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Adaptive Multiscale Moment Method (AMMM)
for Analysis of Scattering from

Perfectly Conducting Plates
Chaowei Su and T. K. Sarkar, Fellow, IEEE

Abstract—Adaptive multiscale moment method (AMMM)
is presented for the analysis of scattering from a thin perfectly
conducting plate. This algorithm employs the conventional
moment method and a special matrix transformation, which is
derived from the tensor products of the two one-dimensional (1-D)
multiscale triangular basis functions that are used for expansion
and testing functions in the conventional moment method. The
special feature of these new basis functions introduced through
this transformation is that they are orthogonal at the same scale
except at the initial scale and not between scales. From one scale to
another scale, the initial estimate for the solution can be predicted
using this multiscale technique. Hence, the compression is applied
directly to the solution and the size of the linear equations to
be solved is reduced, thereby improving the efficiency of the
conventional moment method. The basic difference between this
methodology and the other techniques that have been presented
so far is that we apply the compression not to the impedance
matrix, but to the solution itself directly using an iterative solution
methodology. The extrapolated results at the higher scale thus
provide a good initial guess for the iterative method. Typically,
when the number of unknowns exceeds a few thousand unknowns,
the matrix solution time exceeds generally the matrix fill time.
Hence, the goal of this method is directed in solving electrically
larger problems, where the matrix solution time is of concern.
Two numerical results are presented, which demonstrate that the
AMMM is a useful method to analyze scattering from perfectly
conducting plates.

Index Terms—Electromagnetic scattering, method of moments.

I. INTRODUCTION

T HE moment method is one of the most popular numer-
ical techniques to analyze the scattering and radiation from

complex structures, which has been in use over the past 30 years
[1], [2]. However, when the size of scatterers or radiators is
electrically large and even resonant, the moment method be-
comes computationally too expensive (too much memory and
CPU time) to analyze them.

In order to overcome the difficulty of the moment method,
many types of hybrid approaches that are based on high-fre-
quency and low-frequency techniques have been proposed. A
review of these hybrid techniques can been found in [3]–[5].
Although these hybrid techniques can deal with scattering and
radiating complex objects, for the solution of scattering from
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Fig. 1. The multiscale basis functions	 (x) on the domain [0,1].

electrically large complex objects it is a big computational
challenge. Recently, many researchers have tried to solve
directly these large computationally intensive problems by the
combination of the conventional method of moments (MoM)
and other new techniques. In these new techniques there are the
impedance matrix localization method (IML) [6]–[9]), the fast
multipole method (FMM) [10]–[12], the complex multipole
beam approach (CMBA) [13], the matrix decomposition
algorithm (MDA) [14], and its multilevel cousin: a multilevel
matrix decomposition algorithm (MLMDA) [15], [16], wavelet
method [17]–[21], [36], etc. A detailed discussion of these fast
solution methods for efficiently solving large electromagnetic
problems is provided in [22].

Another method is the adaptive multiscale moment method
(AMMM) proposed by the authors [23]–[27], which is a hybrid
technique combining the multigrid method with the compres-
sion methodology. The distinction of this method over other is
that the compression is used directly on the solution itself, even
though it is unknown.

As we know, the multilevel or the multigrid technique has
been widely used in solving the differential equations and inte-
gral equations [28]–[32]. Kalbasi and Demarest [33], [34] ap-
plied the multilevel concepts to solve the integral equation by
the moment method on different levels, which has been called
the multilevel moment method (MMM). MMM can predict rea-
sonably the initial solution on the fine grid from the known so-
lution on the coarse grid so that it can reduce the number of
iteration required to generate the solution at that scale.

Mathematically, the compression methodology tries to ap-
proximate the original function with a little loss of accuracy
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Fig. 2. The illustration of coefficient matrices, the right arrays and the unknowns.

by using a few basis functions introduced through the tensor
product. The wavelet method is an important digital compres-
sion method to compress the data. Hence, many researchers
[17]–[21], [36] chose the wavelet basis function or wavelet-like
basis function in the moment method because the impedance
matrix will be sparse. They used the wavelet method to com-
press the impedance matrix and not the solution. Hence, the
scaling function in a wavelet method is neglected and so is the
relationship between the scaling function and the solution.

In AMMM, the authors proposed a special kind of multi-
scale basis functions on a bounded region, which is similar to
a wavelet-like basis functions. For one-dimensional case (1-D),
the multiscale basis functions possess three important proper-
ties. First, they are equivalent to the triangular basis functions
on the bounded interval. Second, these new basis functions are
orthogonal among themselves on the new scale and are zero
at the nodes of the previous scale. However, they are not or-
thogonal between the scales. Third, if the unknown solution has
a linear behavior, then the number of basis functions will not
increase at the higher scale when the scale is increased. For
the two-dimensional (2-D) case [27], the basis functions con-
structed by the tensor product of two multiscale basis functions
possess three important properties. The solution on different
scales corresponds to the solution at the different level grids in
the multigrid method. Therefore, AMMM possesses three char-
acteristics.

1) The moment matrix on the multiscale basis can be com-
puted directly from the original moment matrix utilizing
the conventionally used triangular basis through a basis
transformation matrix. Hence, conventional codes using
triangular patches can be used to evaluate the MoM ma-
trix.

2) When the scale is increased, the initial guess for the solu-
tion utilized in an iterative solver at the new scale can be
obtained from the initial guess of the multigrid method at
the new scale.

3) The size of the linear equations are reduced through
thresholding the small coefficients of the unknown
solution bya priori threshold.

Our motivation in the present paper is to apply a 2-D
AMMM to analyze scattering by thin perfectly conducting
plates. Section II introduces the 2-D multiscale basis according
to the tensor product of the 1-D multiscale triangular basis. A
2-D function can be approached approximately by the linear
combination of 2-D multiscale basis. Section III directly dis-
cretizes the EFIE based on the tensor product of the triangular
basis by Galerkin method and presents the formula of the linear
equations for the 2-D multiscale basis. Then the 2-D AMMM
is presented to solve the linear equations. Our goal is to reduce
the matrix solution time for large problems. Section IV presents
two numerical examples for analyzing scattering from perfectly
conducting square plates.

II. 2-D MULTISCALE BASIS FUNCTIONS AND FUNCTION

APPROXIMATION

The multiscale basis functions in AMMM [23], [24] are based
on the use of a uniform grid and the conventional triangular basis
functions. They can be obtained from the usual triangular basis
by the use of a full-rank matrix transformation; that is

(1)

where is the uni-
form triangular basis.
is the multiscale basis functions. The superscriptdenotes the
transpose of a matrix. is the number of the initial division of
the interval. is the number of the largest scale and the interval
is divided into points. is a full-rank matrix.
Fig. 1 shows all of the multiscale basis functions on [0,
1].

For the 2-D case, the basis functions can be constructed by a
tensor product. Suppose the multiscale basis function and the tri-
angular basis function for the-directed components of the cur-
rents on a structure be ,

, respec-
tively. The multiscale basis function and the triangular
basis function for the -directed component of the so-
lution are ,
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Fig. 3. The bistatic RCS of a 1.1 square plates by a normally incident plane
wave versus the scattering angle on� = 0 plane. The circle, triangle, and cross
signals denote the results for the threshold" = 0:01; 0:05; 0:1. The soldi line
denotes the result of the conventional moment method.

, respectively.
The basis functions in 2-D’s can be written in the form of a
tensor product

...

for the triangular form

...

for the multiscale form

The relation between the multiscale basis and the triangular
basis is given by

...

(2)

Now, we consider the approximation of a function using
these two kinds of basis. The function can be approxi-
mated by these basis functions in the following form:

(3)

and have the following relationship:

(4)

where

...
...

...

...
. . .

...

...
. . .

...

The geometrical means of the coefficients , has been
described in [27]. After filtering out some of the relatively small
elements in through a threshold, we can obtain the new
modified matrix

...
...

... (5)

where

if

.

The reconstructed image of is defined by

(6)

The compression ratio is defined as the number of elements,
which is zero over the total number of elements .
The average error and the maximum error between and

are defined as follows:

AverErr

MaxErr

In summary, the conventional MoM impedance matrix gener-
ated by the usual triangular basis is transformed to a new matrix
using the transformation of (1). Then the solution is obtained
at a given scale. The solution is now extrapolated to the higher
scale. If the computed second derivative of the solution is below
a certain threshold at the new nodes, then the unknown of that
node is discarded.

III. I MPLEMENTATION OF AMMM IN THE CONVENTIONAL

MOMENT METHOD

Let denote the surface of a square perfectly conducting
plate in the plane. Let be the electric field defined by
an impressed source in the absence of the scatterer. The field is
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incident on the structure and induces surface currentson .
The induced current can be written as

(7)

where

, are the basis functions.
By the use of the Galerkin scheme and through the choice of

, as the tensor product of two triangular basis
functions as the trial and the weighting function that are denoted
by , the matrix equation will be equivalent to

(8)

where

The radar cross section (RCS) can be shown to have the fol-
lowing form:

(9)

TABLE I
RESULTSFOR A 1.1-� SQUARE CYLINDER

where

Now we consider (8) using the multiscale basis functions. Sup-
pose the 2-D triangular basis can be arranged as fol-
lows:

...

...

...

...

and the 2-D multiscale basis can be arranged as fol-
lows:

where and are the basis functions onth scale
along the -axis and -axis, respectively. Therefore, from zero-
scale to three-scale, the number of the multiscale basis functions
are , , , , respectively,
at each of the four scales.

We can evaluate the transformation matrix from
the basis functions to the multiscale basis function in
two dimension, ; that is

Therefore, (8) can be derived from the multiscale basis functions
through

(8 )
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where , ,
. The coefficient matrices

the unknowns
and the array are

arranged in the scaled-block form (see Fig. 2).
The scheme of the adaptive multiscale moment method to

solve the matrix equations (8′) from the th scale to the
th scale is given as follows.

Step 1) Suppose the solutions on
the th scale are given. Then the actual solution

on the coarse grid can be obtained by the
use of the following formula:

Step 2) Estimate the solution on the finer
grid through the use of a 2-D interpolant formula
such as a tensor product spline interpolant [35]. The
tensor product spline interpolant function to the data

, where and
, has the form

where is th (normalized) -spline of
order for the knot sequence. The coefficients

can be computed from the following solution
of the system of equations:

Step 3) Get the initial guess on the finer grid using the fol-
lowing formula:

...

Step 4) If the elements of
are less than (the given threshold parameter),

we set these elements to zero and delete the corre-
sponding rows and columns of the coefficient ma-
trices and the corresponding elements of the

array on the ( )th scale. Then after reducing
the size of the original linear equation, the modified
linear equation and the initial guess are obtained.

Step 5) Solve the modified linear equation by use of the iter-
ative method or LU method. Adding these elements
which are set to be zero in Step 4), the solution

on the mul-
tiscale triangular basis are obtained. Using the step

(a)

(b)

Fig. 4. (a) The actual size of the linear equations versus the angle of incidence.
(b) The monostatic RCS versus the angle of incidence. The circle, triangle, and
cross signals denote the results for the threshold" = 0:01; 0:05; 0:1. The solid
line presents the result of the conventional moment method. The monostatic and
the size of the linear equations forV -polarized plane wave.

one, we can obtain the original solutions on the finer
grid.

This procedure continues until the largest scale is reached.
Typically, it has been our experience that it is not necessary to
go beyond the third scale.

IV. NUMERICAL RESULTS

In this section, we discuss some numerical examples for an-
alyzing scattering from perfectly conducting plates by the 2-D
AMMM. All of the numerical simulations have been performed
on DELL OptiPlex Gxi 166 MHz 512 RAM personal computer
in a multitasking environment.

First, consider the scattering from a perfectly
conducting plate. The plate is discretized into cell;
that is, the center of the cells is

. The basis and weighting functions are
chosen by , where

otherwise.
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Total number of nodes is 441 and the total number of unknowns
for the linear equations is 882. The largest scale is taken as two.
So the total number of unknowns for , and is

, , from zero scale to two scale,
respectively.

For the different thresholds, the reduced number ofand ,
the actual size of the linear equations, and the condition number
on the two scale are given in Table Iwhen the conducting plate
is illuminated by an incident plane wave with the magnetic field
vector oriented along the axis.

The condition numbers of the original coefficient matrix and
the coefficient matrix on the 2-D multiscale basis are 1888 and
50 532, respectively. The CPU time required for just the solution
of the conventional moment method is 64.32(s). The bistatic
RCS is shown in Fig. 3.

In Table I, CPU time is the time required to solve the linear
equations by use of the conventional moment method or the
adaptive multiscale moment method. This does not include the
time spent to compute the original impedance matrix, which is
common in all the procedures.

From Table I, it is seen that the smaller the threshold, fewer
unknowns have been eliminated. There is no relationship be-
tween the condition number and the actual size of the modified
linear equation. This is a problem with a wavelet-type method-
ology. When the threshold is taken as 0.01, 0.05, 0.1, the size
of the linear equation is reduced by about 13%, 35%, and 54%,
respectively, and the errors of the bistatic RCS are very small
(see Fig. 4).

For the different thresholds, the monostatic RCS and the ac-
tual size of the linear equations on the two scale versus the angle
of incidence with -polarized plane wave are plotted in Fig. 5.

Consider the solution of electromagnetic scattering from a
perfectly conducting plate. The total number of

unknowns in the conventional method of moment forand
are 1681. The total number of unknowns for the linear equa-
tions are 3362. The largest scale can be taken as two. So the
number of unknowns for and are at the
zeroth scale, at first scale and at
second scale, respectively. Also, when the number of unknowns
exceeds a few thousand unknowns, the matrix solution time gen-
erally exceeds the matrix fill time. The matrix fill time in this
case is 392(s). The matrix solution time utilizing the conven-
tional moment method is 3934.31(s).

For the different thresholds, the reduced number ofand ,
the actual size of the linear equations, and the condition number
on the two scale are given in Table II, when the conducting plate
is illuminated by an incident plane wave with the magnetic field
vector oriented along the axis.

The CPU time is the time required to solve only the linear
equation by use of the conventional moment method or the adap-
tive multiscale moment method. This does not include the time
spent to compute the original MoM impedance matrix.

The condition numbers of the original coefficient matrix and
the coefficient matrix on the 2-D multiscale basis are 1435 and
23 110, respectively. The bistatic RCS are shown in Fig. 5. It is
interesting to note that for , there is an improvement in
the condition number (7240 as opposed to 23 110).

Fig. 5. The bistatic RCS of a 2.1 square plates by a normally incident plane
wave versus the scattering angle on� = 0 plane. The circle, triangle, and cross
signals denote the results for the threshold" = 0:01; 0:05; 0:1. The solid line
denotes the result of the conventional moment method.

TABLE II
RESULTSFOR THE 2.1-� SQUARE CYLINDER

For the different thresholds, the monostatic RCS and the ac-
tual size of the linear equation on the two scale versus the angle
of incidence with -polarized plane wave are plotted in Fig. 6.

V. CONCLUSIONS

Two-dimensional AMMM has been used to analyze scat-
tering from perfectly conducting plates. By use of the matrix
transformation, the impedance matrix and the source terms
constructed by the conventional moment method can be
transformed by a matrix into the form of basis functions being
applied at different scales. The initial guess for the unknown

, in the multiscale basis on the finer scale can be obtained
from the initial guess of the functions , on the
finer scale which are predicted from the previous scale by the
multigrid method.

Two examples have been presented to illustrate that AMMM
can reduce automatically the size of the linear equations and can
improve the efficiency of the conventional moment method.

Although the matrix transformation in the 2-D AMMM is
derived from the tensor product of two triangular basis func-
tions over a uniform grid, the 2-D AMMM has no restriction for
adaptation to any kind of basis function in the moment method.
Furthermore, the analysis can be extended in a straightforward
manner to solve scattering or radiation problems dealing with
complicated objects.
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(a)

(b)

Fig. 6. The bistatic RCS versus the scattering angle on� = 0 plane. (b) The
bistatic RCS versus the scattering angle on� = 90 plane. The circle, triangle,
and cross signals denote the results for the threshold" = 0:01; 0:05; 0:1. The
solid line denotes the result of the conventional moment method. The bistatic
RCS of a 2.1 square plates by a normally incident plane wave with the magnetic
field vector oriented along the+y axis.
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