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Abstract—In the past, both the time-domain electric and mag-
netic field integral equations have been applied to the analysis of
transient scattering from closed structures. Unfortunately, the so-
lutions to both these equations are often corrupted by the pres-
ence of spurious interior cavity modes. In this article, a time-do-
main combined field integral equation is derived and shown to
offer solutions devoid of any resonant components. It is anticipated
that stable marching-on-in-time schemes for solving this combined
field integral equation supplemented by fast transient evaluation
schemes such as the plane wave time-domain algorithm will en-
able the analysis of scattering from electrically large closed bodies
capable of supporting resonant modes.

Index Terms—Integral equations, transient electromagnetic
scattering.

I. INTRODUCTION

I N recent years, the electromagnetics community has pursued
with renewed vigor the development of efficient transient

simulators. These simulators rely on either differential or inte-
gral equation formulations and aim to accurately and efficiently
characterize broad-band and nonlinear systems. Historically,
differential-equation methods for analyzing electromagnetic
transients have been favored over their integral equation
counterparts [1]. When applied to the analysis of volume
scattering problems, differential-equation-based methods offer
unquestionable advantages over integral equation techniques.
However, when analyzing surface scattering phenomena, the
advantages of differential equation approaches over integral
equation techniques fade. Indeed, integral equation methods
only require a discretization of the scatterer surface as opposed
to a volume surrounding the scatterer and do not call for
absorbing boundary conditions, but automatically impose the
radiation condition.

Their intrinsic qualities notwithstanding, time-domain inte-
gral-equation (TDIE) methods have not enjoyed widespread
application, even in the study of surface scattering phenomena.
Two principal hurdles have impeded their general acceptance.
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First, historically, many marching-on-in-time (MOT) methods
for solving TDIEs have been shown prone to late-time in-
stabilities. While it has been known for several years that
these instabilities can be partially remedied through spatial
and temporal filtering [2]–[5], it was not until recently that
Bluck and Walker demonstrated that judiciously constructed
MOT schemes relying on accurate spatial integration rules and
implicit time-stepping schemes are for all practical purposes
stable [6], [7]. While [6] and [7] arrive at this conclusion
for MOT schemes designed to solve magnetic field integral
equations (MFIEs), it has been reported that MOT schemes for
solving electric field integral equations (EFIEs) can likewise
be “stabilized,” albeit with a little more difficulty [8]–[11].
Second, the cost associated with the application of traditional
MOT schemes scales unfavorably with problem size. Indeed,
the computational complexity of classical MOT schemes scales
as , where is the number of surface unknowns
and is the number of time steps (for a surface scatterer

typically scales as ). This scaling law renders the
analysis of electrically large structures using a classical MOT
algorithm practically impossible with current computational
resources. However, recently, an algorithm that considerably
reduces the computational complexity of conventional MOT
schemes was proposed. Specifically, it was shown that the
computational cost of an MOT analysis is reduced from

to and when
the MOT scheme is supplemented by two-level [12]–[14] and
multilevel plane wave time-domain (PWTD) algorithms [15],
[16], respectively. It is anticipated that these two developments,
viz., the construction of implicit MOT schemes and PWTD
accelerators will result in a more widespread acceptance of
TDIE techniques as viable alternatives to differential equation
methods for analyzing transient surface scattering phenomena.

In the past, both the time-domain MFIE and EFIE have been
extensively used to analyze transient scattering from closed
surfaces. As was pointed out before, most MOT schemes
for solving these equations were found to be unstable. Ever
since the insightful studies of Rynne and Smith [3] and Smith
[17], cavity resonances have been suspected of contributing
to these instabilities. These authors definitively conclude
that MOT instabilities arise when the singularity expansion
method poles that characterize the resolvent of the integral
equation being solved drift into the right half-plane due to the
approximations introduced by the numerical scheme. Needless
to say, poles describing interior resonances permitted by the
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time domain MFIE and EFIE are prime candidates for such
undesirable shifts as they reside on the imaginary axis. It is
now known that carefully constructed implicit methods for
solving the time-domain MFIE are virtually always stable
(and, therefore, appear to largely avoid such undesirable pole
displacements; unfortunately, a similar statement cannot be
made about EFIEs). While this progress is exciting, it does
not mean that MOT-based schemes for solving these integral
equations always yield accurate results. Indeed, while in theory
the cavity poles of a closed body are never excited upon
external illumination [18], practical numerical schemes will
develop solutions that contain components corresponding to
these (slightly perturbed) resonances [3]. The excitation of the
modes described by these poles does not necessarily lead to
instabilities, but does result in inaccurate solutions.

This article presents a study on a resonance suppressing
scheme for TDIE solutions. The issue has gained new relevance
with the availability of implicit and fast TDIE techniques
capable of analyzing scattering from large-scale objects that
possibly support resonances. In tackling this problem, we build
on the vast body of research on this topic in frequency-do-
main analysis. It is well known that the solutions to both the
frequency-domain EFIE and MFIE can be corrupted when
the frequency of the incident field approaches that of one
of the scatterer’s resonant modes. It is also known that this
interior resonance problem can be remedied using a variety
of approaches. Chief among those and perhaps most widely
accepted is the use of a frequency-domain combined field
integral equation (CFIE) [19], [20].

In this paper, a time-domain CFIE for analyzing scattering
from three-dimensional perfect electrically conducting (PEC)
closed surfaces is presented. It is argued that the proposed CFIE
eliminates the interior cavity modes that possibly corrupt the
solutions to the EFIE and MFIE. Indeed, it is experimentally
verified that the solutions to both the time domain EFIE and
MFIE are prone to inaccuracies resulting from interior reso-
nances as practical MOT schemes for solving these equations
develop nonphysical resonant currents. Finally, it is experimen-
tally demonstrated that implicit MOT schemes relying on accu-
rate temporal and spatial integration rules for solving the pro-
posed CFIE remove all nonphysical resonant components from
the solution and, hence, constitute a stable and viable approach
for analyzing transient scattering from electrically large objects.

This paper is organized as follows. In Section II various
time-domain integral equations (including the proposed CFIE)
are presented and their properties discussed. An MOT scheme
for solving the CFIE is also outlined. Section III provides a
plethora of numerical results that demonstrate the efficacy of
the proposed method in eliminating nonphysical currents cor-
responding to resonant modes that plague time-domain EFIE-
and MFIE-based approaches. Finally, Section IV presents our
conclusions.

II. FORMULATION

In this section, a time-domain CFIE for analyzing scattering
from closed structures is introduced. An MOT-based scheme for
solving this equation is also outlined.

Fig. 1. Description of the problem.

A. Time-Domain Integral Equations

Let denote the surface of a closed perfectly conducting
body that resides in free-space and that is excited by a tran-
sient electromagnetic field (Fig. 1). The
interaction of the incident field with results in a surface cur-
rent , which in turn generates a scattered electromagnetic
field . These fields are fully characterized
by the vector and scalar potentials defined as

(1a)

and

(1b)

where
distance between the source and observa-
tion points;
retarded time;
speed of light;

and permittivity and permeability of
free-space, respectively.

Also, denotes the surface charge density that is related
to through the continuity equation

(2)

In what follows, surfaces conformal to(but residing just out-
side and just inside ) are denoted by and , respectively,
and denotes an outward pointing and position-dependent unit
normal to .

To arrive at a time-domain EFIE, note that the scattered elec-
tric field can be expressed in terms of the above poten-
tials as

(3)
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The incident field can be related to the scattered field
by enforcing the boundary condition that the total electric field

tangential to vanishes

(4)

The same condition holds true on both and . Hence, using
(1)–(3) in (4) the following EFIE for is obtained:

(5)
The defined in the above equation will henceforth be referred
to as the electric field operator.

Likewise, a time-domain MFIE can be derived by expressing
the scattered magnetic field as

(6)

and by enforcing the condition that the total magnetic field
tangential to vanishes, i.e.,

(7)

Upon using (1a) together with (6) in (7), the following MFIE
for results

(8)

where . Henceforth, the defined in the above equa-
tion will be referred to as the magnetic field operator.

The singularity expansion method shows that the solution to
the homogeneous time-domain EFIE and MFIE is characterized
by the poles of the resolvent of and [18], respectively.
Of course, some of these poles lie close to the right half-plane
and those on the imaginary axis correspond to the frequencies
of the interior cavity modes that the EFIE and MFIE support.
It has been established that in theory the incident field does not
couple to the interior modes [18]. Unfortunately, because of two
important effects, the situation changes drastically when (5) and
(8) are solved numerically. First, inaccuracies inherent to a nu-
merical scheme will result in shifting of the system poles, some
of which may end up in the right half-plane, which is problem-
atic because this leads to instabilities. It has been argued that as
the inaccuracies are more substantial at higher frequencies, the
movement of the poles associated with these frequencies will be

larger [3], [17]. Explicit MOT schemes lead to larger pole dis-
placement which renders these techniques virtually always un-
stable. In contrast, Bluck and Walker [6] experimentally demon-
strate that implicit schemes are for all practical purposes stable,
which implies that these schemes avoid pole displacement into
the right half-plane. Second, in a numerical framework, the in-
cident field does couple to the perturbed interior modes that are
supported by the EFIE and MFIE. While this does not neces-
sarily lead to unstable behavior when implicit methods are used,
it does follow that the solution can be corrupted by the presence
of perturbed cavity modes. The actual level of excitation of these
modes depends heavily on the details of the implementation.
Bluck and Walker [6] report schemes that appear rather insen-
sitive though not totally immune to the excitation of these res-
onance. In contrast, as will be demonstrated in Section III (nu-
merical results), our flat-panel triangular-patch implicit MOT
implementation does pick up resonances, albeit often in only
minute quantities. However, we conjecture that any EFIE/MFIE
implementation will pick up these modes provided that the inci-
dent pulse contains sufficient energy in the frequency band near
these resonances.

To combat this resonance problem, a time-domain CFIE is
constructed in analogy to its frequency-domain counterpart by
combining the EFIE and MFIE as

(9)

where is the intrinsic impedance of the free-
space, introduced in (9) for scaling purposes andis a (real)
constant that is greater than zero. In terms of incident and scat-
tered fields, the above equation can be stated as

(10)

The combined field operator is a linear combina-
tion of the electric and magnetic field operators and

.
As pointed out before, when numerically solving (5) and (8),

poles corresponding to the resonance frequencies of the cavity
formed by can be excited. On the other hand, our numerical
results indicate that, for all structures tested the solution to the
CFIE is free of cavity modes. As with the frequency domain
CFIE [18] resulted in a resonant free solution.

An earlier investigation into the use of the CFIE was
presented by Vechinski and Rao in [21]. There, the authors
used

(11)

for the analysis of two-dimensional (2-D) scattering instead
of (10). The purpose of the analysis presented in [21] was
to determine whether the late-time instabilities commonly
encountered in MOT schemes that rely on explicit time stepping
can be overcome by using a combined field formulation. In this
regard, no benefit from using a CFIE was observed. This can
again be explained using the arguments put forth by Rynne and
Smith [3]. A CFIE formulation only eliminates the poles that
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lie on the imaginary axis corresponding to the interior cavity
modes and does not affect the location of the poles describing
the exterior problem. As the MOT scheme prescribed in [21]
relies on an explicit time-marching scheme, it is conjectured
that the poles of the resolvent of that lie close to the
imaginary axis easily shift into the right half-plane, thereby
generating instabilities. As a result, little benefit is observed
from using a resonance suppressing integral equation method.
Finally, experiments indicate that our implicit time stepping
scheme for solving (10) (see Section II-B) yields a more
accurate solution than that of (11), based upon otherwise
very similar implementation choices; it is for this reason that
in this work (10) was selected over (11).

B. MOT Algorithm

Equation (10) can be solved numerically by adopting a dis-
crete representation for thecurrent andbydiscretizing the
CFIE accordingly. Following standard practice, the scatterer is
modeled by flat triangular facets and the current is rep-
resented using spatial and temporalbasis functions for

and for such that

(12)

where is the weight associated with the space–time basis
function . In our implementation, the are
chosen to be the Rao–Wilton–Glisson (RWG) basis functions,
which have been used extensively in the integral-equation-based
analysis of both time-harmonic and transient scattering phe-
nomena [22], [23]. The temporal bases
are assumed to be triangular functions [23]. In other words,

for linearly interpolates to zero for
( denotes the time-step size) and is zero outside the interval

. It is possible to choose higher order spatial and
temporal interpolation functions to improve the accuracy and
stability of the MOT scheme [6], [8]. By expanding the current
density as in (12) and by applying a spatial Galerkin testing
procedure at , the following matrix equation is
obtained:

(13a)

where the entries of the vectors, and the matrices are
given by

(13b)

(13c)

(13d)

In the above equations, de-
notes the standard inner product. Equation (13a) is the basis for

Fig. 2. Comparison of the currents observed on a cube as a function of time.
The currents are computed using the time-domain CFIE code for� = 0 (MFIE),
0.25, 1.0, 4.0, and1 (EFIE).

the classical MOT scheme. Assuming that the currents up to the
th time step are known, this equation permits the compu-

tation of the currents associated with theth time step. Hence, the
currents at all timepoints of interest canbe computed recursively.

In our practical implementation of this scheme the inner
product that appear in (13a), (13c) and (d) are evaluated using
seven-point Gaussian quadrature [24]. This leads to an implicit
scheme even for very small time-step sizes, however, in all
our calculations we use . This choice of
time-step size results in being a highly sparse matrix; for
very regular structures the number of entries in each row is
approximately . Equation (13a) is then solved using a
nonstationary iterative solver such as the transpose-free quasi
minimal residual (TFQMR) method [25].

Ithasbeenobservedthat theMOTschemeforsolvingtheMFIE
is easier to stabilize than that for the EFIE. The studies of Ma-
naraet al.[8] and Rao and Sarkar [10] notwithstanding, we have
found that implicit schemes and accurate integration rules do not
guarantee stability when the spectrum of the incident pulse con-
tains the resonance frequencies of the scatterer. To combat this
EFIE instability, averaging as suggested by Rynne and Smith [3]
is used, though it should be stressed, only for the EFIE. On the
other hand, MOT schemes for solving the CFIE and MFIE have
been found to be always stable as long as implicit time-stepping
methods and accurate integration rules are used.

III. N UMERICAL RESULTS

The objective of this section is to demonstrate that the above
proposed time-domain CFIE yields solutions uncorrupted by the
presence of cavity modes even when the spectrum of the inci-
dent pulse includes one or more of the scatterer’s resonance fre-
quencies. As a first step toward validating our codes, the current
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(c)

Fig. 3. (a) Comparison of the current observed at a point on a sphere computed using MFIE, EFIE and CFIE (� = 0:2). (b) Comparison of the absolute value
of the Fourier transform of these currents. (c) The absolute value of the Fourier transform of the difference between the currents computed using the time-domain
CFIE and MFIE.

on an electrically small structure obtained using the CFIE code
will be compared against those obtained using codes based upon
the EFIE and MFIE presented in (5) and (8), respectively. In this
experiment, it will be ensured that no resonant modes are ex-
cited by virtue of the choice of dimensions of the scatterer with
respect to the wavelength at the highest frequency present in the
incident pulse (delineated by the notion of bandwidth to be in-
troduced shortly). Next, the currents on and the far-field signa-
tures of electrically large structures will be computed using the
time-domain CFIE code. The far-field signatures will then be
Fourier transformed into the frequency domain and the object’s
radar cross section (RCS) will be extracted at several frequen-
cies. These results will then be compared against the RCS com-

puted using FISC (fast Illinois solver code), a frequency domain
fast multipole-based CFIE code that has been extensively vali-
dated [26]. To give a more quantitative feel to figures containing
these comparisons, root mean square (rms) deviations of results
obtained using time-domain codes from those obtained using
FISC (or analytical results where available) over a range of an-
gles are given to demonstrate the relative errors of the three ap-
proaches. The incident pulse used in all the examples that follow
is a modulated Gaussian given by

(14)
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(a) (b)

(c) (d)

Fig. 4. The radar scattering cross section of a sphere in thex–z plane extracted from the time-domain CFIE and MFIE is compared to that obtained from FISC
for four different frequencies. The incident wave propagates alongk̂̂k̂k = �ẑ̂ẑz and isp̂̂p̂p = x̂̂x̂x polarized. (a) 120 MHz. (b) 190 MHz. (c) 240 MHz. (d) 280 MHz.

where is the center frequency, , denotes the
direction of travel of the incident wave, andits polarization,

, , and will be further referred to
as the bandwidth of the signal. It is to be noted that the power in
the incident pulse is down by 160 dB at relative
to that at . Also, it is well known the operational count of
the classical MOT solver scales as where is the
duration of the analysis and is the number of spatial samples
that the surface is discretized into. The results presented herein
were obtained using a DecPC whose peak performance is rated
at 500 Mflops and the maximum runtime was about an hour.

To validate the time-domain CFIE against the time-domain
MFIE and EFIE, consider a cube of dimensions 1 m1 m

1 m shown in the inset in Fig. 2. A modulated Gaussian

plane wave with MHz and MHz, trav-
eling along with is incident on the cube. The
cube is discretized into 450 spatial unknowns. It is ensured that

is less than 150 MHz, which is the frequency of the
first resonant mode of the cube. In Fig. 2, the magnitude of the
current at a point on the cube’s upper surface computed using

(MFIE), 0.25, 1.0, 4.0, (EFIE), is plotted against
time. It is seen that the temporal signatures of the current com-
puted using all values of agree well with each other. However,
unlike the currents computed using the CFIE and MFIE, whose
magnitude keeps decreasing with time, those obtained using the
EFIE stabilize at a value three orders of magnitude below the
peak. This behavior of the EFIE has also been observed by other
researchers [5].
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(a) (b)

(c) (d)

Fig. 5. The radar scattering cross section of a cone sphere in thez–x plane, extracted from the time-domain CFIE and MFIE is compared to that obtained from
FISC for a set of frequencies. The incident wave isp̂̂p̂p = ẑ̂ẑz polarized and is traveling in thêk̂k̂k = �x̂̂x̂x direction. (a) 260 MHz. (b) 300 MHz. (c) 400 MHz. (d) 500
MHz.

Having ascertained that the numerical implementation of
the time-domain CFIE does yield a solution that coincides
with that of the MFIE and the EFIE when no resonant modes
are excited, we next examine the CFIE’s performance when
the spectrum of the incident pulse encompasses the body’s
resonance frequencies. To this end, consider a sphere of
radius 1 m that is discretized using 2793 spatial unknowns,
illuminated by a polarized modulated Gaussian pulse
with . The pulse has a bandwidth of MHz,
and a center frequency of MHz. The above choice of
center frequency and bandwidth is such that the TM (184
MHz), TE (214 MHz) and TM (237 MHz) modes

are excited. While the sphere theoretically also resonates at
MHz, etc., these modes

are barely excited as the power in the incident pulse at these
frequencies is down by at least 30 dB from its peak at.
The magnitudes of the current at a point on the sphere with

obtained using the EFIE, MFIE, and
CFIE ( ) codes are compared in Fig. 3(a). It is apparent
that the solution to the MFIE exhibits a characteristic ringing,
whereas that of the CFIE dies down. As mentioned earlier,
since the spectrum of the incident pulse contains resonance
frequencies characteristic of the body, it was necessary to use
four-point temporal averaging [3] in addition to implicit time
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(a) (b)

(c) (d)

Fig. 6. The radar scattering cross section of an almond in thez–y plane, extracted from the time-domain CFIE and MFIE, is compared to that obtained from FISC
for a set of frequencies. The incident wave isp̂̂p̂p = ŷ̂ŷy polarized and is traveling in thêk̂k̂k = �ẑ̂ẑz direction. (a) 120 MHz. (b) 150 MHz. (c) 200 MHz. (d) 250 MHz.

stepping to stabilize the solution to the EFIE. As a consequence
of using the averaging process, which suppresses resonance
effects to some extent, the EFIE solution does not exhibit the
same features as that of the MFIE. However, both are still quite
different from that obtained using the CFIE. The differences
between the currents are further highlighted by examining their
Fourier transforms. Fig. 3(b) compares the Fourier transforms
of the current obtained using the CFIE, MFIE, and EFIE with
those obtained analytically (using Mie series). As is apparent,
the CFIE and analytical solutions agree very well with each
other, whereas the the others do not; indeed, the variation of

the results obtained using the CFIE, MFIE, and the EFIE from
the analytical solutions is 0.7%, 7%, and 18%, respectively.
The MFIE results are significantly different from the CFIE in
the vicinity of the above mentioned resonance frequencies.
Also, the Fourier transform of the current obtained using the
EFIE is slightly smaller than that obtained using the CFIE
and is distorted at the ends of the spectrum, both of which are
consequences of temporal averaging. Examination of Fig. 3(c),
where the difference between the Fourier transforms of the
current obtained using the MFIE and CFIE are plotted, reveals
the presence of the principal resonant modes more clearly.
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(a) (b)

(c) (d)

Fig. 7. The radar scattering cross-section of an almond in thex–y plane, extracted from the time-domain CFIE and MFIE is compared to that obtained from FISC
for a set of frequencies. The incident wave isp̂̂p̂p = ŷ̂ŷy polarized and is traveling in thêk̂k̂k = �x̂̂x̂x direction. (a) 120 MHz. (b) 150 MHz. (c) 200 MHz. (d) 250 MHz.

In what follows, the RCS patterns obtained using the MFIE
and CFIE codes are compared against those obtained using
FISC. The RCS patterns obtained using the EFIE codes are
not shown as it is well known that, while the currents on the
surface computed using the EFIE are corrupted by interior
modes, the scattered far-fields obtained from them are not
[19]. Fig. 4(a)–(d) compare the RCS pattern in the– plane
computed using the time-domain CFIE and MFIE codes, FISC,
and Mie series solutions at four different frequencies chosen
either toward the end of the spectrum or close to a resonance.
As is seen in these figures, the time-domain CFIE faithfully
reproduces analytical results as well as those obtained from
FISC while the MFIE does not. It should be noted that the

CFIE results agree reasonably well with those from FISC and
Mie methods at both 120 and 280 MHz in spite of the fact that
at these frequencies the power in the incident field is down
by 45 dB from its peak value. In more quantitative terms, the
deviation from Mie solutions at these four frequencies are
28%, 11%, 48%, and 51% for the MFIE results, and 1.7%,
4%, 5%, and 11% for the CFIE results. These results are not
surprising, as the existence of nonphysical resonant currents in
the solution to the MFIE will cause errors to propagate in any
MOT scheme. Thus, when the RCS pattern is extracted from
the far-field signature, these errors are most conspicuous at the
ends of the band. While comparison of MFIE, CFIE, FISC, and
Mie results at other points in the range 140 MHz 270
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MHz are omitted for the sake of brevity, they agree very well
with each other as long asis not close to any of the resonance
frequencies.

Next, scattering from a cone-sphere is studied. The cone is
1 m long, the radius of the half-sphere attached to the cone
is 0.235 m, and the cone-sphere is discretized with 1656 un-
knowns. The incident field is a modulated Gaussian pulse with
center frequency MHz and bandwidth
MHz; it is polarized, and is traveling in the di-
rection. The RCS patterns in the– plane obtained from the
time-domain MFIE and CFIE codes are compared against those
obtained from FISC for four different frequencies, as shown in
Fig. 5(a)–(d). As before, while the results obtained from the
CFIE code ( ) agree very well with those from FISC for
all four frequencies, those obtained from the MFIE code do not.
The results obtained using the MFIE code differ from FISC by
48%, 69%, 40%, and 93% while those obtained using the CFIE
code differ by 5%, 6%, 6%, and 16%, respectively.

In the next two examples, the scatterer being analyzed is an
almond with a maximum height of 0.0575 m, maximum width
of 1.15 m, and length of 3 m and is discretized using 1104 spa-
tial unknowns. In the first of these two examples, the incident
wave propagates along , is polarized, has a center
frequency of MHz, and the bandwidth of
MHz. The RCS in the – plane is computed and representa-
tive results are shown in Fig. 6(a)–(d). The agreement between
the results obtained from the time-domain CFIE code ( )
and FISC is excellent for a broad range of frequencies, whereas
those obtained using the time-domain MFIE differ by as much
as 10 dB from those obtained with FISC. Indeed, for the results
shown in Fig. 6(a)–(d), the results obtained using the time-do-
main MFIE code differ from FISC over the range of angles by
64%, 105%, 84% and 67%, whereas those obtained using the
time-domain CFIE code differ by 3%, 8%, 3%, and 5%, respec-
tively. Again, only “problematic” frequencies are shown in this
and the next example. Similar observations can be deduced from
Fig. 7(a)–(d), which compare the RCS patterns in the– plane
due to a propagating and polarized Gaussian
pulse with a center frequency of MHz and bandwidth

MHz. The results obtained using the time-domain
MFIE differ from those obtained using FISC by 134%, 135%,
137%, and 93%, while those obtained using the time-domain
CFIE code differ by 8%, 5%, 7%, and 15%. It should be pointed
out here that it is possible to extract meaningful results from the
CFIE time-domain data at 120 MHz in spite of the fact that at
this frequency the power of the incident pulse is down by about
46 dB with respect to its peak value.

IV. CONCLUSIONS

In this article, a stable MOT scheme for solving a time-do-
main CFIE has been outlined. It was argued theoretically and
demonstrated experimentally that this CFIE permits the com-
putation of resonance-free solutions to scattering problems in-
volving closed objects. Furthermore, it has been shown that the
solution to the CFIE is accurate even at frequencies where the
the power in the incident pulse is very low. Hence, this CFIE
enables the accurate analysis of transient scattering from large

and closed bodies, whereas the excitation of the cavity modes
often corrupts the solutions to the commonly used EFIE and
MFIE. The CFIE-based MOT scheme has been used in con-
junction with the recently developed fast time-domain scheme
called the PWTD algorithm, making transient analysis of scat-
tering from electrically large objects possible.
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