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Abstract—In this paper, we present an extension to the uni-
form geometrical theory of diffraction (GTD) for reflection from
smooth curved surfaces. This approach allows the source to be
much closer to the reflecting surface than the conventional uniform
GTD formulation and does not require a Hertzian dipole source.
In essence, the field point is mirrored in the plane tangential to the
specular (reflection) point; the incident field is then calculated at
the mirror point and the uniform GTD reflection coefficients are
used to mirror this field to the original field point. This formulation
reduces exactly to the conventional uniform GTD if the incident
field is ray optical. The application to a hybrid method of moments
(MoM)/GTD code is outlined and results computed using this code
are presented for a dipole radiating in the vicinity of a cylinder.

Index Terms—Electromagnetic diffraction, geometrical theory
of diffraction (GTD), method of moments, UTD.

I. INTRODUCTION

T HE geometrical theory of diffraction (GTD) and its uni-
form versions are a very efficient way to calculate the ra-

diation patterns of antennas in the vicinity of large conducting
structures. This formulation requires a known current distri-
bution and one needs to use hybrid formulations such as the
method of moments (MoM)/uniform GTD hybrid [1], [2] to
calculate current related parameters such as coupling and input
impedance. In order to model antennas mounted on masts, air-
craft, etc., the uniform GTD part must also treat curved surfaces.

The uniform GTD solution for reflection from smooth curved
surfaces has been studied in detail [3], [4]. This formulation uses
a reflection coefficient to relate the incident and reflected fields
at the specular point and uses ray optics to calculate the field at
any required point. The validity of the underlying assumptions
decreases as the source or field point approaches the specular
point. Antennas mounted on masts, etc. will, in general, be in
the region where the reflection coefficients are no longer valid.

For flat plates, the reflected field may be found from the
mirror image of the source. In the case of curved surfaces it is
not as straightforward. When only the source is in the immediate
vicinity of the specular point one needs to use a radiation for-
mulation as in [5]. This formulation gives the radiated field for a
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Hertzian dipole very close to a cylinder. However, in some cases
it is not advisable to decompose the source into Hertzian dipoles.
An example is the MoM/uniform GTD hybrid formulation [2]
in which the MoM part uses triangular basis functions. (It is
possible to use the formulation for dipole radiation and inte-
grate these contributions over the basis function. This, however,
would require ray tracing inside the integration, resulting in sig-
nificant additional computational cost.) This paper presents an
extension of the conventional formulation to treat these cases.
In the next section, we summarize the hybrid formulation. The
section thereafter develops a mirror formulation to account for
the uniform GTD reflection from smooth convex surfaces and
the final section shows some near-field patterns as well as a typ-
ical application.

II. MoM/GTD HYBRID METHOD

In the full MoM [1], [6] one typically solves a matrix equation

(1)

where is a vector related to the excitation, a vector con-
taining the unknown coefficients of the basis functions in the
current expansion, and the interaction matrix. For a current
based formulation the elements of the interaction matrix may be
written as

(2)

where
surface on which the current is flowing;
Green’s dyadic giving the field at due to a
dipole at , is the th basis function
(which may be either a section of a line current
or a part of a surface current);

th testing function.
If an additional scatterer treated with GTD is added to the

problem the interaction matrix may be modified [1]

(3)

where is a shadowing coefficient which is zero if the test func-
tion lies in the shadow of the scatterer and unity otherwise. The
additional term

(4)
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gives the interaction between the source and field functions that
occurs via the scatterer. Here represents the GTD
field at due to a source at but with the direct term excluded.
The direct term is accounted for in the MoM part of the interac-
tion term. In the above, the GTD contribution must be integrated
over both the source and field regions. This may become very
inefficient, as calculating the GTD field will generally require
potentially time-consuming ray tracing.

If the source and field positions are electrically far from the
specular (reflection or diffraction) points, the GTD field will be
relatively constant over the electrically small basis and testing
functions. It may therefore be treated as constant, allowing
simple evaluation of the integrals in (4). This, however, limits
both the source and field positions. We use a modification
of this technique whereby one integral is calculated and one
approximated. The incident field is calculated from the integral
over the complete basis function. This source field is then
reflected to the center of the testing function using our “mirror
formulation” (discussed in the next section) that allows the
source to be arbitrarily close to the surface. If the total path from
the source to the field point via the cylinder is long enough,
the field at the testing function will be relatively constant. We
may therefore approximate the outer integral overin (4) by
assuming that the integrand is constant.

Our implementation relies on using an arbitrary source rather
than a Hertzian dipole. Thus, it requires a GTD formulation
written in terms of reflection and diffraction coefficients. It is
not possible to use the closed-form dipole formulation in [5] as
is done in the hybrid formulation in [7]; in Hsu’s work, the mo-
ment method part was limited to line currents with sinusoidal
basis functions. Since these basis functions may be explicitly
written in terms of Hertzian dipoles at the edges of line seg-
ments, the dipole GTD formulation was appropriate. To model
metallic surfaces by the MoM, we use rooftop basis functions
over triangular patch elements. These basis functions do not de-
compose as easily to Hertzian dipoles.

III. REFLECTION FORMULATION

The conventional uniform GTD formulation for smooth
curved surfaces has been given by Pathaket al. [3]. In this
formulation, the total field (superposition of direct and reflected
field) at point in the lit region may be written in terms of the
incident field at the specular point

(5)

where is the incident field, the propagation constant and

with the unit vector normal to the plane of incidence, and
and the unit vectors normal to and to the incident and

Fig. 1. Image point and vector definitions for reflection from a cylinder. The
figure shows a cut in the plane of incidence.

reflected directions, respectively. The variablesand as
well as the special functions , and are
defined in, for example, [3], [8]. The variables and de-
note the principle radii of curvature of the reflected wave, and

is the distance from the specular or reflection point to the
field point. We will also use , the distance from the source to
the reflection point. All points mentioned above, such as, are
described in terms of the vector from the origin to the particular
point. When the source is too close to the specular point the in-
cident field is no longer ray optical and the formulation as given
fails.

We use a modification of this formulation. Consider the ge-
ometry shown in Fig. 1. The figure shows a cut in the plane of
incidence, but the structure is, in general, three-dimensional.
is the source point and the point is the mirror image of the
field point in the plane tangential to the cylinder surface at
the specular point

where is the normal vector to the surface at. In the absence
of the scatterer the ray optical field at may be found from a
known field at . Assuming spherical wave incidence, one finds

(6)

which may be inverted to give the field at for a known field
at . This may be substituted into (5) leading to

(7)

where the direct contribution is calculated at the original
field point. In the case of reflection from a cylinder, and
this equation simplifies to

(8)
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(a)

(b)

Fig. 2. The near field of a vertical Hertzian dipole in front of a cylinder with
radius 1.5�. The field is calculated on a radius of 2.15� in the same plane as
the source. The sources are (a) 0.1� and (b) 0.2� in front of the cylinder.

which is valid in the entire lit region when the source and field
points are such that the ray optical field approximation is valid.

Note that as , (provided that ) and
the term inside the square root tends toward unity. Near broad-
side the reflection coefficients and the tangential
components at the field point are the mirror image of those at
the mirror point . (This is approximately what one would ex-
pect very close to a large cylinder.) In the other extreme, where
the incident field is ray optical, our mirror formulation reduces
to the original uniform GTD. Thus, we may argue that as (8) is
physically consistent when the source and field points are in ei-
ther the ray optical region or the very near region, we may use
this equation throughout.

The reflection formulation is applied to the total field orthog-
onal to the direction of propagation (the components and

). This field includes the near field terms ( and ) in
these directionseven though the reflection coefficients are de-
rived for ray optical fields only. This is a heuristic extension, but
results presented in the next section show that it does indeed ex-
tend the “low-frequency” end of the GTD for specific problems
of concern in a hybrid MoM/GTD code.

As ray optical fields do not have a component in the direction
of propagation, the near-field component in this direction needs
special treatment. We elect to treat this component as if mirrored
in a infinite, perfectly conducting mirror. For near broadside
reflections this will be similar to the GTD reflection coefficients
which approach that of a flat plate. At the shadow boundary,

Fig. 3. The near field of a vertical Hertzian dipole 0.1� in front of a cylinder
with radius 1.5�. The field is calculated on a radius of 1.85� in a plane 1�
above the source.

the direction of propagation is tangential to the mirror plane.
The direct and reflected contributions will thus cancel. This will
be continuous with the creeping wave field diffracted into the
shadow zone, as this formulation assumes a ray optical field that
does not have a component in the direction of propagation.

The reflected field at may thus be written as

(9)

where

(10)

with and the unit vectors in the incident and reflected wave
directions of propagation respectively as shown in Fig. 1. Note
that the normal component of (with respect to the tangential
plane at ) is opposite to that of , while the tangential com-
ponents are the same. Due to the negative sign of the second
term in (10) the normal component is in the same direction as
the field at , while the tangential component is opposite to it.
For a magnetic boundary the sign of the second term becomes
positive.

In the present implementation, the specular point and the ray
directions are found for a spherical ray originating from the
center of the source basis function in the MoM region with the
field point at the center of the testing function.

IV. NUMERICAL EXAMPLES

This section presents plots of the near field radiated by a
Hertzian dipole very close to the cylinder as measure of the ac-
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Fig. 4. The near field of a horizontal Hertzian dipole 0.1� in front of a cylinder
with radius 1.5�. The field is calculated on a radius of 2.15� in the same plane
as the source.

curacy and the region of validity of the mirror formulation. It
also shows the input impedance of a half-wave dipole antenna
as it is moved closer to a cylinder as an example of the applica-
tion of the mirror formulation.

Figs. 2–5 show the near fields for a Hertzian dipole in front of
a cylinder with radius 1.5 , sufficiently long that the end-cap
effects may be ignored. The figures show the field strength in
decibels with respect to 1 V/m when the Hertzian dipole am-
plitude is 1 Am. The MoM solution is given as a reference
and is computed with a 16long cylinder. We also show results
which we have computed using the uniform GTD formulation
due to Pathaket al. [3]. Note that this formulation is pushed be-
yond its intended limit in the examples shown here. This is done
to indicate that the mirror formulation discussed above can im-
prove the range of validity. The cylinder lies along the-axis in
cylindrical coordinates with the source at and .

The two graphs in Fig. 2 show the near field pattern of a ver-
tical ( -directed) dipole as a function of the cylindrical angle.
In both cases the pattern is measured at a radius of 2.15and

(in the same plane as the source). These curves, and all
the other dipole patterns, are plotted up to the shadow boundary
at about 70, depending on the exact source and field radii. The
graph in (a) shows the pattern for a source at a radius of 1.6

(only 0.1 in front of the cylinder) and shows clearly that
the modified formulation yields much improved results. Note
that the accuracy of the results decreases toward the shadow
boundary. This may be expected from the fact that the compo-
nent in the direction of propagation is ignored at this point. From
the comparison in (b), it follows that a separation of 0.2is al-
most large enough for the formulation [3] to be valid.

Fig. 5. The near field of a horizontal Hertzian dipole 0.1� in front of a cylinder
with radius 1.5�. The field is calculated on a radius of 2.15� in a plane 1�
above the source.

Fig. 3 shows the pattern on a radius of 1.85, but in this
case such that the field also hasand components.
We present only the two largest components. In this figure, it is
clearly seen that the mirror formulation does not yield such a
dramatic improvement. One reason is that the source and field
points lie very close to the cylinder. With the much larger axial
separation between them, the incident and reflected directions
are very close to the cylinder axial direction. In this case, the
angle of incidence approaches 90while being far from the
shadow boundary and the uniform GTD reflection coefficient
does not remain valid. The case of horizontal (-directed)
dipoles is given in Figs. 4 and 5, both showing the fields on
a radius of 2.15 , with the former on the same plane as the
source and the second at . The same trend is evident. The
horizontal polarization seems to be a little better behaved for
small angles.

We have seen that the mirror formulation is most suspect
when there is a large axial separation between the source and
field points. Thus we have selected as a worst case application
of this formulation a vertical (rather than horizontal) half-wave
dipole (length 0.5 and wire radius 0.001 ) in front of a
cylinder of radius 1 . Fig. 6 shows the input impedance of
the dipole as a function of the distance to the cylinder as an
example of the application of this formulation. The plot com-
pares the full MoM (which is used as a reference) to the hybrid
formulation which uses MoM basis functions on the dipole
segments and uniform GTD to incorporate the interaction with
the cylinder. The figure shows that the uniform GTD theory due
to Pathaket al. [3] starts diverging, as expected, for .
The mirror formulation can be used much closer to the cylinder.



944 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 6, JULY 2000

Fig. 6. Input impedance of a half-wave dipole (wire radius 0.001�) a distance
d in front of a cylinder with radius�. The dipole is parallel to the cylinder axis.

Very near to the cylinder this formulation also breaks down.
This happens due to the breakdown of the uniform GTD on
near axial directions, as well as the fact that one may no longer
approximate the integral over the entire testing function in
terms of the value at the center only. If plotted on the same
scale, the input impedance of the horizontal half-wave dipole
(not shown in this paper) only visibly diverts from the MoM
solution at a spacing of 0.06. This confirms the expectation
that the result will be worse for a vertical dipole than for the
horizontal one.

V. CONCLUSIONS

We have demonstrated an extension of the uniform GTD re-
flection formulation that considers the near field effects and
can be easily implemented in a hybrid MoM/GTD code without
having to model the basis functions in terms of Hertzian dipoles.
It further enables the source to be very close to the cylinder pro-
vided that the source to reflection point to field point distance is
not too short. We have seen that both the source and field point
may be within 0.1 of the reflection surface, in this case pro-
vided that the axial separation is of the same order.
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