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Abstract—Typical applications of the method of moments
(MoM) to rough surface three-dimensional (3-D) electromagnetic
scattering require a truncation of the surface considered and call
for a tapered incident wave. It is shown how such a wave can be
constructed as a superposition of plane waves, avoiding problems
near both normal and grazing incidence and providing clean
footprints and clear polarization at all angles of incidence. The
proposed special choice of polarization vectors removes an irreg-
ularity at the origin of the wavenumber space and leads to a least
squared error property of the wave. Issues in the application to
3-D scattering from an object over a rough surface are discussed.
Approximate 3-D scalar and vector tapered waves which can be
evaluated without resorting to any numerical integrations are de-
rived and important limitations to the accuracy and applicability
of these approximations are pointed out.

Index Terms—Method of moments, rough surface scattering, ta-
pered wave.

I. INTRODUCTION

RECENT years have seen major advances in the de-
velopment of fast method of moments (MoM) solvers

for three-dimensional (3-D) scattering of electromagnetic
vector waves from rough surfaces [1]–[8]. Efforts are now
also being directed toward inclusion of objects situated in the
neighborhood of the rough surface [9]–[12]. Since the problem
of scattering from an object next to a rough surface is compu-
tationally complex, two-dimensional (2-D) investigations are
also of importance [13]–[20]. The 3-D case with or without
objects is aimed at by the present paper.

The methods employed usually require a truncation of the
rough surface because of limited computing resources, which
leads to erroneous results due to artificial edge diffraction
when ideal plane waves are used to excite the system. The
tapered wave concept is based on providing an illumination for
the numerical simulation that resembles the plane wave case
to be modeled closely at the center of the scattering scenario
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(including a particular arbitrary polarization), while its intensity
becomes negligibly small upon approaching the artificially
introduced edges of the rough surface. Thus, unwanted edge
effects due to the primary incident wave are avoided and the
proper normalization of computed scattering coefficients al-
lows a meaningful comparison with the ideal plane wave case;
near-field quantities such as current distributions induced near
the center of the tapered wave are also expected to be similar.

Furthermore, the tapered wave should be constructed in such
a way that it satisfies the Maxwell equations without any ap-
proximation. This helps to increase the confidence in the results
obtained from the in general rather complex MoM simulation
codes. It should also be possible to substitute it for a plane wave
of arbitrary polar and azimuthal angles of incidence without loss
of polarization and degradation of tapering.

The above requirements led us to revise and modify the ta-
pered wave found in the open literature, which is based on a
superposition of plane waves.

II. SUPERPOSITION OFPLANE WAVES

Consider a homogeneous, isotropic medium with real
wavenumber and wave impedance. Then the following
superposition of a 2-D spectrum of plane waves is an exact
solution to the Maxwell equations and represents a wave
incident upon the – plane from :

e (1)

e (2)

where

(3)

(4)

and

(5)

The spectrum carries the information on the shape of the foot-
print (defined as the distribution of the magnitude in the–
plane) of the incident field and also on the direction of inci-
dence. It is assumed to be centered about

(6)

(7)

0018–926X/00$10.00 © 2000 IEEE



BRAUNISCH et al.: TAPERED WAVE WITH DOMINANT POLARIZATION STATE 1087

where and are the polar and azimuthal angles of incidence
of the central plane wave and—pars pro toto—of the tapered
wave. In an application, the central plane wave would coincide
with the plane wave, which was replaced by the tapered wave
in the numerical simulation. Details about the functional depen-
dence of are given in Section III.

The polarization vectors and are of the general form

(8)

and

(9)

The notations

(10)

and

(11)

are found in similar form in [21] and [22]. The chosen defini-
tions for take care of the special case of a normally
incident pure plane wave. corresponds to evanescent
waves (Section III) and the horizontal part of is imagi-
nary in this case. It is important to note the discontinuity of
and at ; bothunit vectors change sign when crossing
the origin along a straight line in the plane.

The general superposition integrals (1) and (2) were stated
similarly in [7] and [23]; however, only normal incidence is con-
sidered in what follows there. If and in (8) and (9) are set to
constants then (1) and (2) specializes to the tapered wave used in
[1], [2], [4], [9], and [8], with a particular spectrumbriefly dis-
cussed in Section III. Problems with this tapered wave encoun-
tered near the grazing incidence (for discussion and references
see Section III) and near the normal incidence (Section IV) mo-
tivated our formulation of a different kind of tapered wave, es-
pecially with respect to the polarization vectors.

III. A MPLITUDE SPECTRUM

If the polarization vector on the right-hand side of (1) is
replaced by a scalar constant then the resulting integral

e (12)

is the plane-wave representation of a scalar wave satisfying
the scalar Helmholtz equation andcan be identified with the
well-known angular spectrum in scalar diffraction theory [24],
[25]. Thus, by obtaining via 2-D Fourier transformation and
making sure that and vary only moderately over the spatial
frequency range, where is not negligible, arbitrary footprints
of the vector tapered wave can be approximated. [The men-
tioned requirement leads to a problem with the tapering in [1],
[2], [4], [8], and [9] near normal incidence (Section IV).] The
information on the direction of incidence of the tapered wave
is included by shifting in the – plane to be centered
about . The prescribed footprint itself is fixed with respect
to angle of incidence.

Fig. 1. Example of a prescribed Gaussian-shaped footprint to be approximated
by the vector tapered wave(g = 2�).

A Gaussian-shaped footprint (Fig. 1) whose amplitude at
is down to times the level at the center is implemented by

choosing

(13)

A pure plane wave is described by , or
in (13). It should be pointed out that, as is well known

from signal theory, among all footprints of given finite energy
and width, the Gaussian leads to the smallest bandwidth (for the
appropriate definition of space- and frequency-domain widths),
which is desirable for synthesis.

Spectral components with are the amplitudes of plane
waves that travel along the– plane and are evanescent for

. Their inclusion makes it possible to synthesize a given
footprint near or at grazing incidence.

The spectrum in [1], [2], [4], [8] , and [9] is given as a 2-D
Fourier integral that needs to be evaluated numerically. It cannot
be used near grazing incidence where the field distribution in
the – plane becomes highly oscillatory. Its continued use is
rooted in its close relation to a scalar tapered wave employed
previously [26], [27]. The latter wave, on the other hand, goes
back to a popular incident field introduced by Thorsos [28] who,
for the 2-D case, derived it as an approximation to a summation
of plane waves, accurate for sufficientlysmall angles of inci-
dence (also employed in [15], [29], [30], and [31]–[33].) The
limitations of the 2-D scalar Thorsos wave at low grazing an-
gles were analyzed and discussed in [34] and [35]. The bound
in the resolvability criterion discussed by Ngo and Rino [36]
also becomes significant at low grazing angles. The recommen-
dation for the 3-D vector case is to start over and simply use
the spectrum given by (13), which has the additional benefit
of being given in closed form. Taking advantage of the func-
tional dependence of the Gaussian spectrum, an option in the
2-D case is to use path deformation techniques to speed up the
evaluation of the exact expression for the incident field [37].
In the 3-D case, we can at least bandlimit the integration to a
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disk about within which the spectrum exhibits a sig-
nificant magnitude (disk radius a few multiples of ). This
leads to an approximation of the original incident field which
satisfies Maxwell’s equations exactly. The derivation of approx-
imate non-Maxwellian 3-D tapered waves, which can be evalu-
ated without integration is discussed in Section VI.

IV. POLARIZATION

In order to construct a wave that is both reliably tapered
and clearly polarized for all angles of incidence, we suggest
choosing the polarization of the individual plane wave compo-
nents as follows:

(14)

(15)

with the polarization vector of the central plane wave

(16)

Hence, in dyadic notation

(17)

and

(18)

The dominant polarization state of the tapered wave is then de-
termined by the choice of and in (16) which describe the
(in general elliptical) polarization of the central plane wave.

Note that with this choice the integrands of (1), (2) are con-
tinuous at [as follows from Section VI, we have, in
fact, analyticity throughout the – plane excluding the circle

provided an analytic spectrum such as (13) is used; at
the integrands are still continuous] as opposed to the

tapered wave in [1], [2], [4], [8], and [9]. The latter wave is char-
acterized by the choice and , leading
to rapidly varying polarization vectors and near .
For the near normal incidence case this will violate the basic
assumption of the footprint design technique described in Sec-
tion III. When examined numerically it is found that the ap-
proximation of a prescribed, e.g., Gaussian, footprint is poor;
the result for normal incidence shows the largest intensity along
a ring in the – plane rather than at the center (Fig. 2). This
effect is also evident from the following consideration: For a
spectrum that satisfies it can be shown that,
for , we have with the con-
sequence for all [Fig. 2(a)]. Similarly, for

it is found that and
[Fig. 2(b)]. Other problems are leakage of

the intensity to larger radii than expected (Fig. 2) and the nonex-
istence of a clear polarization of the wave. By using (17) and
(18) these problems are removed (Fig. 3). [The 101101 ta-
pered wave field values for the results in Figs. 2, 3, 6, and 7 were
calculated using a summation of 128128 plane waves with a
2-D DFT sampling of the space. The spectrum after [1], [2],
[4], [8], and [9] was calculated using a 2-D FFT algorithm. The
horizontal periodicity of the fields in the space domain was in
all cases 30 , i.e., twice the surface length shown in the figures,
in order to avoid aliasing (Section V).]

(a)

(b)

Fig. 2. Resulting footprints at normal incidence for the tapered wave after [1],
[2], [4], [8], and [9]. The approximation of the prescribed footprint (Fig. 1) is
not satisfactory.

The tapered wave with polarization vectors (17), (18) is op-
timal in a least squared error sense. Consider a vector field

e (19)

obtained by multiplying a scalar tapered wave with the constant
polarization vector as in (16). This field combines the de-
sirable properties of well-defined polarization and controllable
tapering. (Note that corresponds to the pre-
scribed footprint as discussed in Section III and illustrated in
Fig. 1.) However, the field defined by (19) is not a valid electric
field because in general . We can, therefore, ask for
a permissible wave of form (1) with the same spectrumthat
approximates as close as possible. Defining

(20)
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(a)

(b)

Fig. 3. Resulting footprints at normal incidence for the tapered wave
introduced in the present paper and approximating the prescribed footprint of
Fig. 1.

we find from Parseval’s theorem for 2-D Fourier transforms

e (21)

To minimize for all , note that

(22)

where

(23)

Hence, (17) yields the optimal and the minimum is given
by

e (24)

It is emphasized that we refer to and as “errors”
only in the familiar mathematical sense. The purpose of com-
paring with the non-Maxwellian field is to uniquely iden-
tify a functional dependence of , which can be expected
to guarantee tapering and a dominant polarization state of the
total field (both as prescribed). In other words, which is
ideal with respect to tapering and polarization is projected into
the space of waves constructed as 2-D superpositions of plane
waves, lending its desirable properties to an exact solution of
Maxwell’s equations.

To illustrate the approximation behavior numerically we
computed the relative root mean squared (rms) error

(25)

where is formed using the spectrum (13), for varying tapering
parameter and incidence angle (in Figs. 4 and 5 contour
levels decrease monotonically for fixedand increasing and
are separated by steps of 2 dB). The results in Fig. 4 for the ta-
pered wave in [1], [2], [4], [8], and [9] exhibit the previously
mentioned problems near normal and grazing incidence. It is
noted that for intermediate anglesand larger the error can be
smaller than 1% ( 20 dB) and that the approximation behavior
for horizontally polarized [Fig. 4(a)] and vertically polarized
[Fig. 4(b)] plane wave components is similar. For the tapered
wave composed according to (17) and (13) and for horizontal
polarization [Fig. 5(a)] the error is small everywhere and practi-
cally independent of . For vertical polarization [Fig. 5(b)] the
error grows larger toward grazing but does not exceed moderate
levels. The fact that approximating a vertically polarized plane
wave near grazing incidence is harder can be understood intu-
itively by noting that the energy flow of the tapered wave has
to “bend down” in order to form the exponentially space-lim-
ited footprint, a requirement in contradiction with maintaining
a vertical polarization state. However, Fig. 5(b) shows that the
optimal approximation finds a reasonable compromise. [For the
results shown in Figs. 4 and 5, the rms error was evaluated using
a Gauss–Legendre quadrature over a surface of size ,
choosing in both dimensions five times the number of sam-
pling points obtained when rounding to the nearest integer.
128 128 plane waves were summed to space-domain fields
with horizontal periodicity of . The tapering parameterwas
changed in steps of and the angle of incidence in steps
of 5 .]

Another important property of the wave based on (17) is
found from (18) by noting that

(26)
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(a)

(b)

Fig. 4. Relative rms error [dB] atz = 0 for the tapered wave after [1], [2],
[4], [8], and [9] as compared to a non-Maxwellian field with prescribed tapering
and polarization.

and, thus, according to (2), . The total mag-
netic field of the tapered wave is everywhere perpendicular to
the electric field of the central plane wave.

It is remarked that this is reminiscent of the tapered wave
(given for the case of normal incidence only) in [23], designed to
have no component of the magnetic field. Setting in
(17), (18) or, more conveniently, in (34) and (37) of Section VI
and comparing to (7) and (8) in [23] it is found that the waves
are different. In particular, the polarization vectors in [23] are
unbounded as while being analytic throughout the

- plane excluding the circle .
The tapered wave given previously by Tran and Maradudin

[38] and for the case of vertical polarization employed in [3], [5],
and [6]—when generalized to arbitrary azimuthal angle of inci-
dence and cast into our formalism—turns out to be somewhat
related. Their magnetic polarization vector for horizontal polar-
ization is collinear to (18) when . However, it is normal-
ized to unit length and the magnetic polarization vector for ver-
tical polarization is then obtained by taking the vector product
with . It is seen that this construction will not lead to an
optimal approximation of (19) and, thus, to a different wave.

Finally, we point out that our tapered wave has been derived
by optimizing the electric field with respect to an ideal field

. The magnetic field of the tapered wave then followed from
the familiar relation between the electric and magnetic field
of a plane wave (Faraday’s law). It is clear that in a similar

(a)

(b)

Fig. 5. Relative rms error [dB] atz = 0 for the tapered wave introduced in
this paper.

manner we could derive a dual tapered wave which is obtained
by choosing the magnetic polarization vectorswith respect to
a non-Maxwellian field and applying Ampere’s law to find
the electric field.

V. ISSUES IN THEAPPLICATION TO3-D SCATTERING

The tapered wave introduced in this paper can be used for the
simulation of scattering from randomly rough surfaces with a
planar mean surface. In a more complex scenario, objects are
embedded in a layered background with rough interfaces. If the
objects are at least partially situated in the half space where the
sources of the incident wave reside it is important also to pay
attention to the distribution of the tapered wave for .

Figs. 6 and 7 illustrate the cases of oblique and grazing inci-
dence, respectively. Fig. 6(a) shows how the tapered wave forms
a slightly converging beam, approximating the prescribed foot-
print at [Fig. 6(b)]. The nonzero intensity in the top-right
corner of Fig. 6(a) is due to the periodic nature of the discretized
versions of (1) and (2) with respect to. This aliasing effect,
which in the present case would have no effect on the illumina-
tion of objects situated relatively close to the surface at ,
can be reduced (as usual) by sampling finer with respect to.
For footprints where is not given in closed form as in
(13), but is computed by 2-D fast Fourier transform (FFT) this
is achieved by applying zero padding before carrying out the
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(a)

(b)

Fig. 6. Beam formation of the tapered wave at oblique incidence (� = 40 ,
� = 90 , g = 2 �, horizontal polarization).

transformation. The remarkable fact about Fig. 7 is that the in-
clusion and correct treatment of evanescent waves enables syn-
thesis of the prescribed footprint even for [Fig. 7(b)].
Aliasing for in this case is more severe [Fig. 7(a)].

In typical applications of the tapered wave concept, elec-
tromagnetic wave scattering from a conducting object over
a conducting rough surface is simulated and Glisson’s over-
lapping triangular flat vector basis functions [39]–[41] for the
electric surface current on both object and rough surface are
used in discretizing the electric field integral equation, applying
a Galerkin-type method of moments. We compared the results
of such a scattering code with those obtained by the hybrid
method described in [10]–[12]. The major advantage of this
hybrid method is that the decomposition into flat surface prob-
lems with impressed equivalent sources that are determined by
lower order solutions allows introduction of the tensor Green
function for layered media. This removes the need to solve for
the surface currents on the rough surface and to truncate its

(a)

(b)

Fig. 7. Beam formation of the tapered wave at grazing incidence (� = � =

90 , g = 2 �, horizontal polarization).

physical dimensions. In the comparison, the same rough sur-
face profile, the same patch model for the object, and the same
tapered incident wave were used for solving the problem with
the two independent codes; reasonable agreement was obtained.
Discrepancies, however, occurred for near-grazing angles

where the pure MoM results suffer from edge effects
due to the truncation of the rough surface. While the incident
wave can be tapered to fall off exponentially toward the edges
the scattered fields from the object decay only as, giving rise
to problems at very large polar angles where the object acts as a
reflector that directs energy toward the edges. This indicates the
increased difficulty of the low grazing angle rough surface scat-
tering problem when an object is present. In the hybrid method,
the correct behavior of the monostatic horizontal (HH) return
at where in the flat surface case the boundary condi-
tion on the perfectly conducting surface forces a zero is guaran-
teed. It should be remarked that although the utilization of the
tapered wave concept for the method in [10]–[12], which when
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implemented up to and including the first order yields accurate
results for slightly rough surfaces, is not imperative, it is still
useful there because only finite rough surface profiles can be
processed.

VI. A PPROXIMATE 3-D TAPEREDWAVES

A clear advantage of the original 2-D scalar Thorsos wave and
a major reason for its popularity is the avoidance of numerical
integrations in the evaluation of the incident field. The price paid
is the non-Maxwellian nature of the approximation which, as re-
ported in [34], can lead to anomalies in the computed results of
simulations that require evaluation of the incident field not only
on the rough surface as, e.g., in object-surface interaction prob-
lems. Also the breakdown of the approximation near grazing in-
cidence causes serious problems in some applications. Keeping
these limitations in mind and analogous to the derivation of the
Thorsos wave, in the 3-D case with the spectrum (13) we can
argue, in a spirit similar to Laplace’s method for the asymptotic
expansion of integrals [42], [43], that for largethe main con-
tribution to the superposition of plane waves comes from around

. Using the truncated bivariate Taylor expansion in,

(27)

where , we can obtain from (12) by carrying out
the integrations and symmetrizing the result with respect to
and (without any further approximations)

e (28)

where and

(29)

and

(30)

In deriving (27)–(30), the dispersion relation
has been used. As expected, (28) coincides with (12) exactly

when . As the plane wave case is recovered. It is
remarked that (28) is not a direct generalization of the Thorsos
wave to 3-D because of the different formulation of the super-
position integral used as starting point. However, using the fol-
lowing argument we arrive at a condition for the validity of (28)

that is similar to the one given in the 2-D case [34]–[36], in par-
ticular, the dependence on near grazing carries over
to 3-D: The radius of convergence of the full Taylor series (27)
is limited to because of the branch point of the square
root function. Thus

(31)

is required for (28) to be an accurate representation of (12). In
addition, the error of the truncated series (27) is multiplied by
with the consequence that the largestconsidered should be
small relative to , i.e., .

Approximations for the 3-D vector wave case are derived in a
similar fashion by additionally expanding the polarization vec-
tors. Substituting

(32)

(33)

into (17), we find

(34)

Equation (34) also follows from with the
identity tensor and as in (23). Similarly, with the dyads

(35)

(36)

we obtain from (18)

(37)
It is observed from (34) and (37) that the tensors in (17) and (18)
are symmetric and anti-symmetric, respectively. More impor-
tantly here, it is evident from (34) and (37) that both and

, viewed as functions of the two real variablesand ,
are analytic throughout the – plane excluding the one-di-
mensional set of points forming the circle . (It is em-
phasized that the region of analyticity includes , c.f. Sec-
tion IV.) Thus, the Taylor series

(38)
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where

(39)

converges in the disk , and similar expressions
hold for . Applying the approximation (27) to (1) with
the spectrum (13), inserting (38), and using twice the Fourier
integral identity (c.f. 3.958.2 in [44])

e

e

e

(40)

where is the integral part of , leads, again, without
further approximation, to an expression of the form

e

(41)

where
and are as in (29) and (30);

the are obtained from (34);
is polynomial in , , up to -dependent cor-
rection factors that, similar to (30), are unity
for or .

It is noted that, different from the scalar case discussed above,
(41) for is only an approximation of the superposition
of plane waves that we started out with because of the finite ra-
dius of convergence of (38) and the fact that the spectrum (13) is
not bandlimited. The conditions onfor (41) to be a reasonable
approximation are as stated above for the scalar case. We have

and . Thus, the lowest order electric field ap-
proximation following from (41) is the same as what is obtained
by approximating in (19) with the help of (27) or multiplying
(28) by . The of higher order vanish as . The
algebraic details for the of any order (integrating over
first) are as follows:

(42)

where

(43)

(44)

(45)

When choosing the number of terms to be included in (41), one
should be aware of the limited radius of convergence of (38)
and the underlying approximation (27), which, however, has no
effect for . The with are given by

(46)

(47)

(48)

(49)

(50)

(51)

Following a similar procedure, approximations for the mag-
netic field and the dual tapered wave (Section IV) can be de-
rived.

VII. CONCLUSION

We considered the problem of constructing a 3-D tapered
wave as a superposition of plane waves, taking into account
both propagating and evanescent waves. The use of the simple
Gaussian plane wave spectrum was recommended in order to
avoid problems near the grazing incidence. The introduced spe-
cial choice for the polarization vectors removed the problems
of losing a dominant polarization state and degradation of ta-
pering near the normal incidence. Mathematically speaking, the
proposed polarization vectors are analytic at the origin of the
2-D wavenumber space. Moreover, the choice of polarization
vectors was shown to lead to an exact solution of the Maxwell
equations which is an optimal approximation of an ideal but
non-Maxwellian tapered field that is constructed by multiplying
a scalar tapered wave with a constant polarization vector. The
result is a reliably tapered wave with a dominant polarization
state that can be used uniformly for all angles of incidence. We
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discussed the application of the proposed tapered wave in sim-
ulating 3-D electromagnetic scattering from a conducting ob-
ject over a conducting rough surface. Newly encountered prob-
lems near the grazing incidence were attributed to secondary
edge effects that are unrelated to the tapered incident wave, but
indicate the difficulty of the low grazing angle rough surface
scattering problem when objects are present. It was pointed out
that methods which avoid such edge effects could also benefit
from the utilization of the tapered wave. In some situations it
might be desirable to have an approximate 3-D tapered wave at
one’s disposal, which does not require a 2-D numerical integra-
tion (summation of plane waves), trading accuracy in satisfying
Maxwell’s equations for computational speed. We presented the
derivation of approximations for both the 3-D scalar and vector
case. The expansion of the polarization vectors is based on their
regularity. The local character of the technique employed forces
the breakdown of the approximations at grazing incidence.
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