2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Fractal FSS:A Novel Dual-Band Frequency Selective Surface

Jordi Romeu, Member, IEEE and Yahya Rahmat-Samii Fellow, IEEE

Page 1097.

Abstract:

The multiband properties of self-similar fractals can be advantageously exploited to design multiband frequency selective surfaces (FSS). A Sierpinski dipole FSS has been analyzed and measured and the results show an interesting dual-band behavior. Furthermore a near-field measurement technique is applied to characterize the FSS response to different angles of incidence. Finally,it will be shown that it is possible to tune the FSS response by properly perturbating the geometry of the Sierpinski dipole.

References

  1. G. H. Schennum, "Frequency-selective surfaces for multiple frequency antennas", Microwave J., vol. 16, pp.  55-57, May  1973.
  2. Y. Rahmat-Samii and M. Gatti, "Far-field patterns of space-borne antennas from near-field measurements", IEEE Trans. Antennas Propagat., vol. AP-33, pp.  638-648, June  1985.
  3. Y. Rahmat-Samii and A. N. Tulintseff, "Diffraction analysis of frequency selective reflector antennas", IEEE Trans. Antennas Propagat., vol. 41, pp.  476-487, Apr.  1993.
  4. T. K. Wu, "Cassini frequency selective surface development", J. Electromagn. Waves Applicat., vol. 8, no. 12, pp.  1547-1561, Dec.  1994.
  5. R. A. Hill and B. A. Munk, "The effect of perturbating a frequency selective surface and its relation to the design of a dual-band surface", IEEE Trans. Antennas Propagat., vol. 44, pp.  368-374, Mar.  1996.
  6. E. A. Parker and J. C. Vardaxoglou, "Plane-wave illumination of concentric-ring frequency-selective surfaces", Proc. Inst. Elect. Eng.-Microwaves,Opt., Antennas), vol. 132, no. 3, pp.  176 -180, June  1985.
  7. T.-K. Wu and S.-W. Lee, "Multiband frequency surface with multiring patch elements", IEEE Trans. Antennas Propagat., vol. 42, no. 11, pp.  1484-1490, Nov.  1994.
  8. D. H. Werner, and R. Mittra, Eds., Frontiers in Electromagnetics, Piscataway, NJ: IEEE Press, 1999, ch. 1-3.
  9. E. A. Parker and A. N. A. El Sheikh, "Convoluted array elements and reduced size unit cells for frequency-selective surfaces", Proc. Inst. Elect. Eng.-Microwaves, Opt., Antennas), vol. 138, no. 1, pp.  19-22, Feb.  1991.
  10. C. Puente, J. Romeu, R. Pous, J. Ramis and A. Hijazo, "Small but long Koch fractal monopole", Inst. Elect. Eng. Electron. Lett., vol. 34, no. 1, pp.  9-10, Jan.  1998.
  11. C. Puente, "Fractal antennas", Ph.D. dissertation, Dept. Signal Theory Commun., Univ. Politecnica de Catalunya, Spain, June 1997.
  12. C. Puente, J. Romeu, R. Pous, X. Garcia and F. Benitez, "Fractal multiband antenna based on the Sierpinski gasket", Electron. Lett., vol. 32, no. 1, pp.  1-2, Jan.  1996.
  13. C. Puente, J. Romeu, R. Pous and A. Cardama, "On the behavior of the Sierpinski multiband antenna", IEEE Trans. Antennas Propagat., vol. 46, no.  4, pp.  517-524, Apr.  1998.
  14. J. Romeu and Y. Rahmat-Samii, "Dual band FSS with fractal elements", Electron. Lett., vol. 35, no. 9, pp.  702-703, Apr.  1999.
  15. H. O. Peitgen, H. Jurgens and D. Saupe, Chaos and Fractals,New Frontiers in Science, New York: Springer-Verlag, 1992.
  16. J. E. Hutchinson, "Fractals and self-similarity", Indiana Univ. Math. J., vol. 30, pp.  713-747, 1981.
  17. R. Mittra, C. H. Chan and T. Cwik, "Techniques for analysing frequency selective surfaces-A review", Proc. IEEE, vol. 76, pp.  1593-1615, Dec.  1988.
  18. J. P. Montgomery, "Scattering by an infinite periodic array of thin conductors on a dielectric sheet", IEEE Trans. Antennas Propagat., vol. AP-23, pp.  70-75, Jan.  1975 .
  19. A. S. Barlevy and Y. Rahmat-Samii, "An efficient method for wide band characterization of periodic structures using modified Z matrix interpolation", in 1997 IEEE Antennas Propagat. Soc. Int. Symp. Dig., Montreal, Quebec, Canada,July 1997, pp.  56-59. 
  20. A. S. Barlevy and Y. Rahmat-Samii, "Fundamental constrain on the electrical characteristics of frequency selective surfaces", Electromagn., vol. 17, no.  1, pp.  41-68, Jan./Feb.  1997.
  21. C. K. Lee and R. J. Langley, "Equivalent circuit models for frequency selective surfaces at oblique angles of incidence", Proc. Inst. Elect. Eng.-Microwaves,Opt., Antennas), vol. 132, pp.  395 -399, Oct.  1985.
  22. P. Callaghan, E. A. Parker and R. J. Langley, "Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces", Proc. Inst. Elect. Eng.-Microwaves,Opt., Antennas), vol. 138, no. 5, pp.  448-454, Oct.  1991.
  23. G. H. Brown and O. M. Woodward, "Experimentally determined radiation characteristics of conical and triangular antennas", RCA Rev., pp.  425-452, Dec.  1952.
  24. Y. Rahmat-Samii, L. I. Williams and R. G. Yaccarino, "The UCLA bi-polar planar near-field antenna measurement and diagnostics range", Antennas Propagat. Mag., vol. 37, no. 6, pp.  16-35, Dec.  1995.
  25. C. Puente, M. Navarro, J. Romeu and R. Pous, "Variations on the fractal Sierpinski antenna flare angle", in 1998 IEEE Antennas Propagat. Soc. Int. Symp. Dig., Atlanta, GA, June 1998, pp.  2340-2341. 
  26. C. Puente, J. Romeu, R. Bartolome and R. Pous, "Perturbation of the Sierpinski antenna to allocate operating bands", Inst. Elect. Eng. Electron. Lett., vol. 32, no. 24, pp.  2186-2187, Nov.  1996.