2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Single-Feed Circularly Polarized Microstrip Ring Antenna and Arrays

Raul R. Ramirez, Student Member, IEEE Franco De Flaviis and Nicolaos G. Alexopoulos Fellow, IEEE

Page 1040.

Abstract:

An analysis is presented for a microstrip-feed proximity-coupled ring antenna and a four-element array. Interactions between the embedded microstrip feed and the radiating element(s) are rigorously included. Results demonstrate that circular polarization of both senses can be achieved with a ring antenna with proper design of two inner stubs located at angles of ±45° with respect to the feedline. Theory and experiment demonstrate an axial ratio 3-dB bandwidth of 1% and the voltage standing wave ratio (VSWR) < 2 bandwidth of 6.1%. The axial ratio bandwidth is typical for a microstrip antenna with perturbations, while the VSWR bandwidth is larger than for the circular or rectangular patch with perturbations. A mutual coupling study between two elements shows that the axial ratio is less than 2 dB for interelement spacing greater than 0.55eff, while the VSWR < 2 for all spacings considered. A comparison between theory and experiment is provided for a 2 × 2 element array. The benefits of sequentially rotating the antenna elements in an array environment are presented. The axial ratio and VSWR bandwidths are both increased to 6.1% and 18% for a four-element array. A single-element antenna with two orthogonal feeds to provide both senses of polarization is demonstrated. The ring antenna is small ( D/0 = 0.325), the substrate thickness is thin (H/0 0.035), and the microstrip feed produces a completely planar antenna system, which is compatible with microwave and millimeter integrated circuits (MICs), and monolithic microwave integrated circuits (MMICs).

References

  1. M.-J. Tsai, F. De Flaviis, O. Fordham and N. G. Alexopoulos, "Modeling planar arbitrarily shaped microstrip elements in multilayered MIC/MMIC media", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  330-337, Mar.  1997 .
  2. M.-J. Tsai and N. G. Alexopoulos, "Via hole and parasitically coupled microstrip antennas of arbitrary shape in multi-layered substrates", Electromagn. , vol. 16, no. 3, pp.  229-252, May/June  1996.
  3. M.-J. Tsai, C. Chen and N. G. Alexopoulos, "Sommerfeld integrals in modeling interconnects and microstrip elements in layered media", Electromagn. Special Issue-Centennial Sommerfeld's Diffraction Problem, vol. 18, no. 3, pp.  267-288, May/June  1998.
  4. M. Haneishi, S. Yoshida and N. Goto, "A broadband microstrip array composed of a single feed type circularly polarized microstrip antenna", in IEEE Antennas Propogat. Int. Symp. Dig., Albuquerque, NM, May 1982, pp.  160-163. 
  5. R. M. Sorbello and A. I. Zaghloul, "Wideband, high-efficiency, circularly polarized slot elements", IEEE Antennas Propogat. Int. Symp. Dig., vol. 3, pp.  1473-1475, June  1989 .
  6. J. Huang, "A technique for an array to generate circular polarization with linearly polarized elements", IEEE Trans. Antennas Propagat., vol. AP-34, pp.  1113-1124, Sept.  1986.
  7. P. S. Hall, J. S. Dahele and J. R. James, "Design principles of sequentially fed, wide bandwidth, circularly polarised microstrip antenna", Proc. Inst. Elect. Eng., vol. 136, pp.  381-389, Oct.  1989.
  8. U. R. Kraft, "An experimental study on 2 × 2 sequential-rotation arrays with circularly polarized microstrip radiators", IEEE Trans. Antennas Propagat., vol. 45, pp.  1459-1466, Oct.  1997.
  9. P. S. Hall, C. Wood and C. Garrett, "Wide bandwidth microstrip antennas for circuit integration", Electron. Lett., vol. 15, no. 15, pp.  458-459, July  19, 1979.
  10. H. G. Oltman and D. A. Huebner, "Electromagnetically coupled microstrip dipoles", IEEE Trans. Antennas Propagat., vol. AP-29, pp.  151-157, Jan.  1981.
  11. P. B. Katehi and N. G. Alexopoulos, "On the modeling of electromagnetically coupled microstrip antennas -Theprinted strip dipole", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  1179-1186, Nov.  1984.
  12. D. R. Jackson and N. G. Alexopoulos, "Analysis of planar strip geometries in a substrate-superstrate configuration", IEEE Trans. Antennas Propagat., vol. AP-34, pp.  1430-1438, Dec.  1986.
  13. M.-J. Tsai and N. G. Alexopoulos, "Electromagnetically coupled microstrip ring-type antennas of arbitrary shape", IEEE AP-S Int. Symp., vol. 1, pp.  684-687, June  1995.