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Letters

Monopole Antenna Radiation into a Parallel-Plate
Waveguide
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Abstract—A rigorous solution of coaxially fed monopole antenna radia- h& &\
tion into a parallel-plate waveguide is obtained. The Fourier transform/se- H § )

ries representations are used to represent scattered fields and the boundary : h

conditions are enforced to obtain the simultaneous equations for discrete H : ﬁ: W, €,

mpdal coefficients. Fast_convergent_ S(_eries of the reflection coefficient is ob- Region (II) i Region(D) : Region (I)

tained and compared with other existing results. H W€ :
> 1
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I. INTRODUCTION ’ :\\\ \\\\\\\\\\\\\\ r

Coaxially fed monopole antenna radiation into a parallel-plate wavgi-g 1
guide is of practical interest in microwave engineering and its charac="
teristics are relatively well understood [1], [2]. An equivalent circuit
representations for coaxially fed monopole antenna was obtained avitere
compared with experimental data [1]. More recently, a modal-expan-ipm  (m7/hy);
sion analysis for coaxially fed monopole antenna has been presentetbm k3 — h3m;

Geometry of the monopole antenna.

and its impedance characteristics were numerically investigated [2]# V3 — ¢
In this paper, we intend to present a rigorous yet numerically effi- &, w./l€p;
cient solution for coaxially fed monopole antenna radiation into a par-» Vi/es;

allel-plate waveguide. We use Fourier series/transform representation®(rr) Jo(rr)ET(¢) — No(kr)E~(C);
for the scattered fields and apply the boundary conditions to obtain aHél)(-)Jo(-) + iNo(+);

rigorous solution. Note that the Fourier series/transform approach wag/,(-) zeroth-order Bessel function;
previously used in [3], [5] to obtain an exact solution for radiation from N,(-) zeroth-order Neumann function.

a dielectric-filled edge slot antenna. The field representations (1)-(5) are somewhat similar to [3, egs.
(1)—(7)]- To determine the modal coefficients, andq..,, we enforce
Il. FIELD ANALYSIS the boundary conditions of thE. andH 4 field continuities. Applying

] ) ___the Fourier cosine transforfif ™ (-) cos(¢z) dz) to the E.. continuity
Consider the problem of a coaxially fed monopole antenna radiating, _ , - Ei 4+ ET+ E = El|,_,, yields

into a parallel-plate waveguide, as shown in Fig. 1. Assume that an in-
cident TEM-wave with=~"“ time convention impinges upon a junc-

tion. In region (Ill), the total field consists of the incident, reflected, R(ra1) = — Z mei ErmJo(Exmar)FL(C). (6)
and scattered components as m=0 €1
) ) Similarly, from E. continuity atr = a»
Hy=~e " /(yr) (1)
HT = —etks® 10 2 > ’ X
b= i) @ Riso2) = = 3 S on B (Eaman) FC) (1)
EMM(r, 2)= = / R(kr)cos(¢z)dC. 3) m=0 ?
wezT  Jg
where
In regions (1) and (Il), the scattered fields are —1)™(si ,
glons (I and 1) ! Fh() = S, (®)
prm

El(r. - _ i e B . Multiplying the H continuity atr = ay, for0 < z < hy, by
(%) €1 Z Pm&im 05(him2) Jo(E1m) @ cos(nm/hy)z and integrating yield

w
m=0

E{I s 2 :77 m‘m/Ah‘mZH(U 2m 5 ] ZFJk
z (r ) WEe Z7(] q E.Z ('OQ( 2 ) 0 (52 T) ( ) Il +pn£Jl<£lnal)O¢n __= ( 3)’ (n:()‘ 1’ )
m= 2 N ap
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ap =2, an, =1(n=1,2,...),andR'(-) = dR(-)/d(-). Using the

residue calculus, it is possible to transform (10) into a rapidly conver- 40
gent series. First identifying the simple poles in the integrand of (10), L - -~ susceptance
applylng the regdue theorem [4], and performing a lengthy algebraic — ,,' x —— conductance
manipulation yields 030y Y ’
S 0 x Shen’s results
- + €3 - E
I - _1m " Pm— mJ ' m I
. 2( ) [p - G Jo(Gman) g
m=" .d:
- g
+an E_3£2WLH(§1)(£27VLCL2)112 . (11) Fg
€9 -
=
g
Similarly, from H4 continuity atr = a» for 0 < z < ho ’ . . . . .
00.1 0.3 0.5 0.7
I+ ¢n ]%2 H" (Eanaz)an antenna length, (hy-h))/ Ao
2 F2(k
=2 EMk) g, (12) (a)
n o az
where .
Q@
2
2 [>~1 9, &
I =-= /D ;R(hdz)Fn(C)dC E’
e} Q
m—+n €3 (1) T é’
= Z(_l) (Jm*£2mH0 (52m02)12 @
€2
m=0 -]
Q
€3 = §
—Pm— {1im JO(£1177 CL1)I21:| (13) =
€1 E
.. o
T _ h_p Apérnnam _ L(_l)PkS 1- €sz3hv 8
P~ K p ; : :
2 FpmA(kipm) 2a,1n 92 (k3 = h3n) (k35 — h3,)
ay
—ii “ antenna length, (hy-hy) [ mm ]
- - antenna , (h,-
ap = L <J§(Huaz) >( 1P en. er’lg 2=y L mm
I3 (roar) (b)
1 — ei2Cohp
) 2 - 2 2 (14)
(@ — hgm ) (G — h3n) Fig.2. (a) Input admittance of a monopole antenna fed by a coaxiatine:(
_ iks etkalha—hil _ iks(hathy) 0.0509Ag, az = 1.187ay, hy = Ag, €1 = €2 = €3 = €g). (b) Normalized
I, =Xpq — —5 ) 5 — 5 reflected power of a parallel-plate waveguide fed by a coaxial line=£ 0.635
2a, In (’—_ (k3 = hP")(I"3 - th) mm,as = 2.055 mm,he = 10.2 mm,e; = €3 = 1.99¢q, €3 = €g).
1
RS 2
ap = [Jo(koar)  Jo(kyaz) where
Jo(keaz)  Jo(kvar)
iColha—h iCy(hath) ] ad :
. € Colhz . —° (e Y (15) LO = LGQ Z ]37776_3 51777»]0(&1777,“1)FJn(kS) (18)
(Cﬁ - hﬁn )(sz - h?]m) ksln — m=0 €1
h “
oy Si L onr i st €: 9
2(—1)'” 2m SHL <hg m “) (h > h ) JL[U = ni(’z Z Qm£ 52771H(()1)(52m02)Fer(k3)- (19)
Tapr3, AKam) 13, —h3, e ! ks In o =0 2
X2 = -
] . hz
2(=1)" R Fig. 2(a) illustrates the comparison of antenna input admittance
5 5 3 (hz < hl)
W(I’PF"’i‘nA(H’ln) hln - h2m
(16) . 27 14 (14 Lo — M)e?s">
" pln(ag/ar) 1 — (14 Lo — My)eizkshs

8.mn IS the Kronecker delta) (k) = Jo(kai)No(raz) — Jo(kaz)
No(ra1), Ay = Jo(kimaz)N1(k1ma1) — Ji(kima1)No(kimaz), between ours and [2], indicating a favorable agreement. We used ten

Ay = Ji(kamaz)No(k2mar) — Jo(K2ma1 )Ni(kamaz), Kpm =  terms (30 terms) in the series of (18) and (19) to achieve numerical
k3 — h2,,, ke is given byA(x,) = 0, and(, = /k3 — 2. The convergence to within 1% error in conductance (susceptance) computa-
reflected plus scattered TEM field at= oc is tion, whenh, < 1.4),. Fig. 2(b) shows the normalized reflected power
(|14 Lo — My|?) versus the antenna lendih, — 1, ) for three different
REE frequencies. No reflection takes place whién— h1) = 4.1, 5.8, 9.3

r mr_ € y
Hy+Hy = — 0 (14 Lo — Mo) a7 mm at 15, 10, 5 GHz, where the correspondig antenna lengths
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