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Performance of an Array of Circular Waveguides with
Strip-Loaded Dielectric Hard Walls

Sergei P. SkobelewWember, IEEEand Per-Simon KildalFellow, IEEE

Abstract—An infinite planar periodic antenna array of the performance of such a horn as an element of an array. In this
radiating open-ended circular waveguides is considered. The case, however, the electromagnetic interaction always existing
conducting waveguide walls are covered with dielectric layers between the array elements leads to excitation of not only the
loaded with longitudinal conducting strips for providing the hard domi d he h b Iso th d foth
wall boundary condition. Analysis of the array is carried out by ominant mode at the horn aperture buta SOt_ € modes o _Ot er
the mode-matching method. The waveguide modes involved in the Orders and all these modes should be taken into account in the
method are calculated by using the asymptotic strip boundary array analysis.
condition. It is shown that they are split into an independent  |nthe present paper, the performance of the hard strip-loaded
subsystem of TE modes for the whole cross section and tWo gic\ar horn in an array is studied on the basis of solving a

independent subsystems of TM modes: one is for the central bl bout radiation f infinite ol iodi
region and another is for the layer region. The calculations show problem about radiation from an inhnite planar periodic an-

that the operation of the hard waveguides in an array with small tenna array of the corresponding open-ended waveguides. The
element spacing is similar to that of the multimode smooth wall problem is solved by the mode-matching method [4], which im-
waveguides completely filled with dielectric. For large diameters plies involving a complete system of vector Floquet harmonics
and element spacing, the hard waveguides have significant advan-in free-space and a complete system of vector harmonics in
tages over the smooth ones. It is shown that unlike an individual th ide. Unlike the FI th . hich I
hard waveguide, the aperture efficiency of such a waveguide in € waveguide. Unil g € Flogue armonlcs, w '_C are we
array has a nonmonotonic dependence on the waveguide radius. Known [5], the hard strip-loaded waveguide harmonics have not
The results characterizing the behavior of the aperture efficiency been considered in the literature except for the particular case in
and cross-polarization level in a frequency band as well as the papers [2] and [3] mentioned above. The calculation of the prop-
contribution of certain waveguide modes in the reflected power agation constants and construction of the system of waveguide
are presented and discussed. The examples of the element patternﬁ1 S ied out bel the basis of using th
corresponding to minimal cross polarization are also given. a_rmonllcs IS carried ou ) ? owonthe ags 0 usmg e asymp-
. totic strip boundary condition [6], according to which the strips
Index Terms—Antenna arrays, waveguides. . - . .
are replaced by a continuous anisotropically conducting tube.
Such a replacement considerably simplifies the calculations in
|. INTRODUCTION comparison with those made in [3] on the basis of the integral
r\9quation method and at the same time, as shown for other similar
roblems, it gives good agreement both with experimental data
nd with the results obtained by much more complex methods

N ATTRACTIVE modern horn antenna is a conical hor
in which the inner metallic surface is coated with a dieled
tric layer, which is loaded with longitudinal conducting strips t
provide the so-called hard wall boundary condition [1]. Su ] [8].
a horn is easy to fabricate and it can potentially provide both
high-aperture efficiency and low cross polarization due to the
presence of a uniform copolar field distribution over the cen-
tral part of its aperture at the design frequency. A good modgl Geometry and Excitation of the Array
of such a hard wall horn, when the flare angle is small, is the
corresponding open-ended waveguide. Such a hard strip-loade@onSider an infinite planar array of semi-infinite open-ended
circular waveguide model has been studied in [2] and [3], wheftcular waveguides arranged in a regular rectangular or trian-
there have been presented calculated characteristics of the oplar lattice in the planéxy of a Cartesian rectangular coor-
ating modified TE; mode and stripline mode for the first (dom-dinate systendzy z with the corresponding unit vectoes, ¢,
inant) azimuth harmonic as well as the corresponding radiatiBRde:, as shown in Fig. 1(a) wher, is the element spacing
patterns, aperture efficiency, and cross polarization obtained!By "W, d, is the spacing between the rows, aids a shift of
the Huygen—Kirchoff integration method. The presented resuffé neighbor rows with respect to each other equal, {2 for
show good capabilities of the hard strip-loaded horn as an ingitriangular lattice or zero for a rectangular one. All the wave-

vidual antenna and, in this connection, it is of interest to stud/ide openings have acommon flange, and the waveguide walls
of radiusb are coated with dielectric layers of relative permit-

. . _ _ ti\{ity ¢ and thicknes$ = b — a, wherea is the radius of the
Manuscript received October 6, 1999; revised January 31, 2000. This wor | Fig. 1(b)l. The i " fthe |
was supported by Chalmers University of Technology, Gothenburg, Swed@t{npty central part [ 19. ( )] e Inner surfaces of the layers

under Contract 643/16787918/00015. ~ are loaded with longitudinal metal strips of zero thickness. The
S. P. Skobelev is with JSC “Radiophyszika,” Moscow 123363, Russia. flange, Waveguide walls, and strips are assumed to be perfectly

Il. FORMULATION AND SOLUTION OF THE PROBLEM
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of Technology, S-412 96 Gothenburg, Sweden. onducting and the strip width and spacing are much smaller
Publisher Item Identifier S 0018-926X(00)06934-9. than the operating wavelengi so that we can approximately

0018-926X/00$10.00 © 2000 IEEE



SKOBELEV AND KILDAL: PERFORMANCE OF ARRAY OF CIRCULAR WAVEGUIDES 1107

related to the Cartesian’s ones by the ordinary way: p cos ¢
andy = p sin ¢.

The electromagnetic field (1) must satisfy a boundary condi-
tione, x E(b, ¢, z) = 0 on the perfectly conducting wall, as
well as a boundary condition on the inner surface of the layer
loaded with strips. Assuming that the strip width and spacing
(period) is small enough (smaller th@rd A, [7], [8]), we replace
the strips by a continuous longitudinally conducting tube and
apply the asymptotic strip boundary condition (ASBC) [6] to
such a boundary. According to the ASBC, the longitudinal elec-

VAN d

X
s

(a) (b) tric component must vanish on the tube, iB.{a, ¢, z) = 0,
while the azimuthal electric and longitudinal magnetic compo-
Fig. 1. (a) Geometry of array face. (b) Cross section of waveguide. nents must be continuous across the tuﬁg@a —0,9,2) =

E (a+0,¢,2),H.(a -0, ¢, z) = H.(a+ 0, ¢, ). Sub-
replace the strips by an anisotropic tube perfectly conductingstituting (2) and (3) into (1), performing the differentiation, and
the longitudinal direction only. satisfying the indicated boundary conditions, we obtain the fol-

Let the waveguides be excited by the operating modes to lbeing system of equations for the amplitude and propagation
determined below, propagating toward the apertures as wellcagistants indicated above:
having identical amplitudes and linearly progressing phases in N PR o
z- andy-directions specifying the direction of the main beam. Bim(ga) + C1lNm(ga) = g°A1Jm(ga)/g
Under these conditions, it is required to determine the radiated B1J;,(§a) + C1N}, (ga) = gA1J],(9a) /G (5)
and reflected fields and, on the basis of them, to calculate the B1J! (gb) + OLN! (§b) =0
array characteristics.

Az T (ga) =0 (6)

B. Modes in the Hard Strip-Loaded Waveguide R R

The problem formulated above will be solved by the mode- { BaJm(ga) + ColNm(ga) =0 @)
matching method that implies, in particular, involving a com- B2Jim(gb) + C2Np(gb) = 0.

plete system of eigenmodes in the waveguide. To determine th?% we can see, the obtained system consists of an indepen-

yvaveguidg modes, we will follow the general approach appli%%nt subsystem (5) of TE modes and two additional indepen-
in [9] for similar problems. , , dent subsystems (6) and (7) of TM modes in the central and
Om_|tt|ng the time (jep_endence factmp(_—zwt), we W”t‘? th’? layer regions, respectively. This result, differing from the case
electric and_ magnetic f|e|ds_ for theth azimuth harmonics in ¢’ waveguide loaded with a dielectric layer without strips,
the waveguide in the following form: where only axially symmetrical TE and TM modes are decou-
pled while the others are not, has a simple physical interpreta-

E =iwpgrotll; + (grad div+ k2é)I1, )
tion. The currents of the TM modes have no transverse com-

H =(grad div+ k*é)IL; — iwsoZ rotll () ponents and, therefore, the longitudinally conducting tube is
where equivalent to an ordinary isotropically conducting one. There-
‘ fore, from the viewpoint of the TM modes, the waveguide under
i (p, ¢, z2) =e.P1(p)e"* cos mey, consideration consists of two isolated regions: an empty circular
I (p, @, 2) =e.Pa(p)e™* sin me (2) Wwaveguide of radius and a coaxial waveguide filled with di-

electric. For the TE modes, the longitudinally conducting tube

are longitudinally directed magnetic and electric Hertz vectoris, “transparent” for the tangential electric field component and,
respectively, therefore, the indicated regions are not isolated.

Ardi(0), 0<p<a Thg constantd?; andC; are determined from the first two
- . (3) equations of (5) by the formulas
BiJy(gp) + CilNe(Gp), a<p<b TGN (30) — 57" (g Non(30)
m\ga)iv,,\ga) — m\ga)IVm ga
Ay, By, andC;, (I = 1, 2), are unknown amplitude constants, B1 =nga 9Im 9 59U 9m’9 9V A (@®)

. 2q
J(- ) andN,,(---) are the Bessel and Neumann functions of - - R
C-) () 9Im(90) 71, (50) — 391 (9a)Im(§0)

Qi(p) =

themth order, respectively; andg are transverse propagation €, = —nga ~ Ay, (9)
constants for the centrak (= 1) and layer § = ¢) regions, 29
respectively, related to the longitudinal propagation constant Substitution of (8) and (9) into the third equation of (5) leads
by the formula to the dispersion equation

72 = k2 - .92 = kQE - gQ (4) 1 Jr/n(ga) _ 1 Jr/n(ga)Nr/n(gb) — Nr/n(ga)‘]r/n(gb) (10)

H . _rn " ga rnAN/A _NrnA ' (4
k = 2n /X = w./gopo IS the wavenumber, and), 1o are di- ga Jm(ga)  ga Jm(§a)N;, (D) (9a)77,(30)
electric and magnetic constants of free-space. The polar coofdi- g and g, which is to be solved together with the additional
natedp ande with the corresponding unit vectoeg ande,, are  relation (4).
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Designating the roots of (10) a$uim. and gi.., C. Application of the Mode-Matching Method

n = 1,2 as well as taking into account the polar- paying determined the system of the waveguide modes, we
ization degeneration of the axially nonsymmetrical modegan now apply the mode-matching method for the further solu-
we can construct the following system of orthonormalizely, of the problem. Representing the total field in the wave-
transverse vector wave functions for the TE modes guide as an infinite sum of incident and reflected waves, we
write its transverse components in the central part of the aper-

4 Jrn mn i ture in the form
4 (I)lmn(Pa ‘P) ==e ﬂ M - me
" ! P Nlrnn coS v % v
J/ E"'(pv @, _0) =V NO/EO Z [(HAlrnn +H ernn)kH
Jimn nl(glrnnp) CcOoS
+C(rn, T sin me (11) m,n
N (I)lrnn(pv QO) - }{Rann,Yann}{(I)ann(pv QO)]
written for the central region0( < p < a) of the waveguide (14)
in the form similar to that used in [5] for the verticadl'{ and —e. x H(p, ¢, —0)
horizontal @) polarization. The corresponding expression for , B .

i is obtai j = 3 [ 4umn = HrRumn )V 11 Pn (5, 0)
the layer regiond < p < b) is obtained from (11) by substi- HAImn = Hmn ) Vimn g P1malp, @
tl:ltion Of Jimn aannl(glnlnp) by glrnn and ern(glrngp) it nl?:, v
B1 o (G1mnp) + CLNw(G1mnp), respectively, wherd3; and + i RomnkE g Pomn(p, ¢)] (15)

C are determined by the coefficients in front4f in (8) and
(9). The normalizing coefficien¥y,,, in (11) is determined by wherej; R;,.,, and«;n., = /k* — g3, are unknown ampli-
formula tudes of the reflected TEi (= 1) and TM (f = 2) modes and
their longitudinal propagation constan{sA..,, are specified
amplitude of the incident TE modes (excitation of the array by
Nimn the TM modes is not of interest here) aAid= 1. The corre-
_ {(1 4 Som) [ga,]m(ga),];l(ga) sponding expressions for the transverse components of the field
in the coaxial region of the aperture are obtained from (14) and
(g%a® —m?)J2(ga) . et (15) by substitution ot} Rs,,,, and .., by unknown ampli-
2 = 9aZin(§a) 21y (99) tudes, Ry,,.,,of the reflected TM modes and their propagation

(5202 — m?)Z2, (Ga) — (§2b% — m?) 22 constantsyz,., = k% — 43,,, in the layer, respectively, as

1lm

A 1/2
(gb) - :
- 5 well as¢ is substituted by.
The transverse components of the radiated electric and mag-
wheres,», is the Kronecker symbol and the subscriptgat,, Netic fields on the array aperture are represented as infinite sums

+

anddy,..,, are omitted for brevity. of the vector Floquet harmonics
The vector wave functions for the TM modes are available in
a more general form in [5]. We write them here for the central E-(z,y, +0) =/ po/e0 Z[Tlqu‘lflpq(xv Y)
region in the following notations: P
+ T2pqrpq\1/2pq(37u v (16)
4 gannJ/ (gannp) sin —€z X H(.Z‘, Y +0) = Z [Tlp(lrp(lqjlpq(xv y)
1 P2mn(p, ) =e, IS m P
H r Nann COS
; + TopgkWapq (=, y)] (17)
m Jrn(Qannp) CcOs
e, ——F| . me (12) .
P Nomn sin whereT},, are unknown amplitudes of the TEE€ 1) and TM
j = 2)modesl',, = /k% — w2 ,w,, = /a2 -3, «, =
where NQ’"" = 7T/(2 - 60771) ganna']nH-l(ganna) are the (J ) o e . P /pq b

normalizing coefficients, ang,,.,, are roots of equation (6). kosin 6 cos ¢ + 2mp/da, _andﬁpq i sin 6 sin ¢ 427 (g
. ) " pA/d,)/d, are propagation constanésandy are angles spec-
The wave functions for the TM modes in the layer regiof) . . S
VA . Ifying the main beam direction, measured from tlendx axes,
T Pomn(p, @), whenm # 0 andn # 1 simultaneously, are .
respectively, and

determined by an expression obtained from (12) by substitution

Of Jomn, ']rn(Qannp)’ and Nann by Qanny Zan(ﬁannp) = 1 e’r/3 — Cyx .

an(@inna)Jnl(.gannp) _Jrn(.§27nna)Nrn(§27nnp)y and \Ijlp’l(x’ y) = d d pzupq L exp[z(ocpa: + ﬁmy)]v

N " A o dy

Nomn = {[2(1 + 60m)/7r][Jr%z(g%ma)/‘]gz(g%mb) - 1]}1/2' 1 ext, + e,

respectively, where g»,,, are roots of the equation Wy, (x,y) = =P P expli(ap + Bpgy)]
N N M N v dy d, w

N (§a)Im(Gb) — Jm(§a) N, (gh) = 0 resulted from (7). The @ By Pq

case ofm = 0 and_n = 1 corresponds to the nondegenerategre the orthonormalized vector wave functions of the TE and
TEM mode for which TM modes [5].

The projection matching of fields (14) and (15) and the cor-

‘i’201(p ) = 1 }e ' (13) responding representations for the layer region with fields (16)

’ V2r (bja) p " and (17) with account for the boundary condition on the flange
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and orthogonality of the waveguide and Floquet modes on tiwderes,,, = 2ri™*1(d, d,)~

12, = arctqBpy/cy,), and

corresponding regions leads to the system of linear algebrthie subscriptgq at w,, as well as thosenn at gimn, g2mn.

equations

Yim/n' Hern n’ + Z

P9

rn TL
Fm Tlm

v
= ern’n’HAlrn’n’

VR %4 San'n'T -0
—HiLm'n + H*?P2pq 2pq —

p,q
7'77/ n
_EHRQWLn’+ E HSQ TQP(I_ 0
P, q
V olmnxV V olmnxV
- Z Hslp’q’ HRlnm + Tlp’q’ = Hslp’q’ HAlrnn
m,n m,n

§ V olmn*V 2mn*V
(_kH SQp’q’ Hernn + ’YannHSQp’q’ HRann

m,n

*V
+ ’YannHSann Rann) + F ’T2p’q’
2 1 *V
= kHSQ;)n: Alrnn

m,n

SQm " kT?m)

J1mn, andgs,,, are omitted for brevity.

The amplitudes of the reflected waveguide modes and radi-
ated Floguet modes are determined as a result of a numerical
solution of the system (18), and are then used for calculation
of the array element pattern, aperture efficiency, and other array
characteristics.

I1l. N UMERICAL RESULTS AND DISCUSSION
A. Some Features of the TE Modes

The first stage in the solution of the problem formulated in
Section 1l is a numerical analysis of the waveguide modes,
which is based on solution of the corresponding dispersion
equations. Note once more that unlike the indicated TM modes,
the TE ones have not previously been studied in the literature,
and their detailed analysis is a subject of a separate paper [10].
Since such an analysis is beyond the scope of the present study,
we will only mention the most significant features of the TE

where the asterisks denote complex conjugations, and the mades-

elements are determined by the formulas
2w
%g;n = / / (Plrnn \Ijlpqp dp dSO

Nlrn,n |:w2 - g%

G310 Z1m (§16) Sy (wh) + £ [ cos
w? — §? } [Sin}m%’q
f = gralw}, (g10)Jm(wa) — g1Im(g10)J;, (wa)]
Vslrnn
2pq
27 b i
/ / }{(I)lrnn y \Ij2pqp dp d(P
S,,nm
Nlrnn
. [Jrn(gla) - Zlnl(gla)]Jnl(wa) + Zlnl(glb)Jnl(Wb)
w
sin
|:C08:| P

27 a
;1522;7(;” = / / }{(I)an . qj?pqp dp d‘P
0 0

- _s gQCLJnl(QQG) me(wa) sin m
" Nann w? — g% cos Pra

V &2mn
HSQPq

27 b .
= / / }{(I)ann . \Ij2pqp dp d(P
0 a

Ga2w

:S,rn =

2mn
i aZérn(.gQa)Jnl(wa) — bZénl(.g?b)Jnl(wb) sin
w? — G2 cos

for m # 0 andn # 1 simultaneously and

v g2 _ 2r Jo(wa) — Jo(wb)
2P d, d, In(b/a) w

} MPpq

The dispersion equation (10) is numerically solved with re-
spect tog. In principle, the circular waveguide with two-layer
filling can support complex modes at some parameters of the
filling. In our cases of small layer thickness and relatively small
layer permittivity, the complex modes have not been detected
and, therefore, the constapis real and positive, while deter-
mined byg from (4) can be either real or imaginary. In the latter
case, the Bessel functions, of g should be correspondingly
replaced by the modified Bessel functiahs of |g|.

The first azimuth harmonicn{ = 1) with the transverse
propagation constant equal to zero corresponds to the hard wall
condition. According to (11), the field in the central region of
the waveguide is in this case a uniform linearly polarized plane
wave and equation (10) can be rewritten in the form

Jy(ka)N{(kb) — Ny(ka)J,(kb) = 0 (19)

wherea = (e — 1)/2q andb = (e — 1)1/2b. The numerical
solution for the first root of (19) is presented in Fig. 2 as the nor-
malized layer thicknes& — @)/ versus the normalized inner
radiusa/\. Such a form of representation is more universal than
the curves givenin [2] and allows us to determine the layer thick-
ness corresponding to the hard wall for a wide rangearida.

The mode corresponding to the hard wall as indicated above
is assumed to be the operating mode corresponding to the dom-
inant TE; mode of an empty waveguide. However, the root of
(20) for this mode has the second ordinal number. Nevertheless,
to keep the correspondence mentioned above, we design it as
g111 While the first root designed &g1¢, (§110 < §111), CoOrre-
sponds to the so-called stripline mode [11], [12]. The role of the
latter, which is a surface wave having no cutoff, will be noted
below.

Numerical solution of (10) as well as its approximate analyt-
ical solution for the cases when the order of the Bessel function
is much grater than its argument show that the stripline modes
exist not only for the first azimuthal harmonic but also for all
higher order harmonics. For the axially symmetrical modes, i.e.,
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Fig. 2. Normalized layer thickness corresponding to the hard wall condition
versus normalized inner radius.

m = 0, the magnetic field has no azimuthal component and,
therefore, the longitudinal strips have no effect for this case.
Calculation of the propagation constants has been tested b
comparison of the results with data available in the literature.
For example, the calculated propagation constants of the oper
ating mode Tk; and stripline mode Tk for a waveguide with
a =X b—a = 0.22a, ande = 2.5 arevy;;; = 1.019% and
~v110 = 1.5768k, which are in a good agreement with the plots
presented in Figs. 11 and 12 in [3].

B. Array Characteristics

The results to be discussed below have been obtained for ex
citation of the array by the operating TEmodes of vertical
or/fand horizontal polarizations. The infinite algebraic system
(18) has been truncated so that only waveguide and Flogue
modes satisfying the conditions {M;,..} < 2k andwp, <
10k has been kept. After solving the truncated system (18), the
components of the array-element pattern corresponding to the
unit power of the incident wave have been calculated by for-
mulas
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Fig. 3. Element patterns of waveguide array with= 0.32X, d, = 0.7,

d, = d,3/2,andA = d,./2 (hexagonal lattice) at vertical polarization of

Fy(8, @) =(k Y2 Th00(60 6
00, ) =(k/m11) " |Tooo(6; )| cos excitation. (a) Horizontal plane. (b) Vertical plane.

F(8, ¢) = (k/v111)Y % T100(8, ©)| cos 6. (20)

The square of the appropriate component of (2@) &t0 cor- by verification of the energy balance relationship as well as by
responds to the array aperture efficiency for the broadside. THEer checks recommended in [5].
cross-polarization level has been calculated by using the techd N influence of the hard strip-loaded walls on the perfor-

nique given in [13]. In our notations, the cross polarization levefg@nce of arrays with relatively small-element spacing is illus-
are determined by formulas trated by an array of waveguides of radius- 0.32) arranged

over a hexagonal lattice with, = 0.7A. The hard wall con-

v 1| FY (8, 7/2) F;’(g’ 0) dition is realized by strip-loaded dielectric layers with= 10
L" =201lg 2| FV(0, 7/2) _ FY(0,0) andb—a = 0.08)\. The waveguides are excited by the operating
o e modes Tk; of vertical polarization. The array-element patterns
L7 —a01g | X FH(0, n/2) B Fl(9,0) (21) in 'Fhe horizo'ntaI.F@) and vertical £%) plgnes are shown b'y
FH(0, 7/2) FJ(0,0) solid curves in Fig. 3(a) and (b), respectively. The comparison

is made with the case of smooth-walled empty waveguides ex-
where superscript®8 and H denote vertical and horizontal po-cited by the dominant T modes of vertical polarization. The
larization of excitation. The calculations has been controllelement patterns for this case are shown in Fig. 3(a) and (b) by
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TABLE |
100 ! T T T r i ' T ' PERCENT DISTRIBUTION OF REFLECTED POWER OVER MODES OF
i HARD WALL WAVEGUIDE
e b=09A b=1.3M1
(>3' Modes |e=2.5| =5 | =10 |e=2.5| e=5 | =10
g TEy, | 190 | 2.19 | 142 | 0.84 | 0.92 | 0.69
E TE,, 0.74 | 1.17 { 0.89 | 0.29 } 0.38 | 0.34
§ TE, |133|1241.18]023 (028028
2 TE» - - - 0.74 | 0.76 | 0.69
o .
§ i HARD WALL, £=2.5 ™), 430 (2711190 ] 0.51 | 0.56 | 0.43
— ——  HARD WALL, g=5 ™ - - - - | 143 | 1.01
sor L. HARD WALL, E=10 1 Others | 0.53 | 0.09 | 021 | 0.09 | 0.07 | 0.16
i S oo SMOOTH WALL 1 Total | 8.80 | 7.30 | 5.60 | 2.70 | 4.40 | 3.60
40 4 ] 1 L i i 1 Il l'
0.6 0.8 1.0 1.2 1.4 16
b/

from the aperture has been presented in [2] for different values

of the layer permittivity. The similar results, but for hard
fig- 4. Aperture efficiency versus radius of waveguide for array with=" \yaveguides in an array, are presented in Fig. 4. The lattice
20+0.050 d, = d. /3/2,andA = d, /2 (hexagonal lattice). of the array is hexagonal with spaciny = 2b + 0.05\.

Note that the presented aperture efficiency for the broadside is
the curves with large dashes. The patterns have dips causingititkependent of polarization. This fact follows from the system
effects of blindness in both main planes for the indicated p{t8) and is explained by the circular symmetry of the wave-
larization [5]. We see that like in arrays of rectangular waveguide itself and by the symmetry of its excitation including
uides [14], the hard walls remove the dips. However, the eldve mutual coupling. We see that unlike the monotonically
ment pattern tapers off faster corresponding to increasing thereasing functions in [2], the aperture efficiency of the hard
reflected power when deflecting the main beam from the broaglaveguide in an array versus radius has an oscillatory shape.
side. The reflected power is mainly transferred by the profuch a behavior is explained by changing the number and
agating operating mode TE strip-line mode Tk, stripline position of the array factor grating lobes in free-space [16] as
modes of higher orders and coaxial TEM mode, although theell as by changing the number of propagating modes in the
latter is not excited when scanning in tHeplane. The hard wall waveguide. Another difference is due to the aperture efficiency
waveguide, therefore, is multimode and its operation is simildaself. To avoid confusion, note that the aperture efficiency
to that of a smooth wall waveguide completely filled with arior an individual waveguide is determined with respect to its
appropriate dielectric. This conclusion is illustrated by the e&perture areart?, while the efficiency of an element in an
ement patterns shown in Fig. 3(a) and (b) with short dashesray is determined with respect to the area of the array cell
corresponding to a dielectric with= 3 when the propagating d, d,. Therefore, the limit of the aperture efficiency when
modes are Tk, TE,;, and TMy;. Note that the element pat-b — co amounts to 100% for an individual hard wall waveguide
terns of the hard wall waveguide array for the horizontal polaand to (wb?/d,, d,) x 100% for the same waveguide in an
ization are similar to those of the vertical polarization, while tharray. The latter limit for the case of a fixed gap between the
patterns of the empty smooth wall waveguides have no dips feaveguides is equal @57 /+/3 ~ 90.7%. Therefore, it is not
the horizontal polarization [5], which significantly differ from possible to obtain 100% aperture efficiency in arrays of circular
the case of vertical polarization. waveguides with large apertures.

Thus, the example presented above as well as some similagome results characterizing the contribution of certain wave-
results not included here confirm the conclusion made in [1§]iide modes into the reflected power for two values of the hard
regarding partial filling of a waveguide cross section with diyall waveguide radius are presented in Table I. The total re-
electric. The indicated filling including the hard wall case doeffected power reduces when the waveguide radius and layer per-
not give any significant advantages in comparison with a urittivity increase, as expected. The calculations show that the
formfilling from the viewpoint of achieving good of wide-anglereflection of the operating mode TEitself is insignificant. The
scanning performance. However, the partial filling allows savnain contribution to the reflected power is made by the higher
ings in dielectric material and decreases the weight, which is@fder modes. It should be noted in this connection that in a real
interest for many applications. horn fed through a single-mode waveguide, the higher order

The use of the strip-loaded dielectric hard walls givemodes will be rereflected from the horn throat and returned back
significantly better results for waveguides of larger diameter® the aperture, affecting thereby the horn performance, in par-
The aperture efficiency versus radius of an individual hatetular, the aperture efficiency behavior discussed above. How-
open-ended waveguide approximately calculated by the methaatr, the study of such a situation is beyond the scope of this
of Huygen—Kirchoff without accounting for the reflectionspaper.
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Fig. 5. Aperture efficiency versus frequency deviation for array with=
2040.05),d, = d,, v/3/2,andA = d, /2 (hexagonal lattice). (d) = 0.9\.

(b)
Fig. 6. Element patterns in main planes of array with = 2b 4+ 0.05A,

(b)b = 1.3A. d, = d, V3/2,A = d,./2 (hexagonal lattice), and = 5 at vertical (V)
and horizontal (H) polarization. (&) = 0.784A,b = 0.9A. (b)a = 1.181A,
b= 1.3\

The solid curve with crosses shown in Fig. 4 for comparison
corresponds to the aperture efficiency of an array of emply> 0.75X. The hard waveguide in [2] was seen to have ad-
smooth wall waveguides. In the indicated range of the waveantages compared to both soft and smooth waveguides. The
guide radius, such an array is characterized by low (less tharesent analysis shows that the advantages are not so significant.
1%) level of reflected power except for the region near thehis discrepancy is explained by the loss in the hard waveguides
anomaly (its nature is similar to that of the dips in the elemenaused by the interactions between the array elements and the
patterns shown in Fig. 3 and in [5]) where the reflected powpower reflections that were not taken into account in [2].
reaches nearly 14%, and the aperture efficiency respectivelyThe behavior of the hexagonal array aperture efficiency in a
decreases down to 59%. The calculations show that if thequency band is illustrated by the examples given in Fig. 5(a)
layer permittivity is greater than 2.5, the hard walls providand (b) for the waveguide radius 80X and1.3\, where is
higher aperture efficiency than for the smooth wall case whéime wavelength at the reference frequency. We see that the aper-
the waveguide radii exceed 1.25If the layer permittivity is ture efficiency for the hard waveguides is more frequency sen-
greater than five, the indicated advantage takes place evenditive than the aperture efficiency for the smooth wall waveg-
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uides, outside the anomaly region mentioned above. Such a beFhe results obtained for arrays with elements of large
havior is similar to that for the case of a dielectrically loadediameters and spacing, at which the hard waveguides provide
hard parallel-plate waveguide array [17] and is explained by tkignificant advantages over the smooth wall ones, have revealed
deformation of the shape of the operating mode field distributidhe following features. First, it is shown that, unlike the case of
over the waveguide cross section when the frequency changasindividual waveguide, the array aperture efficiency does not
When the frequency increases from the reference value, the figldrease monotonically when the waveguide radius increases.
concentrates more to the layer region that results in increasgetond, the advantages of the hard waveguides over the smooth
power reflected from the aperture and power scattered into thiees are less significant than what follows from the results
sidelobes. The aperture efficiency reduction when the frequeniny[2], mainly due to power reflections from the waveguide
decreases is not so fast as when itincreases, because the redigteirture. It is shown that the main contribution to the reflected
bution of the field from the layer region into the central regiorpower is made by the modes TMand TM,, (if the latter is
which takes place in this case, only leads to broadening the mpiopagating) of the central waveguide region, as well as by the

lobe of the element pattern without increasing the sidelobes astdpline mode Tk.

significant changing the reflected power.

The behavior of the aperture efficiency and the level of the

In addition to the aperture efficiency, we have studied theoss polarization in a frequency band studied in the present
cross-polarization level (21) over a frequency band. The resulisrk in general confirms the results and conclusions published
obtained for the array indicated in the previous example shawthe literature before.

that the cross-polarization level does not exce&D dB for
levels above-12 dB in the main lobe of the element pattern
for vertical and horizontal polarizations. The waveguides with
b = 0.9X\ provide the band from-17% to +3% ate = 5
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—8% to+1.5%, respectively. The lowest level of the cross po-
larization for the array under consideration is achieved at the
frequencies near 0.95 of the reference value, which is in agree-
ment with the results of [2]. Similar effects can be obtained at (1
the reference frequency but only if the layer thickness is cor-|]
respondingly smaller than that of hard value. The examples of

the element patterns calculated for the array witk 0.784% [l
anda = 1.181)\ ate = 5, while the inner layer radii for the
hard wall arez =~ 0.7781 A anda ~ 1.1772), respectively, are  [4]

shown in Fig. 6(a) and (b). The cross-polarization level (21) is, [5]
in this case, lower thar 30 dB everywhere in space.
(6]

IV. CONCLUSION 7

In this paper, we have considered an infinite planar periodic
antenna array of open-ended circular waveguides with hard
walls formed on the basis of strip-loaded dielectric layers. [g]
The array has been analyzed by the mode-matching method.
The waveguide modes involved in the method have been
calculated by using the asymptotic strip boundary condition[9]
(ASBC). It is shown that the waveguide modes are divided into
an independent subsystem of TE modes for the whole crodd”
section and two independent subsystems of TM modes: one is
for the central region and another is for the layer region. Thélll
high efficiency of applying the ASBC is confirmed once more
by comparison of the results obtained in this study to thos@i2]
available in the literature.

The results for arrays of small waveguide diameters and
spacing, which are usually chosen for providing wide-anglg13]
scanning have shown that the operation of the hard wall
waveguides is similar to that of the smooth wall multimode|4
waveguides completely filled with appropriate dielectric.
However, the use of the hard waveguides allows savings in
dielectric material and reducing the design weight that is OPS]
great importance for some applications.
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