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Abstract—Typical applications of the method of moments (including a particular arbitrary polarization), while its intensity
(MoM) to rough surface three-dimensional (3-D) electromagnetic pecomes negligibly small upon approaching the artificially
scattering require a truncation of the surface considered and call introduced edges of the rough surface. Thus, unwanted edge

for a tapered incident wave. It is shown how such a wave can be ffects due to th . incident ided and th
constructed as a superposition of plane waves, avoiding problemse €cts due 1o the primary Inciaent wave are avolded an e

near both normal and grazing incidence and providing clean Proper normalization of computed scattering coefficients al-
footprints and clear polarization at all angles of incidence. The lows a meaningful comparison with the ideal plane wave case;
proposed special choice of polarization vectors removes an irreg- near-field quantities such as current distributions induced near
ularity at the origin of the wavenumber space and leads to a least the center of the tapered wave are also expected to be similar.

squared error property of the wave. Issues in the application to .
3-D scattering from an object over a rough surface are discussed. Furthermore, the tapered wave should be constructed in such

Approximate 3-D scalar and vector tapered waves which can be @ way that it satisfies the Maxwell equations without any ap-
evaluated without resorting to any numerical integrations are de- proximation. This helps to increase the confidence in the results

rived and important limitations to the accuracy and applicability  obtained from the in general rather complex MoM simulation

of these approximations are pointed out. codes. It should also be possible to substitute it for a plane wave
Index Terms—Method of moments, rough surface scattering, ta- of arbitrary polar and azimuthal angles of incidence without loss
pered wave. of polarization and degradation of tapering.

The above requirements led us to revise and modify the ta-
pered wave found in the open literature, which is based on a

) . superposition of plane waves.
ECENT years have seen major advances in the de-

velopment of fast method of moments (MoM) solvers Il. SUPERPOSITION OFPLANE WAVES
for three-dimensional (3-D) scattering of electromagnetic ) ) ) ) )
vector waves from rough surfaces [1]-[8]. Efforts are now Consider a homogeneous, isotropic medium with real
also being directed toward inclusion of objects situated in tf¢avenumberk and wave impedancg. Then the following
neighborhood of the rough surface [9]-[12]. Since the probleRfPerposition of a 2-D spectrum of plane waves is an exact
of scattering from an object next to a rough surface is compgRlution to the Maxwell equations and represents a wave
tationally complex, two-dimensional (2-D) investigations ar#1¢ident upon the:—y plane fromz > 0:
also of importance [13]-[20]. The 3-D case with or without — eo
objects is aimed at by the present paper. By(r) = /

— o0

The methods employed usually require a truncation of the /

|I. INTRODUCTION

BTy ()2 (k) ()

rough surface because of limited computing resources, which H,(7) = dEpei(’“P'ﬁ_’“:Z)z/) () h(k,) )

leads to erroneous results due to artificial edge diffraction -0 n

when ideal plane waves are used to excite the system. TNdeere

tapered wave concept is based on providing an illumination for

the numerical simulation that resembles the plane wave case

to be modeled closely at the center of the scattering scenario kp =2ky + gky 4
and
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wheref; and¢; are the polar and azimuthal angles of incidenc
of the central plane wave andgars pro tote—of the tapered '
wave. In an application, the central plane wave would coincic 6
with the plane wave, which was replaced by the tapered we ;
in the numerical simulation. Details about the functional depe 4]
dence ofiy are given in Section III.

The polarization vectors and# are of the general form

Tn
— — ~ — — — ~ L
e (kp) =en (kp) h(k,) +ev (kp) 0 (Ky) ® =° o
and 2 i
h (k/’) =Cy (k/’) h (k/’) —Ch (k/’) o (k/’) . ) '
-4
The notations
Tsing; —gcosg;, k, =0 -6
hk)=< L, o , (10)
(k) k—p(xky — ka), kp >0 6 -4 2 0 2 4 6
and /A
% cos ¢; + sin ¢y, k,=0
(k) = k. . ~ Lk 11 Fig.1. Example of a prescribed Gaussian-shaped footprint to be approximated
(k) Kk, (ks +Gky) + Zf’ kp >0 (D by the vector tapered wayg = 21).

are found in similar form in [21] and [2_2]. The chosen defini- A Gaussian-shaped footprint (Fig. 1) whose amplituge-at
tions fork, = 0 take care of the special case of a normallé is down tol /e times the level at the center is implemented by
incident pure plane wave:, > & corresponds to evanescen hoosing

waves (Section Ill) and the horizontal part#@fk,) is imagi-

nary in this case. It is important to note the discontinuity:of o (E,) = 9_26_g2|%p_%7-p|2/4 (13)
and? atk, = 0; bothunit vectors change sign when crossing r 4 '

the origin along a straight line in th’@p plane. . . I\ _ T _T.
The general superposition integrals (1) and (2) were statg'édf> uz ?ria(q??,)wﬁvsi;Su%esgrgbo?gt%ﬁﬁ)t tﬁa’f(sg i v]\€/7é/7ll),k(r::)wn
similarly in [7] and [23]; however, only normal incidence is conz - : '

. . . from signal theory, among all footprints of given finite energy
sidered inwhatfollows there. H’L. af‘d@" in (8) and (9) are setto %pd width, the Gaussian leads to the smallest bandwidth (for the
constants then (1) and (2) specializes to the tapered wave usedin o iate definition of space- and frequency-domain widths)
[11, 121, [4], [9], and [8], with a particular spectrum briefly dis- bprop P q Y '

. i . . which is desirable for synthesis.
cussed in Section Ill. Problems with this tapered wave encoun- . .

T . . Spectral components witf), > k are the amplitudes of plane
tered near the grazing incidence (for discussion and referen\(l:v%sves that travel along t lane and are evanescent for
see Section 1) and near the normal incidence (Section IV) mo- 9 v P

tivated our formulation of a different kind of tapered wave, e ¢ > 0. Their inclusion makes it possible to synthesize a given

ecially with respect to the polarization vectors %botprint near or at grazing incidence.
P y P P ' The spectrum in [1], [2], [4], [8] , and [9] is given as a 2-D

Fourier integral that needs to be evaluated numerically. It cannot
be used near grazing incidence where the field distribution in
If the polarization vectog on the right-hand side of (1) is the z—y plane becomes highly oscillatory. Its continued use is

I1l. A MPLITUDE SPECTRUM

replaced by a scalar constant then the resulting integral rooted in its close relation to a scalar tapered wave employed
0o _ previously [26], [27]. The latter wave, on the other hand, goes

&) =¢ / dk & e Pk (F,) (12) backto apopularincident field introduced by Thorsos [28] who,
- for the 2-D case, derived it as an approximation to a summation

is the plane-wave representation of a scalar wave satisfyiofgplane waves, accurate for sufficieniynall angles of inci-

the scalar Helmholtz equation agidcan be identified with the dencef; (also employed in [15], [29], [30], and [31]-[33].) The
well-known angular spectrum in scalar diffraction theory [24])imitations of the 2-D scalar Thorsos wave at low grazing an-
[25]. Thus, by obtaining) via 2-D Fourier transformation and gles were analyzed and discussed in [34] and [35]. The bound
making sure that andh vary only moderately over the spatialin the resolvability criterion discussed by Ngo and Rino [36]
frequency range, wherg is not negligible, arbitrary footprints also becomes significant at low grazing angles. The recommen-
of the vector tapered wave can be approximated. [The matation for the 3-D vector case is to start over and simply use
tioned requirement leads to a problem with the tapering in [the spectrum given by (13), which has the additional benefit
[2], [4], [8], and [9] near normal incidence (Section 1V).] Theof being given in closed form. Taking advantage of the func-
information on the direction of incidence of the tapered wau®nal dependence of the Gaussian spectrum, an option in the
is included by shiftingyy in the k,—k, plane to be centered 2-D case is to use path deformation techniques to speed up the
about%i,,. The prescribed footprint itself is fixed with respectvaluation of the exact expression for the incident field [37].
to angle of incidence. In the 3-D case, we can at least bandlimit the integration to a
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disk aboutk, = k;, within which the spectrum exhibits a sig-
nificant magnitude (disk radius a few multiples 2fg). This

leads to an approximation of the original incident field whicl
satisfies Maxwell’'s equations exactly. The derivation of appro:
imate non-Maxwellian 3-D tapered waves, which can be eval

ated without integration is discussed in Section VI. 5
| |
IV. POLARIZATION < of =
o
In order to construct a wave that is both reliably tapere 21 e
and clearly polarized for all angles of incidence, we sugge |
choosing the polarization of the individual plane wave compt
nents as follows:
en (k) =ei-h(k,) (14) <
e, (k) =2 -0 () (15) i 4
with the polarization vector of the central plane wave
Hence, in dyadic notation
e (k) =ei- [ (Fo) b (Fo) +0 (k) o (F,)|  @an
and 4
h(kp) =2 [TA’ (Bp) b (ko) = (Rp) 0 (k/’):| - (18) 24
The dominant polarization state of the tapered wave is then « = g'
termined by the choice df;, andE, in (16) which describe the = o
(in general elliptical) polarization of the central plane wave. - g
Note that with this choice the integrands of (1), (2) are col
tinuous atk, = 0 [as follows from Section VI, we have, in 4
fact, analyticity throughout the.—k, plane excluding the circle
|k,| = k provided an analytic spectrum such as (13) is used; -6+

|k,| = k the integrands are still continuous] as opposed to | ;

tapered wave in [1], [2], [4], [8], and [9]. The latter wave is char 6 4 2 o 2 4 8
acterized by the choice,(k,) = Ej, ande,(k,) = E,, leading z/A

to rapidly varying polarization vectors and i neark, = 0.

For the near normal incidence case this will violate the basic ()

assumption of the footprint design technique described in Ségg. 2. Resulting footprints atr!orm_al incidence for t_hetapered_wave_ after_[l],
tion lll. When examined numerically it is found that the apﬂ [sﬂt'iga]lb f:)”d [9]. The approximation of the prescribed footprint (Fig. 1) is
proximation of a prescribed, e.g., Gaussian, footprint is poor; i

the result for normal incidence shows the largest intensity along

a ring in thez—y plane rather than at the center (Fig. 2). This The tapered wave with polarization vectors (17), (18) is op-
effect is also evident from the following consideration: For §malin a least squared error sense. Consider a vector field

spectrum that satisfieg(k,) = v/(—k,) it can be shown that,

for E, = 0, we haveE;(p, z) = —E;(—p, z) with the con- &i(F) = Ei/ dk & ®e 7k 2y (F ) (19)
sequence;(p = 0, z) = 0 for all = [Fig. 2(a)]. Similarly, for —0
Ey, = 0itis found thatz x E;(p, z) = —2 X Ei(—p, z) and  gptained by multiplying a scalar tapered wave with the constant

éin(ﬁ = 0, z) = 0[Fig. 2(b)]. Other problems are leakage ofyo|arization vector; as in (16). This field combines the de-
the intensity to larger radii than expected (Fig. 2) and the nonegiraple properties of well-defined polarization and controllable
istence of a clear polarization of the_wave. By using (17) aQQpering. (Note thalf; (5, z = 0)|/[e:| corresponds to the pre-
(18) these problems are removed (Fig. 3). [The 30101 ta-  scribed footprint as discussed in Section Il and illustrated in
pered wave field values for the results in Figs. 2, 3,6, and 7 wetgy 1 ) However, the field defined by (19) is not a valid electric
calculated using a summation of 128128 plane waves with a fig|d because in general - &; # 0. We can, therefore, ask for
2-D DFT sampling of the:, space. The spectrum after [1], [2],5 permissible wave of form (1) with the same spectrrhat

[4], [8], and [9] was calculated using a 2-D FFT algorithm. Thﬁpproximateéi as close as possible. Defining
horizontal periodicity of the fields in the space domain was in

all cases 30\, i.e., twice the surface length shown in the figures,
in order to avoid aliasing (Section V).]

se)= [ a|EG o -EG @)

— o0



BRAUNISCH et al. TAPERED WAVE WITH DOMINANT POLARIZATION STATE

< 4 =
| T~
= | o
~2.
-4 1
-6 Ho.
; 0
g 4 R 0 20044 B
/A
(@)
6
4.
2.
<, 2
~

6 -4 =2 0 2 4 6
x/A

(b)

1089

Hence, (17) yields the optimal; and the minimuns,,, is given
by

Sn(7) = 4 /_Z

It is emphasized that we refer (=) and S,,,(z) as “errors”
only in the familiar mathematical sense. The purpose of com-
paring with the non-Maxwellian field;(7) is to uniquely iden-
tify a functional dependence a@fk,,), which can be expected
to guarantee tapering and a dominant polarization state of the
total field (both as prescribed). In other words(7) which is
ideal with respect to tapering and polarization is projected into
the space of waves constructed as 2-D superpositions of plane
waves, lending its desirable properties to an exact solution of
Maxwell’s equations.

To illustrate the approximation behavior numerically we
computed the relative root mean squared (rms) error

Jeo /[

where€; is formed using the spectrum (13), for varying tapering
parametety and incidence anglé; (in Figs. 4 and 5 contour
levels decrease monotonically for fixégdand increasing and

are separated by steps of 2 dB). The results in Fig. 4 for the ta-
pered wave in [1], [2], [4], [8], and [9] exhibit the previously
mentioned problems near normal and grazing incidence. It is
noted that for intermediate ang&sand largeg the error can be
smaller than 1%-(20 dB) and that the approximation behavior
for horizontally polarized [Fig. 4(a)] and vertically polarized
[Fig. 4(b)] plane wave components is similar. For the tapered
wave composed according to (17) and (13) and for horizontal
polarization [Fig. 5(a)] the error is small everywhere and practi-
cally independent of;. For vertical polarization [Fig. 5(b)] the
error grows larger toward grazing but does not exceed moderate
levels. The fact that approximating a vertically polarized plane

_ . _ ~— |2
dk, &= (F,) | [ei - o (,)| - (24)

25(0)/
glei

| 2

(25)

Fig. 3. Resulting footprints at normal incidence for the tapered waydave near grazing incidence is harder can be understood intu-
introduced in the present paper and approximating the prescribed footpriniti¥ely by noting that the energy flow of the tapered wave has

Fig. 1.

we find from Parseval’s theorem for 2-D Fourier transforms

S(2) = dn? /_ dF, e (F) [ (%) —a]*. (21)
To minimize S for all z, note that
e () -=f
_ o o _ _ 2
= [e (&) =2 [0 ®) B (B,) +0 (F) o (B,)] |
vl b ()| (22)
where
B =0 (F) x B (Fy) = Gk gk, = 32). (23)

to “bend down” in order to form the exponentially space-lim-
ited footprint, a requirement in contradiction with maintaining
a vertical polarization state. However, Fig. 5(b) shows that the
optimal approximation finds a reasonable compromise. [For the
results shown in Figs. 4 and 5, the rms error was evaluated using
a Gauss-Legendre quadrature over a surface of7gize 7g,
choosing in both dimensions five times the number of sam-
pling points obtained when roundifig/ A to the nearestinteger.
128 x 128 plane waves were summed to space-domain fields
with horizontal periodicity ofrg. The tapering parametewas
changed in steps 0f/2 and the angle of incidendg in steps
of 5°.]

Another important property of the wave based on (17) is
found from (18) by noting that
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Fig. 4. Relative rms error [dB] at = 0 for the tapered wave after [1], [2], (b)

[4], [8], and [9] as compared to a non-Maxwellian field with prescribed taperingiy 5 Rejative rms error [dB] at = 0 for the tapered wave introduced in
and polarization. this paper.

and, thus, according to (2J; - H;(7) = 0. The total mag- manner we could derive a dual tapered wave which is obtained
netic field of the tapered wave is everywhere perpendicular ,5?, choosing the magnetic polarization vectbrsith respect to

the electric field of the central plane wave. a non-Maxwellian field//; and applying Ampere’s law to find
It is remarked that this is reminiscent of the tapered wayge glectric field.

(given for the case of normal incidence only) in [23], designed to
have noy component of the magnetic field. Setting= —¢ in
(17), (18) or, more conveniently, in (34) and (37) of Section VI
and comparing to (7) and (8) in [23] it is found that the waves The tapered wave introduced in this paper can be used for the
are different. In particular, the polarization vectors in [23] arsimulation of scattering from randomly rough surfaces with a
unbounded ak,| — k while being analytic throughout the planar mean surface. In a more complex scenario, objects are
k-k, plane excluding the circlg,| = k. embedded in a layered background with rough interfaces. If the
The tapered wave given previously by Tran and Maradudabjects are at least partially situated in the half space where the
[38] and for the case of vertical polarization employed in [3], [Sources of the incident wave reside it is important also to pay
and [6]—when generalized to arbitrary azimuthal angle of incattention to the distribution of the tapered wave fas 0.
dence and cast into our formalism—turns out to be somewhatrigs. 6 and 7 illustrate the cases of oblique and grazing inci-
related. Their magnetic polarization vector for horizontal poladence, respectively. Fig. 6(a) shows how the tapered wave forms
ization is collinear to (18) whe®’,, = 0. However, it is normal- a slightly converging beam, approximating the prescribed foot-
ized to unit length and the magnetic polarization vector for veprint atz = 0 [Fig. 6(b)]. The nonzero intensity in the top-right
tical polarization is then obtained by taking the vector producbrner of Fig. 6(a) is due to the periodic nature of the discretized
with I}(E,,). It is seen that this construction will not lead to amversions of (1) and (2) with respect f This aliasing effect,
optimal approximation of (19) and, thus, to a different wave. which in the present case would have no effect on the illumina-
Finally, we point out that our tapered wave has been derivédn of objects situated relatively close to the surface at 0,
by optimizing the electric field with respect to an ideal fielccan be reduced (as usual) by sampling finer with respek to
£;. The magnetic field of the tapered wave then followed froror footprints wherej(k,,) is not given in closed form as in
the familiar relation between the electric and magnetic field3), but is computed by 2-D fast Fourier transform (FFT) this
of a plane wave (Faraday’s law). It is clear that in a similas achieved by applying zero padding before carrying out the

V. ISSUES IN THEAPPLICATION TO 3-D SCATTERING
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Fig. 7. Beam formation of the tapered wave at grazing incidefice=(¢; =
Fig. 6. Beam formation of the tapered wave at oblique incideice=(40°, 9090 g = 2 A, horizontal polarizatipon). g g ence(o

¢; = 90°, g = 2 A, horizontal polarization).

transformation. The remarkable fact about Fig. 7 is that the iphysical dimensions. In the comparison, the same rough sur-
clusion and correct treatment of evanescent waves enables s$goe profile, the same patch model for the object, and the same
thesis of the prescribed footprint even fhr= 90° [Fig. 7(b)]. tapered incident wave were used for solving the problem with
Aliasing for z > 0 in this case is more severe [Fig. 7(a)]. the two independent codes; reasonable agreement was obtained.
In typical applications of the tapered wave concept, elebiscrepancies, however, occurred for near-grazing argles
tromagnetic wave scattering from a conducting object ovge° ...90° where the pure MoM results suffer from edge effects
a conducting rough surface is simulated and Glisson’s ovelde to the truncation of the rough surface. While the incident
lapping triangular flat vector basis functions [39]-[41] for thevave can be tapered to fall off exponentially toward the edges
electric surface current on both object and rough surface &he scattered fields from the object decay only as giving rise
used in discretizing the electric field integral equation, applyirg problems at very large polar angles where the object acts as a
a Galerkin-type method of moments. We compared the resukédlector that directs energy toward the edges. This indicates the
of such a scattering code with those obtained by the hybiittreased difficulty of the low grazing angle rough surface scat-
method described in [10]-[12]. The major advantage of thisring problem when an object is present. In the hybrid method,
hybrid method is that the decomposition into flat surface prokthe correct behavior of the monostatic horizontal (HH) return
lems with impressed equivalent sources that are determineddby; = 90° where in the flat surface case the boundary condi-
lower order solutions allows introduction of the tensor Greeion on the perfectly conducting surface forces a zero is guaran-
function for layered media. This removes the need to solve ftaed. It should be remarked that although the utilization of the
the surface currents on the rough surface and to truncate tigpered wave concept for the method in [10]-[12], which when
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implemented up to and including the first order yields accuratieat is similar to the one given in the 2-D case [34]-[36], in par-

results for slightly rough surfaces, is not imperative, it is stiticular, the dependence ¢n/2 — 6;)? near grazing carries over

useful there because only finite rough surface profiles can tme3-D: The radius of convergence of the full Taylor series (27)

processed. is limited to & — k;, because of the branch point of the square
root function. Thus

VI. APPROXIMATE 3-D TAPERED WAVES

o kg(l—sin6;) > 1 (31)
A clear advantage of the original 2-D scalar Thorsos wave and

a major reason for its popularity is the avoidance of numerical required for (28) to be an accurate representation of (12). In
integrations in the evaluation of the incident field. The price paighdition, the error of the truncated series (27) is multiplied by

is the non-Maxwellian nature of the approximation which, as rgyith the consequence that the largestconsidered should be
ported in [34], can lead to anomalies in the computed resultsgfa|| relative tog, i.e., g > %] mmae-

simulations that require evaluation of the incident field not only aApproximations for the 3-D vector wave case are derived in a

on the rough surface as, e.g., in object-surface interaction profinjjar fashion by additionally expanding the polarization vec-
lems. Also the breakdown of the approximation near grazing igyrs. Substituting

cidence causes serious problems in some applications. Keeping
these limitations in mind and analogous to the derivation of the 7 \ 7 Voo s o 12

) h(k,) =— |22k, — kyk, k 32
Thorsos wave, in the 3-D case with the spectrum (13) we can( o) I (k) k2 [Bky = (@9 + G )kaky +50k2] - (32)
argue, in a spirit similar to Laplace’s method for the asymptotic _ _ k2, oy
expansion of integrals [42], [43], that for largghe main con- ¥ k) o k,,) = 2Lz [3737/% + (@9 + 92)kaky + yy/fy]
tribution to the superposition of plane waves comes from around ’

u , ban o k. ks
k; = k;,. Using the truncated bivariate Taylor expansio#jn + k_;[(% + 28)ks + (92 + 20)k,] + 77k_g
(33)
— — 2
VE2 = |kip + k| into (17), we find
k; k; _
~kis — — ky — 2k, (% € [an S 55
T ke T ki ¢ (k) = IZN [ (K = &7) + 99 (K* = k) + 22k7
L 2 _ 2 2 _ 1.2 fn L an fn L an
3 Iﬂ/zac:f/zy ok — k 3/€Zy k2 - k 3/%7;,,3 ’%5 27) — (&G 4 G2 ko ky + (22 4 28)kok.
ki 2k, 2k, (@2 + 29k k] - (34)

wherek;. = kcos6;, we can obtain from (12) by carrying out
the integrations and symmetrizing the result with respeat to
andy (without any further approximations)

Equation (34) also follows from/ + 68 = T — kk with T the
identity tensor and as in (23). Similarly, with the dyads

= k.
. 7 b (k) b (B,) = —= [(88 — 00)kaky — 20K + 92K
E(F) ~ e, T exp {—#} o) ko) Plke) =g (@0 — Gidkoky = Bk + Gk,
W) P ) ]
- + E(%ﬂky — 2gk,) (35)
wherek; = k;, — zk;. and o B L
W )o(Fy) =5 (88 = Gi)haky + 298] — k2]
(12 k2 — k2, i 2 ¢
S\r) = iy 4 X 4
FER) ki + 7 (@2hy — G2k, (36)
2 kQ - kZQy kzy 2 .
+11- peia Lt we obtain from (18)
i b I ) ) — = €; U FUSER e
LA Rk (R N (g B ey B(RG) = =T L@ — gk + (82 - 280k — (52 - 20)k).
g% k2 ki ki (37)
and Itis observed from (34) and (37) that the tensors in (17) and (18)
_ 20 k2 2 1 30 are symmetric and anti-symmetric, respectively. More impor-
u(z) = TR T e ) (30) tantly here, it is evident from (34) and (37) that batft,,) and

h(k,), viewed as functions of the two real variablgsandk,,
In deriving (27)—(30), the dispersion relatif = k2 — k2, — &€ ar_1a|ytic through_out th/e,n—_ky plane_ excluding the_ one-di-
k2, has been used. As expected, (28) coincides with (12) exacfignsional set of points forming the cirdle,| = k. (Itis em-
whenz = 0. As g — oo the plane wave case is recovered. It ighasmed that the region of ar_1a|yt|C|ty includgs= 0, c.f. Sec-
remarked that (28) is not a direct generalization of the Thorsb@n IV.) Thus, the Taylor series
wave to 3-D because of the different formulation of the super- oo
position integral used as starting point. However, using the fol- e (Eip + Ep) _ Z o (38)
lowing argument we arrive at a condition for the validity of (28) m, =0
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where

Amn =

B A (,) (39)
mtn! [okpoky “ V]

converges in the disk,| < k — k;,, and similar expressions
hold for h(k,). Applying the approximation (27) to (1) with

the spectrum (13), inserting (38), and using twice the Fourier

integral identity (c.f. 3.958.2 in [44])

'S}
/ dl,xneiqacfaacz

N
a dq™

™ 1 i " efq2/4a [nz/? (_a)m, n—2m
=4/—nl|l— —_—
a 2a = (n—2m)!m! 1
(40)

where[n/2] is the integral part of/2, leads, again, without
further approximation, to an expression of the form

1093

where
20 k* — k2,
2
2 _u (2)
U’Q(z) - u%(z) (44)
2) = 2 —z]. 45
w(y, z) QQU%(Z) k?,z z <y+ i 7) (45)

When choosing the number of terms to be included in (41), one
should be aware of the limited radius of convergence of (38)
and the underlying approximation (27), which, however, has no
effect forz = 0. Thea,,,, with m +n < 3 are given by

apo =¢; (46)
Tio = # 288 — 28)kinks. — (80 + 02)kiyki

_ - 1 7 i Gor = 5 - [—2(99 — 28)kiyki. — (20 + §2)kinkis
B~ et T e -0 S ) Bokss y
U,(Z) g u (Z) m, n=0 - (Aé + éﬁj)k”‘kw + (gé + 2@)
(41) (K = k3] (48)
Ci ISP as L an
where = g[8+ 90K — (82 + 28y (K7, + K)
s(7) andu(z) are as in (29) and (30); ~ s e (12 L 2
the @, are obtained from (34); B —(@2 + 20)ki (i, + K7.)] (49)
Prmn(T) is polynomialinz, y, z up toz-dependentcor-  ,, = % 2082 - 22)kE. — (82422 ki (K7, +3K2)
rection factors that, similar to (30), are unity 2k2k3,
forz = 0org — oo. — (98 + 20)kiy (K> = K,)] (50)
It is noted that, different from the scalar case discussed above, e; 13 gmn 5 o
(41) for = = 0 is only an approximation of the superposition 02 = 2k21k3. [—2(09—22)k;. — (22422 kiw (K — I3,)
of plane waves that we started out with because of the finite ra- (95 + 5§ /fiy(/ffy +3k2)] . (51)

dius of convergence of (38) and the fact that the spectrum (13) is
not bandlimited. The conditions gnfor (41) to be a reasonable

approximation are as stated above for the scalar case. We haVef!lowing a similar procedure, approximations for the mag-

proximation following from (41) is the same as what is obtaingd/ed-

by approximating. in (19) with the help of (27) or multiplying
(28) bye; /e;. Thep,,, of higher order vanish ag — cc. The
algebraic details for thg,,, of any order (integrating ovek,
first) are as follows:

2 "\ gt
g2u3(z2) 4k k!

P (T) =n! [
k=0
n—2k

g 2:: =2k \Y Tk

[ Kizkiy iroogp mW
K ) 9 dd(z)

[(m-+3)/2]
- [—g*u3 ()]
45(m + j — 20)10!

£=0

T

kiz

(42)

m+j—24
ol 2)

x[x—k

VII. CONCLUSION

We considered the problem of constructing a 3-D tapered
wave as a superposition of plane waves, taking into account
both propagating and evanescent waves. The use of the simple
Gaussian plane wave spectrum was recommended in order to
avoid problems near the grazing incidence. The introduced spe-
cial choice for the polarization vectors removed the problems
of losing a dominant polarization state and degradation of ta-
pering near the normal incidence. Mathematically speaking, the
proposed polarization vectors are analytic at the origin of the
2-D wavenumber space. Moreover, the choice of polarization
vectors was shown to lead to an exact solution of the Maxwell
equations which is an optimal approximation of an ideal but
non-Maxwellian tapered field that is constructed by multiplying
a scalar tapered wave with a constant polarization vector. The
result is a reliably tapered wave with a dominant polarization
state that can be used uniformly for all angles of incidence. We
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discussed the application of the proposed tapered wave in Sifi4] G. Zhang, L. Tsang, and Y. Kuga, “Studies of the angular correlation
ulating 3-D electromagnetic scattering from a conducting ob-
ject over a conducting rough surface. Newly encountered prob-
lems near the grazing incidence were attributed to secondafys)
edge effects that are unrelated to the tapered incident wave, but
indicate the difficulty of the low grazing angle rough surface

scattering problem when objects are present. It was pointed oyt
that methods which avoid such edge effects could also benefit

6]

from the utilization of the tapered wave. In some situations it
might be desirable to have an approximate 3-D tapered wave at
one’s disposal, which does not require a 2-D numerical integre{-”]
tion (summation of plane waves), trading accuracy in satisfying
Maxwell's equations for computational speed. We presented thgsg)
derivation of approximations for both the 3-D scalar and vector

case. The expansion of the polarization vectors is based on thiir
regularity. The local character of the technique employed force

the breakdown of the approximations at grazing incidence.
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