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Letters__________________________________________________________________________________________

Monopole Antenna Radiation into a Parallel-Plate
Waveguide

Hyo J. Eom, Yong H. Cho, and Min S. Kwon

Abstract—A rigorous solution of coaxially fed monopole antenna radia-
tion into a parallel-plate waveguide is obtained. The Fourier transform/se-
ries representations are used to represent scattered fields and the boundary
conditions are enforced to obtain the simultaneous equations for discrete
modal coefficients. Fast convergent series of the reflection coefficient is ob-
tained and compared with other existing results.

Index Terms—Monopole antennas, waveguides.

I. INTRODUCTION

Coaxially fed monopole antenna radiation into a parallel-plate wave-
guide is of practical interest in microwave engineering and its charac-
teristics are relatively well understood [1], [2]. An equivalent circuit
representations for coaxially fed monopole antenna was obtained and
compared with experimental data [1]. More recently, a modal-expan-
sion analysis for coaxially fed monopole antenna has been presented
and its impedance characteristics were numerically investigated [2].
In this paper, we intend to present a rigorous yet numerically effi-
cient solution for coaxially fed monopole antenna radiation into a par-
allel-plate waveguide. We use Fourier series/transform representations
for the scattered fields and apply the boundary conditions to obtain a
rigorous solution. Note that the Fourier series/transform approach was
previously used in [3], [5] to obtain an exact solution for radiation from
a dielectric-filled edge slot antenna.

II. FIELD ANALYSIS

Consider the problem of a coaxially fed monopole antenna radiating
into a parallel-plate waveguide, as shown in Fig. 1. Assume that an in-
cident TEM-wave withe�i!t time convention impinges upon a junc-
tion. In region (III), the total field consists of the incident, reflected,
and scattered components as
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In regions (I) and (II), the scattered fields are
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Fig. 1. Geometry of the monopole antenna.
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J0(�) zeroth-order Bessel function;
N0(�) zeroth-order Neumann function.

The field representations (1)–(5) are somewhat similar to [3, eqs.
(1)–(7)]. To determine the modal coefficientspm andqm, we enforce
the boundary conditions of theEz andH� field continuities. Applying
the Fourier cosine transform( 1

0
(�) cos(�z)dz) to theEz continuity

at r = a1, Ei
z + Er

z + EIII
z = EI

z jr=a yields
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Similarly, fromEz continuity atr = a2
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where
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Multiplying the H� continuity atr = a1, for 0 < z < h1, by
cos(n�=h1)z and integrating yield
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�0 = 2, �n = 1 (n = 1; 2; . . .), andR0(�) = dR(�)=d(�). Using the
residue calculus, it is possible to transform (10) into a rapidly conver-
gent series. First identifying the simple poles in the integrand of (10),
applying the residue theorem [4], and performing a lengthy algebraic
manipulation yields
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Similarly, fromH� continuity atr = a2 for 0 < z < h2
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�mn is the Kronecker delta,�(�) = J0(�a1)N0(�a2) � J0(�a2)
N0(�a1), �1 = J0(�1ma2)N1(�1ma1) � J1(�1ma1)N0(�1ma2),
�2 = J1(�2ma2)N0(�2ma1) � J0(�2ma1)N1(�2ma2), �pm =
k23 � h2pm, �v is given by�(�v) = 0, and�v = k23 � �2v . The

reflected plus scattered TEM field atz = 1 is
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Fig. 2. (a) Input admittance of a monopole antenna fed by a coaxial line (a =

0:0509� , a = 1:187a , h = � , � = � = � = � ). (b) Normalized
reflected power of a parallel-plate waveguide fed by a coaxial line (a = 0:635

mm,a = 2:055 mm,h = 10:2 mm,� = � = 1:99� , � = � ).

where

L0 =
�i

k3 ln
a2
a1

1

m=0

pm
�3
�1

�1mJ0(�1ma1)F
1
m(k3) (18)

M0 =
�i

k3 ln
a2
a1

1

m=0

qm
�3
�2

�2mH
(1)
0 (�2ma2)F

2
m(k3): (19)

Fig. 2(a) illustrates the comparison of antenna input admittance

Yin =
2�

� ln(a2=a1)
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i2k h

1� (1 + L0 �M0)ei2k h

between ours and [2], indicating a favorable agreement. We used ten
terms (30 terms) in the series of (18) and (19) to achieve numerical
convergence to within 1% error in conductance (susceptance) computa-
tion, whenh2 < 1:4�0. Fig. 2(b) shows the normalized reflected power
(j1+L0�M0j

2) versus the antenna length(h2�h1) for three different
frequencies. No reflection takes place when(h2�h1) = 4:1; 5:8; 9:3
mm at 15, 10, 5 GHz, where the corresponding�=4 antenna lengths
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are 3.5, 5.3, and 10.6 mm, respectively. The number of modes used in
computation is five, indicating fast numerical convergence.

III. CONCLUSION

A simple series solution for monopole antenna radiating into a par-
allel plate is obtained. Our solution is compared with other existing one
and is shown to be accurate and efficient for numerical evaluation.
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