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Direction of Arrival Estimation Based on Phase
Differences Using Neural Fuzzy Network

Ching-Sung Shieh and Chin-Teng L.i8enior Member, IEEE

Abstract—A new high-resolution direction of arrival (DOA) es-  signal is not easily intercepted and interfered. It is obvious that
timation technique using a neural fuzzy network based on phase in highly dense signal environments, using electronic parame-
difference (PD) is proposed in this paper. The conventional DOA arq gych as RF, PRI, and PW to de-interleave is not a proper
estimation method such as MUSIC and MLE, are computation- . - . .
ally intensive and difficult to implement in real time. To attach methoq. In mobile C(.)mmumcat]on, once the dlr.ect|on.of the
these prob|ems’ neural networks have become popu|ar for DOA users Is detected, thIS |nf0rmat|0n can be used n ConjunCtlon
estimation in recent years. However, the normal neural networks with any adaptive array technique so that the radiation pattern
such as multilayer perceptron (MLP) and radial basis function net-  of the array is adapted to allocate the main beam toward the
work (RBFN) usually produce the extra problems of low conver- qpijas of interest while other sources of jamming in the same
gence speed and/or large network size (i.e., the number of net- A .
work parameters is large). Also, the way to decide the network frequency slot are nglled_and the_commumcatlon system s able
structure is heuristic. To overcome these defects and take use oft0 track these mobiles in real time. Therefore, the accuracy
neural learning ability, a powerful self-constructing neural fuzzy of DOA manifests very important electronic parameter in
inference network (SONFIN) is used to develop a new DOA esti- interception of signal classification.
mation algorithm in this paper. By feeding the PD’s of received To handle the DOA estimation problem, some methods

radar-array signals, the trained SONFIN can give high-resolution din 121 13 h t ive/ -
DOA estimation. The proposed scheme is thus called PD-SONFIN. are proposed in [2], [3] such as autoregressive/moving av-

This new algorithm avoids the need of empirically determining the €rage (AR/MA) and maximum entropy (ME); however, these
network size and parameters in normal neural networks due to methods have certain underlying limitations (either inability to
the powerful on-line structure and parameter learning ability of  resolve closely located sources or bias and sensitivity in param-
SONFIN. The PD-SONFIN can always find itself an economical ga, estimates) in light of using an inadequate model (e.g., AR

network size in fast learning process. Our simulation results show . - -
that the performance of the new algorithm is superior to the RBFN rather than special ARMA model) [4]. High-resolution methods

in terms of convergence accuracy, estimation accuracy, sensitivity SUCh as Pisarenko’s and multiple signal classification (MUSIC)
to noise, and network size. [5], [6] provide a reasonable approximation solution, but they
Index Terms—Adaptive array, direction of arrival, fuzzy rule, &€ highl){ sensitive _to the structure of th_e covariance matrix
membership function, multilayer perceptron network, neural and require excessively large computation effort based on
fuzzy network, phase difference, radial basis function network, eigen-decomposition of data covariance matrix and as a result
supervised learning. they are difficult to implement in real time. The ESPRIT [7], [8]
method offers advantages over MUSIC algorithm by avoiding
the orthogonality search and reducing the effect of sensor
variability on the performance of the algorithm. However, this
T HE problem of estimation is encountered in many aregs achieved at the expense of increased number of sensors
such as radar, sonar, communication, and electrofitthe arrays [9]. This requirement generates production and
surveillance. High-resolution direction-of-arrival (DOA) esmaintenance costs that are increasingly prohibitive for many
timation at antenna arrays has been an extremely significgphctical military applications. These abovementioned methods
electronics support (ES) activity in both electronic warfargeed to model signal and noise, so they are very sensitive to
(EW) system and mobile communication systems for a |Ol?g]perfections_
time. In EW application, since the DOA is obtained from the Neyral networks have recently drawn a great deal of atten-
location of the input signal, this is the only parameter a hostijg)n in many practical signal processing problems [9], [10] for
emitter cannot change easily [1]. Thus, the DOA becomgse sake of their massive parallelism and global connectivity.
the most reliable and powerful sorting parameter. Nowadayge problem of DOA estimation is viewed as a potential appli-
advanced radar intentionally irregularly varies radio frequeng\tion of neural networks, where such a problem is mapped onto
(RF), pulse repetition interval (PRI), and pulse width (PWine quadratic energy function for the Hopfield network to obtain
which can be controlled by a computer such that the rad@fe optimum estimate [9]. The DOA estimation problem can be
also considered as a mapping from the space of D@Ao the

. . . s wSpace of comparison system outputs (true phase differances
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fundamental limitation; a large number of parameters (network
weights) need to be tuned in order to reach good performance
of estimation because all of input variables are fully connected
to its hidden nodes.

To cope with the drawbacks encountered in the RBFNS,
while still keeping their advantages, a new DOA estimation
algorithm with a neural fuzzy network is proposed in this
Hidden layer ~ paper. This neural fuzzy network is called SONFIN (self-con-

structing neural fuzzy inference network) that we proposed
previously in [15]. The SONFIN is a feedforward multilayer
network that integrates the basic elements and functions of a
Input layer traditional fuzzy system into a connectionist structure. In this
connectionist structure, the input nodes represent the corrupted
signal process and output nodes represent the desired signal
process and, in the hidden layers, there are nodes functioning

Output layer

X | as membership functions (activation functions) and fuzzy logic
_ rules (connection types). The proposed algorithm can find
Fig. 1. Structure of the RBFN. the proper fuzzy logic rules dynamically on the fly. Also the

SONFIN can always find itself an economical network size
mapping functionf such that whenever the available phase difn high learning speed and, therefore, can avoid the need of
ferences were fed into the network, the estimated DOA could bgpirically determining the number of hidden layers and nodes
obtained from the output of the network [12]. In [13], a RBFNn ordinary neural networks. Since the structure of the SONFIN
was used to handle the computational problem of the DOA ds-constructed from fuzzy IF-THEN rules, expert knowledge
timation and the spatial correlation matrix was used as netwarin be put into the network aspriori knowledge, which can
input. In the RBFN, the input data undergo a nonlinear transfarsually increase its learning speed and estimation accuracy
mation through the basis functions in the network hidden lay¢t6], [17]. These properties make SONFIN an attractive
Then, the responses of basis functions are linearly combined@ndidate for constructing an inverse mapping.
give the network output. Fig. 1 is a schematic diagram of the The SONFIN is applied to approximate the functional rela-
RBFN. Hence, the overall input—output transfer function of thiénship between phase differences (PDs) and DOA in this paper
RBFN has the form and, thus, the proposed scheme is called the PD-SONFIN algo-

rithm. Studies have shown that the received radar signal ampli-

. tude is not always a strong indicator of DOA; on the other hand,
there is a strong relationship between relative sensor phases
Yi=ai <Z WigZq T 9i> (D) (phase differences) and DOA [10]. The absolute phase of the

=1 received signal at each sensor also contains nonessential infor-

A Ryz) exp [—|z —my|?/207] mation. However, these phase differences contain artificial dis-
2 = gq(x) = Vi = (2)  continuities caused by phase transitions in received phase data
ZRk (x) Z exp [~ |z — my|2/207] which are measured from= radians to+= radians. Disconti-
P P nuities make it difficult for the neural network to learn the map-
ping from a small discrete set of training points. To deal with this
where o , difficulty, we take the sine and cosine transform of the phase
a;(e) output activation function; differences as input vectors which are fed into the SONFIN
0i _threshold value; to perform training and estimating tasks. Continuous data can
x Input vector; be obtained from this preprocess. Simulation results show that
m, ando, mean (anm-dimensional vector) and variance ofthe proposed scheme achieves higher accuracy by using much
the gth Gaussian function; fewer network parameters than the RBFN on the DOA estima-
Wiq network adjustable weights connecting networkon problem.
hidden nodes with network output; The rest of this paper is organized as follows. Section Il states
Zq gth hidden node which has normalized Gaussiahe problem formulation, where the preprocessing of input data
activation function. is also described. In Section Ill, the basic structure and func-

Generally,a;(e) is an identity function (i.e., the output node igion of the SONFIN is briefly introduced and then the PD-based
a linear unit) and?; = 0. Methods of training the RBFN are SONFIN is proposed. Section IV describes the performance of
beyond the scope of this paper; however, a detailed descriptl@A estimation either with or without additive phase errors for
of RBFN training methods can be found in [14]. both SONFIN and RBFN. Conclusions are summarized in Sec-
It has been shown that the RBFN with node-growing caption V.
bility requires many hidden units (neurons) to achieve the con-
vergence accuracy within an acceptable error margin for a mas-
sive number of input data in a high-dimensional space. Although
the RBFN can overcome the large computation and high-costThis section briefly describes the DOA estimation problem
problems in the conventional DOA estimation methods, it hasasad provides a scheme to handle the artificial discontin-

Il. PROBLEM FORMULATION
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g lnputsignal  dy; is the normalized physical spacing between the first
sensor and th&h sensor, where the normalization is made
d, with respect to the wavelength at the operating frequency;

14 »
d, R g » The adjacent sensor spacings (normalized to half-wave-
d, " lengths at the operating frequency) dre between sen-
sors 1 and 2L, between sensors 2 and 3, ahglbetween
Sensors sensors 3 and 4;
* ¢ is direction of arrival.
: 5 3 4 According to the (3), once the phase differences are measured,
the DOA can be determined through the complex hardware
X circuits with DOA processing algorithm. In conventional
DOA estimation methods, the sensor spacing must be chosen
#@4— Phase comparators optimally to achigve both low probability of ambiguity and
high accurate estimates of DOA. As the phased-array sensors
(antenna) become larger and more highly integrated into
, =%n 2P X3 =P physical structures, this uniformity requirement generates pro-

duction and maintenance costs that are increasingly prohibitive
for many military and commercial applications. Because the

A A

Receivers

h 4

Complex hardware circuits with DOA
processing algorithm

conventional methods are cost consuming, a new approach is
4 needed.
& estimate of DOA From a different point of view, the DOA estimation problem
can be considered as a mapping from the space of DA
Fig. 2. Block diagram of the four-sensor comparison system. to the space of phase diﬁeren(ze) asr — 9(9)_ Then the

DOA can be obtained via the inverse of this mapping directly,
P8 9 = f(x) = ¢ '(x). An exactly closed-form formula for

ding to DOA inf i h I itud Binnot be obtained due to the high complexity of this map-
corresponding 1o information, where only ampiitu ing. Note that neural networks don’t require any input cal-

comparison and phase comparison are the two most commoy,. .
ibration to correct the phase offset or sensor (antenna) mis-

afg);gﬁcize;n'lnIeE\é\éczzzléC?;Egsm Al‘i?;zlgu(ge;oir:gzgi?gi ar%?tch. Thus, a RBFN was used to approximate the unknown
P P P g pping functionf in [10], [12], and [13]. Once the available

is relatively easy to measure over a wide frequency band. 4 - )
y y q Y RhAse differences are fed into the network, the DOA estimate

contrast, phase-comparison approach is more accurate t be obtained f h K directly. This is b
amplitude-comparison approach. To enhance the estimation &2 P€ obtained from the network output directly. This is be-

curacy, our simulation results were achieved using the availaff/S€ the relationship between the input signal incident angle
phase differences only as input patterns of the DOA estimaf@fd the measured phase differences is generally a continuous
in this paper. Naval Research Laboratory’s report [18] indicaté4gction with small changes in angle yielding small changes in
that the cascaded end-phase configurations of four-elemEgfieived measurements. The RBFN can solve the high costs (in-
sensors is optimum from the consideration of efficiency @fuding production and maintenance costs) and computational
hardware usage and probability of ambiguity. Hence, we selé@mplexity problems described above. However, in the RBFN
a four-element cascaded end-phase left configuration as us@d for DOA estimation, a large number of network parame-
phase comparison system in our simulations. Goodwin in [18rs must be tuned to achieve high-estimation accuracy due to
describes that a four-element cascaded end-phase left interiterstructure. To solve this RBFNs defect and keep its advan-
ometer can be characterized by four antenna/receiver channiglges, we use a neural fuzzy network (SONFIN) to approxi-
so three available channel-pair phase differences are necessaate the inverse mapping functigrfor DOA estimation in this

and sufficient to extract all the DOA-dependent electricglaper. Hence, the input/output relationship of the DOA estima-
phase information. Fig. 2 shows the schematic diagram of titisn problem can be denoted by

system; the channel at the far left side is the phase reference. L

We assume that a plane wave is coming in at incident angle 0= f(x) ()

¢ from the boresight. Then the phase differences between a

signal in the reference sensor and signals in the other send$pgre

with additive phase errors can be well expressed by 6 estimated DOA;
S estimate off;

uous problem caused by the measured phase transiti
Many approaches have been proposed to measure input

Y1 = 27fd1i siné + o1 ®3) x input data [i.e., phase differences;s in (3)].
1 = . Considering the multi-input single-output case for clarity, we
hi =3 ZLJ’ 1=234 (4) assume that the number of the measured phase differences is
=t m [i.e., input datar = (z1. ..., Tm) = (L12: - > P1ms1)]s
where and the number of the estimation output is one. In general,

» ¢1; and dpy; are the phase difference and phase errthie neural networks operate in two phases: training phase and
(noise) between the first sensor and ttiesensor, respec- testing phase. In the training phase, the training data pairs
tively; (z, f(x)) are generated from (3) withp,; = 0, wheref(z) is
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the function to be approximated. The objective of learning
to minimize the error function

E =1 (yt) - ') ®) Layer §
wherey9(t) is the network output (desired output) ag@) is (cutput finguist nodes) -
the actual output (estimated DOA). The total number of trainir
pairs is 181 in our simulations. In the testing phase, anotr Layer5 |
set of data (301 patterns in our simulations) are derived frc (cutput term nodes) _
different signal conditions (either with or without additive phas Layer 4
errors) according to (3) and are used for testing. These test  (normalized nodes) —
data are fed into the trained network. Then the DOA can |
estimated via this inverse mapping network directly.

In our simulations, we find that the input phase difference Layer 3
(¢1i, i =1, ..., m+1) contain artificial discontinuities due to (rule nodes) =
the fact that each member of the ensemble of phase compar.
outputs can only be known as module. The discontinuous Layer 2

training patterns make both the SONFIN and RBFN difficu (input term nodes)
to perform the learning task successfully. To eliminate tt

irrelevant artificial discontinuities, we adopt tlephaseand

the so-calledquadrature representation of input signals by Layer 1
using the sine and cosine transform of phase differences (et linguistic nodes)
network inputs. According to this representation, the origin.

input vector containingn phase differences;, zs, ..., T
are transformed into the following enlarged vector: Fig. 3. Structure of the SONFIN,
b= (d)l? (/)27 () (/)an) S [_17 1]2nl (7)

where A key feature of the SONFIN structure is that a high-di-
$1 =sin(xy), .. mensional fuzzy system is implemented with small number of
Pm = sin(zy,), rules and fuzzy terms. This is achieved first by partitioning the
Pmt1 = cos(z1), .. input and output spaces into clusters efficiently through learning
Po2m = €OS(Tm). proper fuzzy terms for each input/output variable, and then by

Our simulation results showed that if we used these processedistructing fuzzy rules optimally through finding proper map-
data as the inputs of neural networks (either RBFN or SONFId)ng between input and output clusters in the SONFIN. In addi-
directly, we obtained satisfactory convergent accuracy. tion, due to the physical meaning of fuzzy IF-THEN rule, each
input node in the SONFIN is only connected to its related rule
[ll. EsTIMATION OF DOA USING A NEURAL Fuzzy NETWORK  nodes through its term nodes, instead of being connectalll to
r%]e rule nodes in Layer 3 of the SONFIN. This results in a small
JU ber of weights to be tuned in the SONFIN. In contrast, each
input node in the RBFN is fully connected to hidden nodes,
whose number is usually large as compared to the number of
A. Self-Constructing Neural Fuzzy Inference Network rule nodes Iearr_led i_n the S_ONFIN in order to reach good per-
(SONFIN) formance of estimation. This usually leads to a large number of

.. weights to be tuned in the RBFN.
The neural fuzzy network that we used for DOA estimation 1q structure of the SONFIN is shown in Fig. 3. This six-

is the so-calle_d SONFIN that we Proposed previously in u%yered network realizes a fuzzy model of the following form:
The SONFIN is a general connectionist model of a fuzzy logic

system, which can find its optimal structure and parameters au- Rulei: IF z; is A, and ... andz, is A%,

tomatically. There are no rules |_n|t|ally in the SONFIN. .Thgy THEN y is mé + a;xj +. ..

are created and adapted as on-line learning proceeds via simul- /

taneous structure and parameter learning, so the SONFIN gdrere

be used for normal operation at any time as learning proceeds4§ fuzzy set of theth linguistic term of input variable ;;
without any assignment of fuzzy rules in advance. A novel net-myg  center of a symmetric membership functiongn

work construction method for solving the dilemma between the aj consequent parameter.

number of rules and the number of consequent terms is devélis noted that unlike the traditional Takagi—-Sugeno—Kang
oped. The number of generated rules and membership functighSK) model where all the input variables are used in the
is small even for modeling a sophisticated system. The SONFttput linear equation, only the significant ones are used in the
always produces an economical networks size and the learnB@NFIN; i.e., somezjs in the above fuzzy rules are zero. We
speed and modeling ability are superior to ordinary neural nshall next describe the functions of the nodes in each of the six
works. layers of the SONFIN.

In this section, we shall introduce a neural fuzzy network a
then propose a high-resolution DOA estimation scheme ba:
on this network with the phase differences as input patterns.
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The SONFIN consists of nodes, each of which has some fi-Layer 4. The number of nodes in this layer is equal to that in
nite fan-in of connections represented by weight values frobayer 3 and the firing strength calculated in Layer 3 is normal-
other nodes and fan-out of connections to other nodes. Assed in this layer by
ciated with the fan-in of a node is an integration functipn

which serves to combine information, activation, or evidence f (UE4)) =>"u anda®(f)=u/f  (12)
from other nodes. This function provides the net input for this i=1
node wherer is the number of rule nodes in Layer 3. Like Layer 3,

. . (4) - . . .
. B k) (k) k). (k) (k) (k) the link weight(w,;™) in this layer is unity, too.
netinpue = f (“1 1t ey Up T WL Wy e, Wy ) Layer 5: This layer is called the consequent layer. Two types

h OINOREINC : hi of nodes are _used !n this layer and _they are denoted as blank
W(;Sre A 2y are inputs to this node, and, - ded circles in Fig. 3, respectively. The node denoted by
w;’, ws , ..., wp  are the associated link weights. The su;

erscrint( k) in the above equation indicates the laver numb ar blank circle (blank node) is the essential node representing a
per ipt( .) nt Ve equation ind . yer nu iuZzy set (described by a Gaussian membership function) of the
This notation will also be used in the following equations.

X . o output variable. Only the center of each Gaussian membership
second action of each node is to output an activation valueas' .. . :
a function of itsuet. function is delivered to the next layer for the LMOM (local mean
1Enput of maximum) defuzzification operation and the width is used
output = 05’“) = a(netinpur) = a(f) for output clustering only. Different nodes in Layer 4 may be
connected to a same blank node in Layer 5, meaning that the

(k) , - : - .
whereo;™" denotes the output of théh node in the layek, same consequent fuzzy set is specified for different rules. The
anda(-) denotes the activation function. We shall describe thgnction of the blank node is

functions of the nodes in each of the six layers of the SONFIN s

as follows. f= Zu§°> and a®(f) = f - a} (12)
Layer 1: No computation is done in this layer. Each node in i=1

this layer, which corresponds to one input variable, only tranghere s is the number of nodes in Layer 4 anf = mj, is

mits input values to the next layer directly. That is the center of a Gaussian membership function. As to the shaded

F= + D and o — 7. ®) node, it is generated only when necessary. Each node in Layer
’ 4 has its own corresponding shaded node in Layer 5. One of

From the above equation, the link weight in layer (Qnél)) is the inputs to a shaded node is the output delivered from Layer

unity. 4 and the other possible inputs (terms) are the input variables

Layer 2: Each node in this layer corresponds to one lirffom Layer 1. The shaded node function is

guistic label (small, large, etc.) of one of the input variables in no i} 3

Layer 1. In other words, the membership value, which speci- =Y diz; anda®(f) = f- uf” (13)

fies the degree to which an input value belongs to a fuzzy set is j=1

calculated in Layer 2. With the choice of Gaussian membershifhere the summation is over the significant terms connected to

function, the operation performed in this layer is the shaded node only amj is the corresponding parameter.

Combining these two types of nodes in Layer 5, we obtain the

whole function performed by this layer as

(1~ ms)”
(@) = it @(fy = of
fi () = - ada®(p=c/ @
wherem;; ando;; are, respectively, the center (or mean) and

the width (or variance) of the Gaussian membership function of A
the jth partition for theith input variablew;. Hence, the link ~ Layer 6: Each node in this layer corresponds to one output

weight in this layer can be interpretedas;. variable. The node integrates all the actions recommended by

Layer 3: A node in this layer represents one fuzzy logic ruikayer 5 and acts as a defuzzifier with

a®(f) = Z aj»a:j + a} uz@. (14)
j=1

and performs precondition matching of a rule. Here, we use the ©) ¢ ©) ©
following AND operation for each Layer-3 node: f (% ) =Y u” anda®(f) = f (15)
i=1
f (u§3)> _ ﬁugz) — D@ [Ds (T -T:)] wheret is the number pf nodes in Layer 5. .
e Two types of learning (structure and parameter learning)
37 _ are used concurrently for constructing the SONFIN. The
anda™(f) = f (10) structure learning includes both the precondition and conse-
where quent structure identification of a fuzzy IF-THEN rule. Here
q number of Layer-2 nodes participating in the IF part ohe precondition structure identification corresponds to the
the rule; input-space partitioning and can be formulated as a combina-
D;  diag(1/o1, 1/0i2, .-, 1/oun); tional optimization problem with the following two objectives:
m; (M1, Mg, .., M) to minimize the number of rules generated and to minimize

The weights of the links in Layer(augg)) have the value of one. the number of fuzzy sets on the universe of discourse of each
The outputf of a Layer-3 node represents the firing strength ahput variable. As to the consequent structure identification,
the corresponding fuzzy rule. the main task is to decide when to generate a new membership
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) Training/testing
True Phase differences Data
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Four-sensor Phase v . v » | Neural Fuzzy 0
Ir}put Comparison System \ Pre-plr;) cissmg Network estimate of
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X
( Interferometer ) ( Functional Model ) ( SONFIN )

Fig. 4. Flow chart of DOA estimation using the SONFIN.
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4r g 35
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[‘ES SONFIN 10}
21
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-4 . . 0135791113151719212325
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Epoch Time steps ( X 500)
Fig. 6. Structure-grovying curve indicating the increasing of parameter number
Fig. 5. Convergence curves of the SONFIN and RBFN. of the SONFIN during its learning process.
function for the output variable and which significant terms 12 : . .
(input variables) should be added to the consequent part (a Hidden Nodes | RMS Error
linear equation) when necessary. For the parameter learning, 19! 49 11.1689
based upon supervised learning algorithms, the parameters ol 4 59 75116
the linear equations in the consequent parts are adjusted by = gl 69 3.9823
either least mean squares (LMS) or recursive least squares § 79 2.7159
(RLS) algorithms, and the parameters in the precondition part @ 6l . gg é‘gggg
are adjusted by the backpropagation algorithm to minimize a I 109 0.1839
given cost function. The SONFIN can be used for normal oper- & N 119 0:0823
ation at any time during the learning process without repeated £
training on the input/output patterns when on-line operation E N
is required. There are no rules (i.e., no nodes in the network
except the input/output nodes) in the SONFIN initially. They 0

are created dynamically as learning proceeds upon receiving 40 66 86 1(')0 120
on-line incoming training data by performing the following
learning processes simultaneously: A) input/output space
partition; B) cor?s'truc.:tlo.n of fuzzy rules; C) opt!mal .Consequerlliﬁg. 7. Effect of the number of hidden nodes in the RBFN on rms error.
structure identification; D) parameter identification. In the
above, processes A, B, and C belong to the structure learning
phase and process D belongs to the parameter learning phaga. each rule will be added to the consequent part (forming a
In the structure identification of the precondition part ofinear equation of input variables). The combined precondition
the SONFIN, the input space is partitioned in a flexible wagind consequent structure identification scheme can set up an
according to an aligned clustering-based algorithm. As to teeonomical and dynamically growing network automatically.
structure identification of the consequent part, only a singletdinis makes the SONFIN can grow its rule nodes, term nodes,
value selected by a clustering method is assigned to each rahel link weights upon necessary on the fly and, thus, own
initially. Afterwards, some additional significant terms (inputhe so-calledself-constructioncapability. The details of the
variables) selected via projected-based correlation measl@&@ning processes for SONFIN are described in [15].

Number of hidden nodes
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Fig. 8. (a) Testing results of the trained SONFIN estimator, where the desired output is shown by solid line “—,” and the actual network outpubby(bircle
(c), and (d) Testing results of the trained RBFN estimafor= 79, 99, 119, where the desired output is shown by solid line “—,” and the actual network output

by circle “0.”

B. PD-SONFIN for DOA Estimation trained by the input/output paifg, f(®)). Then the trained
SONFIN is ready for DOA estimation. Once each input vector

F|g.4showstheflovychartof D_OA estimation US'”QISONF”\dcorresponding to a DOA value) is given, the output node in
based on channel-pair phase differences. The configuration ey 6 ofthe SONFIN indicates directly a DOA estimate. Inthe
the proposed DOA estimation scheme is composed of the fglsting phase, all the testing data are processed through the same
lowing units. preprocessing and normalization procedures. After feeding the

1) Phase comparison unfinterferometer), which is used to processed data into the trained SONFIN, we can obtain the es-
measure the phase differences. timated DOA values from the output node of SONFIN.

2) Preprocessing uniffunctional model), which is used to
eliminate the artificial discontinuities caused by phase
transitions as mentioned Section II. o This section illustrates the performance of the proposed DOA

3) Neural fuzzy network prediction ufBONFIN), whichis  oimator either with or without additive phase errors. The sim-
to estimate the DOA from the preprocessed phase diffg[r,tions are conducted by emulating the physical antenna (cov-
ences. erage 2 GHz~4 GHz) deployed in our real system. In our

The operation takes place as follows. First, we assume system, a four-element cascaded end-phase left interferometer
(m + 1)-element sensor system. From the phase comparigerused to generate three phase differences. We take sine and
unit, we can obtainm-dimensional phase difference vectorsgosine transformation of three phase differences as network in-
(z1, z2, -+, zm), Which are preprocessed to eliminate artifiputs. The system performance is verified for input signal with
cial discontinuities. After preprocessing, it will generate-#li- frequency 2.702 GHz. The optimal sensor spacing for high DOA
mensional enlarged vector$, = (¢1, ¢2, - -, ¢d2,n), Which estimation accuracy was chosen based on the theoretical anal-
are the real inputs to the DOA estimation network, SONFINsis given in [18]. Our previous verification results showed that
Before entering the SONFIN, a normalization process is ustte physical antenna deployed was realizable and the DOA es-
to rescale each enlargeah2dimensional vector ii—1, 1]*™ timation accuracy reached the highest value when the sensor
to a 2n-dimensional vector if0, 1]?™. Due to the property of spacing was chosen dg = 9, L, = 6, andL3z = 7 times
SONFIN, all the training and testing vectors need to be normaif half wavelengths at reference frequency 4 GHz. This pre-
ized to the range of [0, 1]. The normalized vectors are put intdous study was performed by using conventional DOA esti-
the SONFIN for training. In the training phase, the SONFIN imation technique through complex hardware with digital signal

IV. SIMULATION RESULTS
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1 ‘ ‘ TABLE |
PERFORMANCE COMPARISON OF THESONFINAND RBFN ESTIMATORS ON
THE DOA ESTIMATION PROBLEM
0:SONFIN (RMSE=0.0801)
B 0.5}
3 RBFN
8 Methods SONFIN
2 Nr=79 Nr=99 Nr=119
2
W 0.5 :RBFN (RMSE=0.4559,Nr=99) ’ Estimation
Accuracy 0.0801 2.7159 0.4559 0.0823
1 . . (degree)
10 20 30 40 50 60
Sampling point Number of
57
(a) nodes 86 106 126
0.3
_ 021 6:SONFIN (RMSE=0.0801) Number of
> 41 1027 1287 1547
o 0.1 parameters
S .
a o%
£
S -0.1 _ _
| 0| XREFN (RMSE=0.0823 Nr=11) ofa §|>_<-element v_ector and the c_orrespond_mg DOA value form
-0. a training pattern in the form of (input, desired output). Hence,
‘ as a total, we have 181 training patterns. With the same proce-
1 20 30 40 50 60 dure, we can obtain 301 (input, desired output) pairs as testing
Sampling point patterns by dividing the range of DOA values45 to+45, into
(b) 0.3 intervals. In our simulations, the same training and testing
data sets are fed into the SONFIN and RBFN for DOA estima-

Fig. 9. (a) DOA estimation error comparison between the RBFN (With= tion. .. .
99) and SONFIN. (b) DOA estimation error comparison between the RBFN N the training phase, after 150 epochs of learning, the con-

(with V.. = 119) and SONFIN. verged root mean squared (rms) error of the SONFIN is below
1073, but that of the RBFN is only below one. Fig. 5 shows
the convergence curves of the RBFN and SONFIN, respectively.
The convergence rate of the SONFIN is much higher than that
of the RBFN. The structure-growing curve of the SONFIN is
given in Fig. 6, which indicates the on-line self-construction ca-
pability of the SONFIN as learning proceeds. The rms error in
In the absence of additive phase errors, (3) and (4) can BOA of the RBFN with respect to the number of hidden nodes
written as (Nr) is shown in Fig. 7. To further reduce the rms error, we must
increase the number of hidden nodes.
In the testing phase, the DOAs obtained from the SONFIN

processing program. We thus adopt the above parameters in
simulations of this paper.

A. Performance of DOA Estimation Without Phase Errors

@1, =2mdy;sin 6 (16) and those from the RBFN with different hidden node numbers
izl (Nr = 79, Nr = 99, or Nr = 119) are shown in Fig. 8. The

di=3Y Lj,i=234 (17)  testing results show that the SONFIN successfully produced ac-
J=1 tual output “0” very close to the desired DOA “—,” For compar-

ison, the errors in DOA estimation obtained from the SONFIN

By empirical information, the DOA estimates at intervals frorind those from the RBFN are plotted in Fig. 9. For this example
_45° to +45° are sufficient in the real scenario. Hence, th€aSe: the S|mulat|on_ results show that the requm_ad number_of
training data are generated as follows. We divide the rangetBpaPle parameters in the SONFIN is about 1/37 time of that in
DOA values,—45 to+45, equally into 180 intervals, with eachthe RBFN under t_he same rms error condition. A detailed per-
interval being 0.5 As a result, we have 181 DOA values ifPrmance comparisons are listed in Table |I.

the set{—45.0, —44.5, -- -, +44.5, +45}. In Fig. 2, the inter- . _

ferometer receives a single source. Then we calculate the thieePerformance of DOA Estimation with Phase Errors
phase-difference valuegyo, ¢13, @14, COrresponding to each In this simulation, the training was performed with 181 data
of these DOA values from (16) and (17). Through the preprsets derived from (16) and (17) (assuming the absence of phase
cessing and normalization units, each three-element phase-€ifors), whereas the testing was performed with 301 data sets
ference vector is transformed into a six-element vector. The paontaminated with uniformly distributed phase errors derived
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of parameters in the SONFIN is about 1/37 time of that in the
RBFN under the same rms error in DOA. Notice that this re-
sult of parameters reduction is based on the specific example
presented in this paper, and is not a general conclusion that
applies to all SONFIN/RBFN comparisons. With these results
achieved in this paper, the proposed neural fuzzy scheme could
be widely applied to military applications (such as reconnais-
sance and threat reaction) for achieving high accurate DOAs for
certain electronics support measures. Especially, the proposed
method can be applied to the problem of moving target tracking.
As the targets move, their motion is tracked through a SONFIN
which uses the data provided by the most recent output of the

Signal-to-Noise ratio (dB)

Fig. 10. RMS error in DOA of the SONFIN and RBFNW( = 119) under
the additive phase error conditions with different SNRs.

from (3) and (4) to simulate real measurements. In (3), the ad/H
ditive phase error (noise) term is given by

2]
o [3]
Spp=—2¢ 234 18
¥1 \/%dli 4 (18) 4]
180°
__180° 19) [
76 = L VSNR (19)
[6]

where signal-to-noise ratio (SNR) is in terms of power. The
above additive phase error (noise) term is given by reference%]
[1], [18] . For comparison, the errors in DOA estimation ob-
tained from the SONFIN and those from the RBFN with additive
phase errors at different signal-to-noise ratio values are plotted®l
in Fig. 10. The simulation results show that the SONFIN out-
performs the RBFN by yielding smaller rms errors in noisy en- [g]
vironments. In conclusion, the SONFIN appeatrs relatively more

insensitive to noise than the RBFN. (10]

V. CONCLUSION [11]
In this paper, we have proposed a neural fuzzy scheme for el
timating the direction of arrival of moving targets based on the
phase differences from an interferometer. In addition, to avoidL3]
the discontinuities caused by the input phase transition, we use
the quadrature representation of the phase differences. Unlike
conventional eigen-based DOA estimator, the proposed schemg;
requires no large amount of computations and does not need
to model signal. The main advantage of the proposed networ[lﬁ]
(SONFIN) is that it always produces an economical networks
size and the learning speed and modeling ability are superior
to ordinary neural networks. Hence, the trained SONFIN auto6]
matically estimates DOA for different phase differences so th
neither numerical methods nor graphical methods need to be
used. We use two networks, RBFN and SONFIN, to estimate
DOA at different SNR values (from-5 to 25 dB). Simulation 18]
results show that the SONFIN always produces actual outpytg
very close to the desired DOA values, and the required number

sensor array to update the existing estimate of target angles.
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