (y) Z Z ( (o) — ')2

¢1(x) o T

=T(N,V) : (¢1(y) - gy M) Averer (FA’ FA) - ZZ
</)1+2VN($)

xzv yj

(M, V)
v (@) e v Y (y)
. 142" N 1+2Y M y In summary, the conventional MoM impedance matrix gener-
= TN, V)ey () @ P W)T(M, V). () ated by the usual triangular basis is transformed to a new matrix
Now, we consider the approximation of a functiffx, y) using using the transformation of (1). Then the solution is obtained
these two kinds of basis. The functigifz, ¢) can be approxi- at a given scale. The solution is now extrapolated to the higher

MaXErr(FAv fA> = IHaX‘f(.Z‘Z‘, yj) - A‘ .

23

mated by these basis functions in the following form: scale. If the computed second derivative of the solution is below
A a certain threshold at the new nodes, then the unknown of that
=D [2i0i@)eiw) node is discarded.
= (@?A”V N(a:))/ FAQLF2 My 1. I MPLEMENTATION OF AMMM IN THE CONVENTIONAL
MOMENT METHOD
=

Let S denote the surface of a square perfectly conducting
NV Mo M,V plate in thexy plane. LetE’ be the electric field defined by
= (‘I’n’ (z )) FoUme 7 (y). (3) animpressed source in the absence of the scatterer. The field is
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TABLE |
RESULTSFOR A 1.1-A SQUARE CYLINDER

incident on the structure and induces surface currérdas S.

The induced currenf can be written as

J(7) = Jo (72 + Jy(7)d () Threshold 0.01 0.05 0.1
where Reduced J, 58 185 295
M M
Reduced J 53 121 177
T(P) =3 Jren@, (7 =S ey -

,; ! ,,2;1 v Actual size 771 576 410
{951 (M}, {¢y,'(7)} are the basis functions. Cond. No. 84787 185258 28693
By the use of the Galerkin scheme and through the choice of cpy time(sec) 49.60 15.06 6.27

{¢ (7}, {#}(7) } as the tensor product of two triangular basis
functions as the trial and the weighting function that are denoted ) ] ] ]
by {¢:(7)}, the matrix equation will be equivalent to where((6, ¢, n) = expljk(z, sin 6 cos ¢ +y, sin 6 sin ¢)]

All A12 739 - 47 E; (8) A(e’ d)) :T2 . Sin62 {M}
Ap A Jy) gk \ EY . : .
where siné? {W} ,
An(i, j) = /S ¢i(7) ds/s L11(Go; (7)) ds', Now we consider (8) using the multiscale basis functions. Sup-
pose the 2-D triangular basisa (=, v) can be arranged as fol-
Ara(i, j) =/ ¢ () dS/ Ly2(Go; (i) ds' lows:
S S
o : : P1(y)p1(z)
An i) = [ 6:7)ds [ Lan(Goy(7) a5 o
S S .
An(i, 5) = / $i(7) ds / Loo(GH(7")) ds’ $1(y)P1rav (@)
s s :
1 92 1 92 é(x, y) = _
M=t ger 127 2 geay :
1 92 P140v N (y)P1(2)
Lap=1+ 5+ .
k2 Oy? :
exp [—jk\/(a: —a')? 4+ (y — y’)Q} Pra2v v (W) P142v v ()
N Ve —a)?2+(y—y')? and the 2-D multiscale basig}; (z, y) can be arranged as fol-
. - I :
B = (B0 +B,%) ows
. . . . \Pﬂ(xv y)
- exp[jk(z sin 6 cos ¢ + sin fsin )] ~ . . . . .
Ei—ieE', E =jekE = (%(y)@ bo(@), 1o(y) @ ¥1(@), P1(y) @ o (@),
x ’ y
(1’217 27 7Mj:17 27 7M) z/)l(y)@)z/)l(a?),z/)()(y)@ }2($)’ )2(y)®1/)0(37)
71‘ :(Jiv Tty Jajcw)Tv 7y:(‘];7 Tty Jé\l)T r‘/)l(y)(g) )2(-T), )Q(y)@)z/}l(x)v )Q(y)@) )2(-T),
B, =(B,(1), - E,(M))" Po(y) @ Pv(x), Yv(y) @ polz), ¥1(y) @ v (x)
E, =(Ej(1), -+, Ey(M))" Pv(y) @ (@), -, P (y) @ v (@)
= 5 T
Ei(j) = / ¢;(MEL(7) ds Yy (y) @ wv(x))

i i Wherez/l.(a:) and z/j,v(y) are the basis functions osth scale
Ey (i) = /S ¢;(ME,(7) ds. along thez-axis andy-axis, respectively. Therefore, from zero-
The radar cross section (RCS) can be shown to have the

lowing form: are(1+N)2,3N?24+2N,12N?+4N,48N? +8N, respectively,

at each of the four scales.

We can evaluate the transformation matik( N, V') from
the basis function® A (z, ¥) to the multiscale basis function in
two dimension &Y, (z, y); that is

0(9’ d)) = %

| ¥

M

Z(J,’f cos 6 cos ¢ + J, cos O sin ¢)((6, ¢, n)

n=1

M

2
+ Z(—Jf sin¢ + J, cos $)C(0, ¢, n) ] through B B
n=1 <AP1 A{é) <J§) _ 4n <E”) )
- A%(0, ¢) 9) AR AL JNTE) T ko \EID

Qﬁale to three-scale, the number of the multiscale basis functions

Therefore, (8) can be derived from the multiscale basis functions
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where Bl = W(N,V)E. ,J,, = WT(N,V)JI 800

z,y’ z, Yy’

2 Y
Al =W(N, V)A; ;WT(N, V). The coefficient matrices

= 800 [/
II II II II II
ézﬂj (AZ,J(O)a T Ai,j(vﬁtrt;egnrlfnowngx, Ajﬁv,y(o) T g :
Js 4(V)) and the arrayr?” (E. (0), ---, £, (V)) are g 700
arranged in the scaled-block form (see Fig. 2). g 500 !
The scheme of the adaptive multiscale moment method 1 § LT
solve the matrix equations'{§rom the(v)th scale tothgv + s so0
1)th scale is given as follows. 5 i
Step 1) Suppose the solutiofg]!, (0), ---, JJ! (v)) on 5 %0
the (v)th scale are given. Then the actual solutior 300
{J+,4(v)} onthe coarse grid can be obtained by the g
use of the following formula: 200 L
J2L,(0)
Te (o) = WIN, o) | TE,()
T
I,y (V)

Step 2) Estimate the solutiof/, ,(v + 1)} on the finer
grid through the use of a 2-D interpolant formula g
such as a tensor product spline interpolant [35]. The'z
tensor product spline interpolant function to the date >
{f(zi, vi)}, where{l < ¢ < N }and{l < j <
N, 1}, has the form

Monostatic RCS

N, N,

Z Z cnran,kI,tI (x)Bnl, ky,ty (y)

m=1 n=1

where B; x :(s) is vth (normalized)B-spline of 0 10 20 30 40 50 6 70 80 9
order k for the knot sequence. The coefficients Angle of incidence of the plane wave
¢n, m €an be computed from the following solution (b)

of the system of equations: Fig. 4. (a) The actual size of the linear equations versus the angle of incidence.

N, A (b) The monostatic RCS versus the angle of incidence. The circle, triangle, and
Y il cross signals denote the results for the threshetd0.01, 0.05, 0.1.The solid

Z Z Cam B ko, t, (Ti) B, k1, W5) = F(6, y5) line presents the result of the conventional moment method. The monostatic and

=1 n—1 the size of the linear equations for-polarized plane wave.

{1<i< N, 1<G< N,

Step 3) Get the initial guess on the finer grid using the fol-

lowing formula: oqz, we can obtain the original solutions on the finer
_ grid.
ng(()) This procedure continues until the largest scale is reached.
JI (1) - = Typically, it has been our experience that it is not necessary to
oy =W (N, v+ 1))7 o y(v+1). go beyond the third scale.
75,@,(“ +1) IV. NUMERICAL RESULTS
Step 4) Ifthe elements di/,, (k)} (k=1,2,3, -+ v+ In this section, we discuss some numerical examples for an-

1) are less thamr (the given threshold parameter)alyzing scattering from perfectly conducting plates by the 2-D

we set these elements to zero and delete the corFdMMM. All of the numerical simulations have been performed

sponding rows and columns of the coefficient maen DELL OptiPlex Gxi 166 MHz 512 RAM personal computer

trices A;'; and the corresponding elements of thé a multitasking environment.

arrayij onthe ¢+1)th scale. Then after reducing First, _con5|der the scattering fromlgl)\ X 1.1 perfectly

the size of the original linear equation, the modifie§Onducting plate. The plate is discretized ido x 27 cell;

linear equation and the initial guess are obtained. (2t is. the center of the cells (87', j7) (1" = 0.05, 4, j =
Step 5) Solve the modified linear equation by use of the itef: 1> =2~ +10). The basis and weighting functions are

ative method or LU method. Adding these elemenf&10Sen b¢(z —il)é(y — jT)}, where

which are set to be zero in Step 4), the solution

{72,(0), -+, J11,(v), T2t (v + 1)} on the mul- o) = { L—[t)/T, [{<T

tiscale triangular basis are obtained. Using the step 0, otherwise.
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Total number of nodes is 441 and the total number of unknowr 25
for the linear equations is 882. The largest scale is taken as tw

So the total number of unknowns fdk,, andJ, is (5 - 2° + 20
1)2,(5-2 +1)2, (5 - 22 + 1)? from zero scale to two scale,
respectively.

For the different thresholds, the reduced numbef,aind./,,
the actual size of the linear equations, and the condition numb g :
on the two scale are given in Table Iwhen the conducting plat £
is illuminated by an incident plane wave with the magnetic fielc 2 ' :

'
'
i
|
|

18-~

S (¢ /32 dB)
E el ol it

10 - .-

vector oriented along the-y axis. 5[ -

The condition numbers of the original coefficient matrix and i ]
the coefficient matrix on the 2-D multiscale basis are 1888 an | P A S TP IR SRS S FP
50532, respectively. The CPU time required for just the solutiol o 1020 3;03 ﬂer:f; angl?( degr:‘e’) 70
of the conventional moment method is 64.32(s). The bistati.
RCS is shown in Fig. 3. Fig. 5. The bistatic RCS of a 2.1 square plates by a normally incident plane
In Table I, CPU time is the time required to solve the lineayave versus the scattering anglesn= 0° plane. The circle, triangle, and cross
- - jgnals denote the results for the threshotd 0.01, 0.05, 0.1. The solid line
equat!ons by.use of the conventional moment met.hOd or t otes the result of the conventional moment method.
adaptive multiscale moment method. This does not include the
time spent to compute the original impedance matrix, which is
common in all the procedures.

i
|
1
1
!
.
'
i
1
I
1

R VU
{
!
i
)
-
1
1
i
1
{

T
t
|
i
A b Lo
t
|
|
1
R < L

'
'
i
[ U,
1
|
'
'
|

i)

-]
o
0
o

From Table |, it is seen that the smaller the threshold, fewer TABLE 1l
unknowns have been eliminated. There is no relationship be- RESULTSFOR THE 2.1-\ SQUARE CYLINDER
tween the condition number and the actual size of the modified Threshold 0.01 0.05 o1
linear equation. This is a problem with a wavelet-type method- esho : : :
ology. When the threshold is taken as 0.01, 0.05, 0.1, the size Reduced J, 717 1151 1262
of the Iir_1ear equation is reduced by a_lbou_t 13%, 35%, and 54%, Reduced J, 585 1074 1204
E::ze;:igvedg/, and the errors of the bistatic RCS are very small Actual Size 2060 1137 296
For the different thresholds, the monostatic RCS and the ac- _cond: No. | 360164 7240 9780
tual size of the linear equations on the two scale versus the angle CPU time(sec)| 901.34 218.28 158.04

of incidence withE-polarized plane wave are plotted in Fig. 5.

Consider the solution of electromagnetic scattering from a
2.1\ x 2.1\ perfectly conducting plate. The total number of For the different thresholds, the monostatic RCS and the ac-
unknowns in the conventional method of moment.forand.J,, tua_ll si_ze of the_linear quation on the two scale versus th_e angle
are 1681. The total number of unknowns for the linear equ@f incidence withZ-polarized plane wave are plotted in Fig. 6.
tions are 3362. The largest scale can be taken as two. So the
number of unknowns fod, and.J, are (10 - 2° 4 1) at the V. CONCLUSIONS

1 2 i 2 2
zeroth scale(10 - 2° + 1) at first scale and10 - 2° + 1)° at Two-dimensional AMMM has been used to analyze scat-

second scale, respectively. Also, when the number of unknowpg, » rom perfectly conducting plates. By use of the matrix
exceeds a few thousand unknowns, the matrix solution time 9, ormation, the impedance matrix and the source terms
eraIIy_exceeds the matnx_ fill t|me_. Th_e matr|_x _f|II time in th'sconstructed by the conventional moment method can be
case Is 392(s). The ma_ltnx solution time utilizing the CONVeRransformed by a matrix into the form of basis functions being
tional mom_ent method is 3934.31(s). applied at different scales. The initial guess for the unknown
For the different thresholds, the reduced numbek,aind./,,  71IL iy the multiscale basis on the finer scale can be obtained
the actual size of the Il_near_ equations, and the cond|t|or_1 NuUMBRIm the initial guess of the functiond,(7), J,(7) on the
on the two scale are given in Table I, when the conducting plajger scale which are predicted from the previous scale by the
is illuminated by an incident plane wave with the magnetic ﬁe'ﬁwultigrid method.
vector oriented along the-y axis. Two examples have been presented to illustrate that AMMM
The CPU time is the time required to solve only the lineagan reduce automatically the size of the linear equations and can
equation by use of the conventional moment method or the ad@aprove the efficiency of the conventional moment method.
tive multiscale moment method. This does not include the time Although the matrix transformation in the 2-D AMMM is
spent to compute the original MoM impedance matrix. derived from the tensor product of two triangular basis func-
The condition numbers of the original coefficient matrix antions over a uniform grid, the 2-D AMMM has no restriction for
the coefficient matrix on the 2-D multiscale basis are 1435 amdlaptation to any kind of basis function in the moment method.
23110, respectively. The bistatic RCS are shown in Fig. 5. Itklgirthermore, the analysis can be extended in a straightforward
interesting to note that far = 0.05, there is an improvement in manner to solve scattering or radiation problems dealing with
the condition number (7240 as opposed to 23 110). complicated objects.
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Size of the linear equations

Bistatic RCS (o / A2 dB)
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n
(=]

Angle of incidence of the plane wave

(b)

Fig. 6. The bistatic RCS versus the scattering angle en(° plane. (b) The
bistatic RCS versus the scattering anglesxos 90° plane. The circle, triangle,
and cross signals denote the results for the threshedd).01, 0.05, 0.1.The
solid line denotes the result of the conventional moment method. The bistatic
RCS of a 2.1 square plates by a normally incident plane wave with the magnet'ﬁn
field vector oriented along the¢ y axis.
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