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Performance of an Array of Circular Waveguides with
Strip-Loaded Dielectric Hard Walls

Sergei P. Skobelev, Member, IEEE,and Per-Simon Kildal, Fellow, IEEE

Abstract—An infinite planar periodic antenna array of
radiating open-ended circular waveguides is considered. The
conducting waveguide walls are covered with dielectric layers
loaded with longitudinal conducting strips for providing the hard
wall boundary condition. Analysis of the array is carried out by
the mode-matching method. The waveguide modes involved in the
method are calculated by using the asymptotic strip boundary
condition. It is shown that they are split into an independent
subsystem of TE modes for the whole cross section and two
independent subsystems of TM modes: one is for the central
region and another is for the layer region. The calculations show
that the operation of the hard waveguides in an array with small
element spacing is similar to that of the multimode smooth wall
waveguides completely filled with dielectric. For large diameters
and element spacing, the hard waveguides have significant advan-
tages over the smooth ones. It is shown that unlike an individual
hard waveguide, the aperture efficiency of such a waveguide in
array has a nonmonotonic dependence on the waveguide radius.
The results characterizing the behavior of the aperture efficiency
and cross-polarization level in a frequency band as well as the
contribution of certain waveguide modes in the reflected power
are presented and discussed. The examples of the element patterns
corresponding to minimal cross polarization are also given.

Index Terms—Antenna arrays, waveguides.

I. INTRODUCTION

A N ATTRACTIVE modern horn antenna is a conical horn
in which the inner metallic surface is coated with a dielec-

tric layer, which is loaded with longitudinal conducting strips to
provide the so-called hard wall boundary condition [1]. Such
a horn is easy to fabricate and it can potentially provide both
high-aperture efficiency and low cross polarization due to the
presence of a uniform copolar field distribution over the cen-
tral part of its aperture at the design frequency. A good model
of such a hard wall horn, when the flare angle is small, is the
corresponding open-ended waveguide. Such a hard strip-loaded
circular waveguide model has been studied in [2] and [3], where
there have been presented calculated characteristics of the oper-
ating modified TE mode and stripline mode for the first (dom-
inant) azimuth harmonic as well as the corresponding radiation
patterns, aperture efficiency, and cross polarization obtained by
the Huygen–Kirchoff integration method. The presented results
show good capabilities of the hard strip-loaded horn as an indi-
vidual antenna and, in this connection, it is of interest to study
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the performance of such a horn as an element of an array. In this
case, however, the electromagnetic interaction always existing
between the array elements leads to excitation of not only the
dominant mode at the horn aperture but also the modes of other
orders and all these modes should be taken into account in the
array analysis.

In the present paper, the performance of the hard strip-loaded
circular horn in an array is studied on the basis of solving a
problem about radiation from an infinite planar periodic an-
tenna array of the corresponding open-ended waveguides. The
problem is solved by the mode-matching method [4], which im-
plies involving a complete system of vector Floquet harmonics
in free-space and a complete system of vector harmonics in
the waveguide. Unlike the Floquet harmonics, which are well
known [5], the hard strip-loaded waveguide harmonics have not
been considered in the literature except for the particular case in
papers [2] and [3] mentioned above. The calculation of the prop-
agation constants and construction of the system of waveguide
harmonics is carried out below on the basis of using the asymp-
totic strip boundary condition [6], according to which the strips
are replaced by a continuous anisotropically conducting tube.
Such a replacement considerably simplifies the calculations in
comparison with those made in [3] on the basis of the integral
equation method and at the same time, as shown for other similar
problems, it gives good agreement both with experimental data
and with the results obtained by much more complex methods
[7], [8].

II. FORMULATION AND SOLUTION OF THEPROBLEM

A. Geometry and Excitation of the Array

Consider an infinite planar array of semi-infinite open-ended
circular waveguides arranged in a regular rectangular or trian-
gular lattice in the plane of a Cartesian rectangular coor-
dinate system with the corresponding unit vectors, ,
and , as shown in Fig. 1(a) where is the element spacing
in a row, is the spacing between the rows, andis a shift of
the neighbor rows with respect to each other equal to for
a triangular lattice or zero for a rectangular one. All the wave-
guide openings have a common flange, and the waveguide walls
of radius are coated with dielectric layers of relative permit-
tivity and thickness , where is the radius of the
empty central part [Fig. 1(b)]. The inner surfaces of the layers
are loaded with longitudinal metal strips of zero thickness. The
flange, waveguide walls, and strips are assumed to be perfectly
conducting and the strip width and spacing are much smaller
than the operating wavelength, so that we can approximately
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Fig. 1. (a) Geometry of array face. (b) Cross section of waveguide.

replace the strips by an anisotropic tube perfectly conducting in
the longitudinal direction only.

Let the waveguides be excited by the operating modes to be
determined below, propagating toward the apertures as well as
having identical amplitudes and linearly progressing phases in

- and -directions specifying the direction of the main beam.
Under these conditions, it is required to determine the radiated
and reflected fields and, on the basis of them, to calculate the
array characteristics.

B. Modes in the Hard Strip-Loaded Waveguide

The problem formulated above will be solved by the mode-
matching method that implies, in particular, involving a com-
plete system of eigenmodes in the waveguide. To determine the
waveguide modes, we will follow the general approach applied
in [9] for similar problems.

Omitting the time dependence factor , we write the
electric and magnetic fields for theth azimuth harmonics in
the waveguide in the following form:

rot grad div

grad div rot (1)

where

(2)

are longitudinally directed magnetic and electric Hertz vectors,
respectively,

(3)

and , ( ), are unknown amplitude constants,
and are the Bessel and Neumann functions of

the th order, respectively, and are transverse propagation
constants for the central ( ) and layer ( ) regions,
respectively, related to the longitudinal propagation constant
by the formula

(4)

is the wavenumber, and , are di-
electric and magnetic constants of free-space. The polar coordi-
nated and with the corresponding unit vectors and are

related to the Cartesian’s ones by the ordinary way:
and .

The electromagnetic field (1) must satisfy a boundary condi-
tion on the perfectly conducting wall, as
well as a boundary condition on the inner surface of the layer
loaded with strips. Assuming that the strip width and spacing
(period) is small enough (smaller than , [7], [8]), we replace
the strips by a continuous longitudinally conducting tube and
apply the asymptotic strip boundary condition (ASBC) [6] to
such a boundary. According to the ASBC, the longitudinal elec-
tric component must vanish on the tube, i.e., ,
while the azimuthal electric and longitudinal magnetic compo-
nents must be continuous across the tube:

, . Sub-
stituting (2) and (3) into (1), performing the differentiation, and
satisfying the indicated boundary conditions, we obtain the fol-
lowing system of equations for the amplitude and propagation
constants indicated above:

(5)

(6)

(7)

As we can see, the obtained system consists of an indepen-
dent subsystem (5) of TE modes and two additional indepen-
dent subsystems (6) and (7) of TM modes in the central and
layer regions, respectively. This result, differing from the case
of a waveguide loaded with a dielectric layer without strips,
where only axially symmetrical TE and TM modes are decou-
pled while the others are not, has a simple physical interpreta-
tion. The currents of the TM modes have no transverse com-
ponents and, therefore, the longitudinally conducting tube is
equivalent to an ordinary isotropically conducting one. There-
fore, from the viewpoint of the TM modes, the waveguide under
consideration consists of two isolated regions: an empty circular
waveguide of radius and a coaxial waveguide filled with di-
electric. For the TE modes, the longitudinally conducting tube
is “transparent” for the tangential electric field component and,
therefore, the indicated regions are not isolated.

The constants and are determined from the first two
equations of (5) by the formulas

(8)

(9)

Substitution of (8) and (9) into the third equation of (5) leads
to the dispersion equation

(10)

for and , which is to be solved together with the additional
relation (4).
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Designating the roots of (10) as and ,
, as well as taking into account the polar-

ization degeneration of the axially nonsymmetrical modes,
we can construct the following system of orthonormalized
transverse vector wave functions for the TE modes

(11)

written for the central region ( ) of the waveguide
in the form similar to that used in [5] for the vertical () and
horizontal ( ) polarization. The corresponding expression for
the layer region ( ) is obtained from (11) by substi-
tution of and by and

, respectively, where and
are determined by the coefficients in front of in (8) and

(9). The normalizing coefficient in (11) is determined by
formula

where is the Kronecker symbol and the subscripts at
and are omitted for brevity.

The vector wave functions for the TM modes are available in
a more general form in [5]. We write them here for the central
region in the following notations:

(12)

where are the
normalizing coefficients, and are roots of equation (6).
The wave functions for the TM modes in the layer region

, when and simultaneously, are
determined by an expression obtained from (12) by substitution
of , , and by ,

, and
,

respectively, where are roots of the equation
resulted from (7). The

case of and corresponds to the nondegenerated
TEM mode for which

(13)

C. Application of the Mode-Matching Method

Having determined the system of the waveguide modes, we
can now apply the mode-matching method for the further solu-
tion of the problem. Representing the total field in the wave-
guide as an infinite sum of incident and reflected waves, we
write its transverse components in the central part of the aper-
ture in the form

(14)

(15)

where and are unknown ampli-
tudes of the reflected TE ( ) and TM ( ) modes and
their longitudinal propagation constants, are specified
amplitude of the incident TE modes (excitation of the array by
the TM modes is not of interest here) and . The corre-
sponding expressions for the transverse components of the field
in the coaxial region of the aperture are obtained from (14) and
(15) by substitution of and by unknown ampli-
tudes of the reflected TM modes and their propagation
constants in the layer, respectively, as
well as is substituted by .

The transverse components of the radiated electric and mag-
netic fields on the array aperture are represented as infinite sums
of the vector Floquet harmonics

(16)

(17)

where are unknown amplitudes of the TE ( ) and TM

( ) modes, , ,

, and
are propagation constants,and are angles spec-

ifying the main beam direction, measured from theand axes,
respectively, and

are the orthonormalized vector wave functions of the TE and
TM modes [5].

The projection matching of fields (14) and (15) and the cor-
responding representations for the layer region with fields (16)
and (17) with account for the boundary condition on the flange
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and orthogonality of the waveguide and Floquet modes on the
corresponding regions leads to the system of linear algebraic
equations

(18)

where the asterisks denote complex conjugations, and the matrix
elements are determined by the formulas

for and simultaneously and

where , arctg , and
the subscripts at as well as those at , ,

, and are omitted for brevity.
The amplitudes of the reflected waveguide modes and radi-

ated Floquet modes are determined as a result of a numerical
solution of the system (18), and are then used for calculation
of the array element pattern, aperture efficiency, and other array
characteristics.

III. N UMERICAL RESULTS AND DISCUSSION

A. Some Features of the TE Modes

The first stage in the solution of the problem formulated in
Section II is a numerical analysis of the waveguide modes,
which is based on solution of the corresponding dispersion
equations. Note once more that unlike the indicated TM modes,
the TE ones have not previously been studied in the literature,
and their detailed analysis is a subject of a separate paper [10].
Since such an analysis is beyond the scope of the present study,
we will only mention the most significant features of the TE
modes.

The dispersion equation (10) is numerically solved with re-
spect to . In principle, the circular waveguide with two-layer
filling can support complex modes at some parameters of the
filling. In our cases of small layer thickness and relatively small
layer permittivity, the complex modes have not been detected
and, therefore, the constantis real and positive, while deter-
mined by from (4) can be either real or imaginary. In the latter
case, the Bessel functions of should be correspondingly
replaced by the modified Bessel functions of .

The first azimuth harmonic ( ) with the transverse
propagation constant equal to zero corresponds to the hard wall
condition. According to (11), the field in the central region of
the waveguide is in this case a uniform linearly polarized plane
wave and equation (10) can be rewritten in the form

(19)

where and . The numerical
solution for the first root of (19) is presented in Fig. 2 as the nor-
malized layer thickness versus the normalized inner
radius . Such a form of representation is more universal than
the curves given in [2] and allows us to determine the layer thick-
ness corresponding to the hard wall for a wide range ofand .

The mode corresponding to the hard wall as indicated above
is assumed to be the operating mode corresponding to the dom-
inant TE mode of an empty waveguide. However, the root of
(10) for this mode has the second ordinal number. Nevertheless,
to keep the correspondence mentioned above, we design it as

while the first root designed as , ( ), corre-
sponds to the so-called stripline mode [11], [12]. The role of the
latter, which is a surface wave having no cutoff, will be noted
below.

Numerical solution of (10) as well as its approximate analyt-
ical solution for the cases when the order of the Bessel function
is much grater than its argument show that the stripline modes
exist not only for the first azimuthal harmonic but also for all
higher order harmonics. For the axially symmetrical modes, i.e.,
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Fig. 2. Normalized layer thickness corresponding to the hard wall condition
versus normalized inner radius.

, the magnetic field has no azimuthal component and,
therefore, the longitudinal strips have no effect for this case.

Calculation of the propagation constants has been tested by
comparison of the results with data available in the literature.
For example, the calculated propagation constants of the oper-
ating mode TE and stripline mode TE for a waveguide with

, , and are and
, which are in a good agreement with the plots

presented in Figs. 11 and 12 in [3].

B. Array Characteristics

The results to be discussed below have been obtained for ex-
citation of the array by the operating TEmodes of vertical
or/and horizontal polarizations. The infinite algebraic system
(18) has been truncated so that only waveguide and Floquet
modes satisfying the conditions Im and

has been kept. After solving the truncated system (18), the
components of the array-element pattern corresponding to the
unit power of the incident wave have been calculated by for-
mulas

(20)

The square of the appropriate component of (20) at cor-
responds to the array aperture efficiency for the broadside. The
cross-polarization level has been calculated by using the tech-
nique given in [13]. In our notations, the cross polarization levels
are determined by formulas

lg

lg (21)

where superscripts and denote vertical and horizontal po-
larization of excitation. The calculations has been controlled

(a)

(b)

Fig. 3. Element patterns of waveguide array withb = 0:32�, d = 0:7�,
d = d

p
3=2, and� = d =2 (hexagonal lattice) at vertical polarization of

excitation. (a) Horizontal plane. (b) Vertical plane.

by verification of the energy balance relationship as well as by
other checks recommended in [5].

The influence of the hard strip-loaded walls on the perfor-
mance of arrays with relatively small-element spacing is illus-
trated by an array of waveguides of radius arranged
over a hexagonal lattice with . The hard wall con-
dition is realized by strip-loaded dielectric layers with
and . The waveguides are excited by the operating
modes TE of vertical polarization. The array-element patterns
in the horizontal ( ) and vertical ( ) planes are shown by
solid curves in Fig. 3(a) and (b), respectively. The comparison
is made with the case of smooth-walled empty waveguides ex-
cited by the dominant TE modes of vertical polarization. The
element patterns for this case are shown in Fig. 3(a) and (b) by
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Fig. 4. Aperture efficiency versus radius of waveguide for array withd =

2b+ 0:05� d = d
p
3=2, and� = d =2 (hexagonal lattice).

the curves with large dashes. The patterns have dips causing the
effects of blindness in both main planes for the indicated po-
larization [5]. We see that like in arrays of rectangular waveg-
uides [14], the hard walls remove the dips. However, the ele-
ment pattern tapers off faster corresponding to increasing the
reflected power when deflecting the main beam from the broad-
side. The reflected power is mainly transferred by the prop-
agating operating mode TE, strip-line mode TE , stripline
modes of higher orders and coaxial TEM mode, although the
latter is not excited when scanning in the-plane. The hard wall
waveguide, therefore, is multimode and its operation is similar
to that of a smooth wall waveguide completely filled with an
appropriate dielectric. This conclusion is illustrated by the el-
ement patterns shown in Fig. 3(a) and (b) with short dashes,
corresponding to a dielectric with when the propagating
modes are TE , TE , and TM . Note that the element pat-
terns of the hard wall waveguide array for the horizontal polar-
ization are similar to those of the vertical polarization, while the
patterns of the empty smooth wall waveguides have no dips for
the horizontal polarization [5], which significantly differ from
the case of vertical polarization.

Thus, the example presented above as well as some similar
results not included here confirm the conclusion made in [15]
regarding partial filling of a waveguide cross section with di-
electric. The indicated filling including the hard wall case does
not give any significant advantages in comparison with a uni-
form filling from the viewpoint of achieving good of wide-angle
scanning performance. However, the partial filling allows sav-
ings in dielectric material and decreases the weight, which is of
interest for many applications.

The use of the strip-loaded dielectric hard walls gives
significantly better results for waveguides of larger diameters.
The aperture efficiency versus radius of an individual hard
open-ended waveguide approximately calculated by the method
of Huygen–Kirchoff without accounting for the reflections

TABLE I
PERCENT DISTRIBUTION OF REFLECTED POWER OVER MODES OF

HARD WALL WAVEGUIDE

from the aperture has been presented in [2] for different values
of the layer permittivity. The similar results, but for hard
waveguides in an array, are presented in Fig. 4. The lattice
of the array is hexagonal with spacing .
Note that the presented aperture efficiency for the broadside is
independent of polarization. This fact follows from the system
(18) and is explained by the circular symmetry of the wave-
guide itself and by the symmetry of its excitation including
the mutual coupling. We see that unlike the monotonically
increasing functions in [2], the aperture efficiency of the hard
waveguide in an array versus radius has an oscillatory shape.
Such a behavior is explained by changing the number and
position of the array factor grating lobes in free-space [16] as
well as by changing the number of propagating modes in the
waveguide. Another difference is due to the aperture efficiency
itself. To avoid confusion, note that the aperture efficiency
for an individual waveguide is determined with respect to its
aperture area , while the efficiency of an element in an
array is determined with respect to the area of the array cell

. Therefore, the limit of the aperture efficiency when
amounts to 100% for an individual hard wall waveguide

and to % for the same waveguide in an
array. The latter limit for the case of a fixed gap between the
waveguides is equal to %. Therefore, it is not
possible to obtain 100% aperture efficiency in arrays of circular
waveguides with large apertures.

Some results characterizing the contribution of certain wave-
guide modes into the reflected power for two values of the hard
wall waveguide radius are presented in Table I. The total re-
flected power reduces when the waveguide radius and layer per-
mittivity increase, as expected. The calculations show that the
reflection of the operating mode TEitself is insignificant. The
main contribution to the reflected power is made by the higher
order modes. It should be noted in this connection that in a real
horn fed through a single-mode waveguide, the higher order
modes will be rereflected from the horn throat and returned back
to the aperture, affecting thereby the horn performance, in par-
ticular, the aperture efficiency behavior discussed above. How-
ever, the study of such a situation is beyond the scope of this
paper.
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(a)

(b)

Fig. 5. Aperture efficiency versus frequency deviation for array withd =

2b+0:05�, d = d
p
3=2, and� = d =2 (hexagonal lattice). (a)b = 0:9�.

(b) b = 1:3�.

The solid curve with crosses shown in Fig. 4 for comparison
corresponds to the aperture efficiency of an array of empty
smooth wall waveguides. In the indicated range of the wave-
guide radius, such an array is characterized by low (less than
1%) level of reflected power except for the region near the
anomaly (its nature is similar to that of the dips in the element
patterns shown in Fig. 3 and in [5]) where the reflected power
reaches nearly 14%, and the aperture efficiency respectively
decreases down to 59%. The calculations show that if the
layer permittivity is greater than 2.5, the hard walls provide
higher aperture efficiency than for the smooth wall case when
the waveguide radii exceed 1.25. If the layer permittivity is
greater than five, the indicated advantage takes place even for

(a)

(b)

Fig. 6. Element patterns in main planes of array withd = 2b + 0:05�,
d = d

p
3=2, � = d =2 (hexagonal lattice), and" = 5 at vertical (V)

and horizontal (H) polarization. (a)a = 0:784�, b = 0:9�. (b) a = 1:181�,
b = 1:3�.

. The hard waveguide in [2] was seen to have ad-
vantages compared to both soft and smooth waveguides. The
present analysis shows that the advantages are not so significant.
This discrepancy is explained by the loss in the hard waveguides
caused by the interactions between the array elements and the
power reflections that were not taken into account in [2].

The behavior of the hexagonal array aperture efficiency in a
frequency band is illustrated by the examples given in Fig. 5(a)
and (b) for the waveguide radius of and , where is
the wavelength at the reference frequency. We see that the aper-
ture efficiency for the hard waveguides is more frequency sen-
sitive than the aperture efficiency for the smooth wall waveg-
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uides, outside the anomaly region mentioned above. Such a be-
havior is similar to that for the case of a dielectrically loaded
hard parallel-plate waveguide array [17] and is explained by the
deformation of the shape of the operating mode field distribution
over the waveguide cross section when the frequency changes.
When the frequency increases from the reference value, the field
concentrates more to the layer region that results in increased
power reflected from the aperture and power scattered into the
sidelobes. The aperture efficiency reduction when the frequency
decreases is not so fast as when it increases, because the redistri-
bution of the field from the layer region into the central region,
which takes place in this case, only leads to broadening the main
lobe of the element pattern without increasing the sidelobes and
significant changing the reflected power.

In addition to the aperture efficiency, we have studied the
cross-polarization level (21) over a frequency band. The results
obtained for the array indicated in the previous example show
that the cross-polarization level does not exceed30 dB for
levels above 12 dB in the main lobe of the element pattern
for vertical and horizontal polarizations. The waveguides with

provide the band from 17% to 3% at
and from 12% to 2% at . The similar band for the
waveguides with is from 16% to 2% and from

8% to 1.5%, respectively. The lowest level of the cross po-
larization for the array under consideration is achieved at the
frequencies near 0.95 of the reference value, which is in agree-
ment with the results of [2]. Similar effects can be obtained at
the reference frequency but only if the layer thickness is cor-
respondingly smaller than that of hard value. The examples of
the element patterns calculated for the array with
and at , while the inner layer radii for the
hard wall are and , respectively, are
shown in Fig. 6(a) and (b). The cross-polarization level (21) is,
in this case, lower than 30 dB everywhere in space.

IV. CONCLUSION

In this paper, we have considered an infinite planar periodic
antenna array of open-ended circular waveguides with hard
walls formed on the basis of strip-loaded dielectric layers.
The array has been analyzed by the mode-matching method.
The waveguide modes involved in the method have been
calculated by using the asymptotic strip boundary condition
(ASBC). It is shown that the waveguide modes are divided into
an independent subsystem of TE modes for the whole cross
section and two independent subsystems of TM modes: one is
for the central region and another is for the layer region. The
high efficiency of applying the ASBC is confirmed once more
by comparison of the results obtained in this study to those
available in the literature.

The results for arrays of small waveguide diameters and
spacing, which are usually chosen for providing wide-angle
scanning have shown that the operation of the hard wall
waveguides is similar to that of the smooth wall multimode
waveguides completely filled with appropriate dielectric.
However, the use of the hard waveguides allows savings in
dielectric material and reducing the design weight that is of
great importance for some applications.

The results obtained for arrays with elements of large
diameters and spacing, at which the hard waveguides provide
significant advantages over the smooth wall ones, have revealed
the following features. First, it is shown that, unlike the case of
an individual waveguide, the array aperture efficiency does not
increase monotonically when the waveguide radius increases.
Second, the advantages of the hard waveguides over the smooth
ones are less significant than what follows from the results
in [2], mainly due to power reflections from the waveguide
aperture. It is shown that the main contribution to the reflected
power is made by the modes TMand TM (if the latter is
propagating) of the central waveguide region, as well as by the
stripline mode TE .

The behavior of the aperture efficiency and the level of the
cross polarization in a frequency band studied in the present
work in general confirms the results and conclusions published
in the literature before.
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