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Abstract—The Fourier relations between channel transfer
function and scattering distribution can apply to personal and
mobile communications where multipath is a prevalent phe-
nomena. In this paper, the transform relations are reviewed and
interpreted for the mobile radio channel. The effective scattering
distribution is the vector product of the antenna pattern and the
incident waves and is a scalar function of angle and delay time.
The space base-band frequency correlation function transforms
with the averaged power of the effective scattering distribution.
If the angular power density marginal of the effective scattering
distribution is known, then the transform relations can be used for
configuring antennas for spatial diversity. Similarly, if the delay
time marginal is known, then conditions for frequency diversity
are available. The two-dimensional (2-D) transform gives a conve-
nient route for assessing tradeoffs between combined frequency
and space diversity. Using modeled distributions, solutions are
given for spaced directive antennas and an example is discussed
for the space-frequency tradeoff.

Index Terms—Land mobile radio, land mobile radio diversity
systems, multipath interference.

I. INTRODUCTION: MULTIPATH CHANNELS

A. Background

T HE use of mobile radio channels is expected to continue
to grow quickly, driven by a combination of consumer

demand for mobile services and advances in the enabling elec-
tronic and infrastructural technology. A limiting factor is that
the many users must share the finite wireless spectral resource.
In mobile communications, efficient use of the spectrum comes
down to controlling the radiowave launching and reception in
complicated multipath environments. The antenna, together
with the associated adaptive signal processing, become the key
elements of the link. Basic antenna configurations must be as
compact as possible, but also be able to retrieve from the mul-
tipath a variety of signals, which have different or uncorrelated
multipath degradation. This paper presents the basic Fourier re-
lations for the multipath of mobile communications and applies
them to finding the spacing requirement for directive antennas.
The spacing requirement is well known for the situation at
a mobile where omnidirectional (in two spatial dimensions)
antennas are often used and where less than a half-wavelength
spacing provides diversity action [1]–[3]. However, at the base
station and also with some mobile terminals, the antennas are
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directive and the conditions for space diversity are different,
with the larger directionality requiring larger spacing. This
paper also connects the spacing requirements and the direc-
tionality through the Bello channel relations [4] as applied to
the mobile channel. Previous and recent work pertaining to the
area of Doppler spectra or spatial/diversity relations in mobile
communications include [4]–[21].

The remainder of this section reviews the mobile channel and
its statistical relationships. Section II follows up with finding
the spacing requirements for directional antennas or directional
angular power distributions and Section III covers the joint use
of frequency diversity and space diversity for general directive
antennas.

B. Multipath Channels

The open circuit voltage at the receiving antenna terminal is a
function of the incident fields and the receiving pattern

. It is defined here, through introducing the base-band
frequency and mobile terminal position-dependence as

(1)

The pattern applies a complex weight to the waves coming from
different directions and can be considered as a spatial filter.
The open circuit voltage is a scalar and can be described as the
electromagnetic propagation channel signal transfer function,
which is referred to from here on just as the transfer function.

C. Channel Model

Over a space of typically many wavelengths, the transfer
function for a mobile terminal is modeled as a summation
over many discrete, constant, scalar, effective sources, i.e.,

, where is
the complex amplitude of theth source, is the wavenumber
of the radio frequency (i.e., the carrier plus the base-band
frequency) and is an equivalent distance to the ith source.
The assumptions for this model are that: the direction to,
and the magnitude and phase of, each scatterer are constant;
that there is no distance dependence for the magnitude of the
waves from the sources; and that the incident waves from the
scatterers are plane. So only the phase mixing process of the
wave contributions is modeled. As long as there are several
effective sources and none of these are dominant, then the
process results in Rayleigh distributed fading of the received
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signal envelope. If there is a dominant source, then the fading is
Rician, which may alter the correlation results below; however,
there is a decreasing need for diversity with an increasingly
dominant source bearing the wanted signal.

The electrical distance to theth scatterer can be approx-
imated [8] by where is the delay and

is the direction expressed as the spatial Doppler
frequency in rads/m. (The subscript indicates the carrier
frequency.) The equivalent base-band transfer function of the
channel is, therefore, approximated by the discrete Fourier
transform .

D. Fourier Relations

In general, the summation for all the delays and ray directions
can be expressed using its integral form [8], i.e.,

(2)

where is the distribution density of signals (open circuit
voltages) received by the antenna from the scattering medium at
delay and direction . This distribution is scalar, comprising
complex amplitudes, and is referred to here as theeffective scat-
terer distribution. The factor is included in the integral form
here to formalize the two-dimensional (2-D) Fourier transform
with mixed exponents. The exponents can be made the same
sign by defining the positive spatial direction as along the neg-
ative -axis. The inverse transform is

(3)

The importance of the Fourier transform pair is the insight it of-
fers: models of the effective scatterer distribution can be used
conveniently to synthesize mobile channel transfer functions or
measured transfer functions can produce an effective scatterer
distribution. If the receiving pattern is known, then some insight
into the distribution of wave arrival is available, but this
is restricted by the fact that this is a vector (both polarizations, in
general) and the waves arrive from within three spatial dimen-
sions (two polar angles), whereas the transfer function is scalar
and the effective scatterers are in two spatial dimensions (one
polar angle).

There can be four complex functions carrying the same infor-
mation for characterization of the channel:

scattering function in the time-delay Doppler do-
main (referred to as the effective scattering distri-
bution);
impulse response in the delay space domain (spatial
spectrum);
transfer function in the base-band frequency
Doppler domain (frequency spectrum);
transfer function in the base-band frequency space
domain (space-frequency spectrum)

and the single variable transformations follow conventional one-
dimensional Fourier formulas.

E. Correlation Functions

Major assumptions are now made to allow simplification. Er-
godicity is assumed so that the statistics remain second order.
If the process is assumed to bewide sense stationary in the fre-
quency domain(i.e., the mean and correlation of the frequency
transfer functions do not depend on the choice of frequency)
then the process isuncorrelated in the delay domain. These con-
ditions imply each other. Similarly,wide sense stationarity in
the space domaincorresponds touncorrelated scattering in the
Doppler domain. The correlation function of the effective scat-
tering distribution now relates to the space-frequency corre-
lation function by

(4a)

(4b)

The averaged power of the effective scattering distribution is

(5a)

(5b)

With being the vector product of the antenna pattern
and the incident waves, it follows that is the averaged
product of the antenna power pattern and the copolarized inci-
dent power pattern. This means that the antenna power pattern
and the copolar incident power distribution have the same ef-
fect on the correlation function. The correlation function is the
inverse transform of (5)

(6)

So the above wide sense stationarity conditions lead to the sim-
plified result that the space-frequency correlation function and
the average power density distribution in time delay and spatial
Doppler frequency are Fourier pairs.

Bello [4] coined the term wide sense stationary uncorrelated
scattering (WSSUS) to describe such channels. Many other de-
tails extending to situations outside of mobile communications
may be found in Bello’s classical paper. However, the above re-
lations are the relevant ones for mobile radio. Here, the WSS
refers to the delta function description in Doppler frequency
(WSS in position or time for constant velocity of the mobile
terminal) and the US refers to the delta function in delay time
(sources at different delays are mutually uncorrelated). Bello’s
work related to tropospheric channels, which contained scintil-
lating scatterers being illuminated by static terminals. For mo-
bile channels, at least one of the terminals is moving and the
scatterers are essentially static and the validity of the WSSUS
model should always be questioned for a given situation. The
channel can be arranged to be “sufficiently WSSUS” for gaining
useful insight and inferring channel behavior, by arranging the
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ensemble averaging. This averaging is often taken as several
sampled records over short distances while staying within a
given physical environment, followed by the averaging. Statisti-
cally, the ensemble averaging implies many “realizations.” This
can be interpreted as several sampled records which should have
different (i.e., independent) spatial paths within the same phys-
ical environment, or else as several records in different (indepen-
dent) physical environments. The two cases are different. One
averages within a single physical environment such as a given
room. In fact, this could be argued to imply nonindependent
records because the same physical scatterers are supplying the
power or, in simulation terms, the same seed is used for the en-
vironment realization. The second case averages over many dif-
ferent environments, which offers unambiguous independence.
The issue is that for a single data record calculated over a static
scenario, which is typically a few wavelengths, then the (as-
sumed constant) instantaneous effective scattering distribution
defines the transfer function of the record. For averaged quanti-
ties, the correlation functions reveal averaged parameters such
as the decorrelation distance and frequency and these may not
apply accurately to any one of the instantaneous environments.

II. CORRELATION DISTANCE FORDIRECTIONAL ANTENNAS

OR SCENARIOS

The spatial correlation distance for a given angular distribu-
tion of effective sources can be found directly from the single-
dimensional Fourier relation between the correlation function

of the channel and the Doppler power profile
written as

(7)

It is emphasised that the Doppler profile is for the effective
sources, i.e., the antenna pattern is included, with the phys-
ical incident power distribution multiplied by the power pat-
tern of the antenna. The relationship can, therefore, be used for
solving omnidirectional antennas in the presence of directional
scenarios (e.g., vehicular mobile cases) or for directional an-
tennas in the presence of a constant angular power density or a
combination of these.

For either directional scenarios or directional antennas,
it is convenient to use a circular function; the form,
proposed in the context of mobile communications by Lee [6],
is the simplest. For very narrow beams, the asymptotic form
for large can be found from using the smallapproxima-
tion , which results in

, i.e., the cosine form becomes similar
to Gaussian.

An amplitude pattern defined as

(8)

is single lobed over the complete angular region with a max-
imum at . Any sidelobe structure of a real-world pattern is
assumed to have a secondary effect. If we take a model with the

2-D scenario of uniform incident power [1], with pdf
, then the power of the effective scattering distribution is

(9)

Converting to a function of ,

(10)

where is a scaling constant and and so the
spatial correlation function is

(11)

In this example, there are singularities at occurring
for , but these can be handled by their analytic integration
and numeric integration is not required for or for any

with (see below). Also, the correlation function is
purely real when the beam maximum is or for .
In summary, (11) is the correlation between the voltages from
antennas whose patterns are given by and are separated by a
distance . An interpretation of the situation is given in Fig. 1.

Another way to find the correlation function is to state directly
the correlation between the spaced antenna patterns for a given
angular power distribution [7]. The pattern from an identical
antenna spaced at a distance (see Fig. 1) can be written

(12)

Then the correlation between the voltages for the two-dimen-
sional (2-D) case can be written

(13)

which gives the same result as (11). This is a more general ap-
proach, allowing diversity antenna derivation, which is not re-
stricted to space diversity.

For measured patterns and most modeled patterns, the inte-
gral is solved numerically. However, the choice of pattern mod-
eling function can be arranged to give simplified results. For
example, in the special case where the patterns are broadside

and using a pattern function of ,
where is the angle from broadside, over the
half-space only, gives the standard integral

(14)
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Fig. 1. An example of thecos ((��� )=2) amplitude pattern with thez-axis
the spatial direction, and� the mean angle measured from thez-axis.

However, for finding the correlation spacing for antennas,
as given below, the inverse of the normalized form of
is required and this has to be undertaken numerically. So
closed-form solutions for correlation distances are not normally
possible.

In general, the correlation coefficient function of the Gaussian
channel (the real and imaginary parts of the transfer function
have zero mean, normally distributed amplitudes) is complex,
denoted by

(15)

As noted above, an imaginary part arises when the mean angle
is nonzero, i.e., when the Doppler spectrum is asymmetric, and
this phenomenon is clear from basic Fourier transform theory.
The correlation coefficient of the power signal is

(16)

An example of the Doppler and correlation functions are
given in Fig. 2 where , and are given for
a directional scenario with the amplitude pattern, which
has half-power beamwidth (HPBW)

HPBW (rads) (17)

A snapshot result from simulation of the scenario is given
in Fig. 3, which includes the estimates of the correlation com-
ponents, the power signal correlation coefficient, and the mag-
nitude squared of the signal correlation coefficient, . The
figure shows a typical difference between these two correlation
coefficients for finite sample sizes, which is small for large cor-
relations but increases for small correlations at the larger dis-
placements. The power signal correlation estimate can be neg-
ative whereas must always be positive of course. An en-
semble average of correlations from many simulations sees both
correlation coefficients converge to be the same.

As the scenario parameters (the mean direction and
HPBW) are varied, the real and imaginary components hold
their form, with their relative amplitudes and periodicity
varying. For single-beam scenarios, the correlation is well

behaved in the sense that the correlation distancegiven by
is well defined. This distance is plotted

in Fig. 4 and this graph can be used as a guideline for spatial
correlation distances.

The special case of the omnidirectional scenario is given by
the HPBW giving from .
As the directionality increases, the decorrelation distance
increases, with the rate of increase greater for mean angles
approaching zero, i.e., when the mean direction is along the
spacing axis.

For the region where the HPBW is less than twice the mean
angle, the straight line graphs demonstrate that the HPBW is
inversely proportional to the decorrelation distance (cf. the un-
certainty principle, where the product of the spreads of a Fourier
pair are bounded ). From a least mean square so-
lution, the relationship can be expressed, with the HPBW and
mean angle in degrees, approximately as

HPBW HPBW (18)

where

(19)

For scenarios or antennas with more complicated direction-
ality, problems can arise with the definition of the decorrela-
tion distance. This is because the function may not be mono-
tonic around the correlation value of interest, here 0.5. From
familiar Fourier transform behavior, this occurs, for example,
when the majority of energy of the Doppler spectrum is near
the support edges, . An example is for a double-lobed
directional scenario, obtained, for example, by a horizontally
oriented dipole-like pattern in a horizontal omnidirectional sce-
nario. The correlation coefficient is given in Fig. 5, which shows
the potential confusion for the value of the 0.5 deccorrelation
distance. (Mathematically, the correlation functions can always
have a properly defined decorrelation distance, but in an engi-
neering sense, the interpretation of results must include a re-
call that there are considerable assumptions in the model and
that this combined with the oscillatory nature of the function
create practical uncertainty in the decorrelation distance.) In a
limiting case, we have a single ray, which is a delta function in
the Doppler spectrum, and this has a correlation function which
is always of magnitude one and the decorrelation distance does
not exist.

III. FREQUENCYCORRELATION AND COMBINED FREQUENCY

AND SPACE CORRELATION

In an analogous way to the distance decorrelation, the power-
delay profile gives the decorrelation frequency (known as the
coherence bandwidth), through the single Fourier relationship

. For example, an exponential power delay
profile model and its corresponding correlation function are

(20)
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Fig. 2. The spatial power correlation coefficient including the real and imaginary components for a directional scenario. The example is similar to that of a pattern
of Fig. 1 above: the mean angle is� = 45 , but heren = 1 which is a scenario with HPBW= 180 . The function is well behaved (monotonic) for correlations
above about 0.1 and the 0.5 decorrelation distance is well defined.

Fig. 3. The correlation coefficients as calculated from a computer simulation.� (�z) is different toj� (�z)j because of the finite sample size.

respectively, where is the delay spread. This gives the 0.5 co-
herence bandwidth, which is where the power correlation coef-
ficient falls to 0.5, i.e., when

(21)

which is when .

The relation can be used to study
the combination of both the frequency diversity and the space
diversity. The spatial and frequency correlation coefficients can
be separated [13]

(22)
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Fig. 4. The decorrelation distance for directional scenario. The directionality is due to the product of the incident angular power distribution at the antenna and
the pattern of the antenna. The lines are approximately straight when the HPBW is less than the mean angle.

Fig. 5. The correlation coefficient functionj� (�z)j for double-lobed antenna power pattern (or scenario), given bycos (� � � ) for the example HPBW
= 54 , � = 20 .

only if the angle of arrival and delay time of the waves are in-
dependent. References [11] and [17] discuss models which may
not support this assumption. For a time-averaged scenario at a

mobile, however, the assumption seems reasonable. If this as-
sumption can hold, then for a given scenario, the distance and
frequency spacing for a given decorrelation can be found. As



VAUGHAN: SPACED DIRECTIVE ANTENNAS FOR MOBILE COMMUNICATIONS 1031

Fig. 6. The frequency and distance spacings for a directional antenna with a HPBW of 27(n = 50) and mean angle of� = 20 . It is assumed that the angle
of arrival and delay times of the scenario are independent.

an example, the exponential delay profile model and
directional scenario, the spacings are from

(23)

A sample solution, with and HPBW , is plotted
in Fig. 6.

When the frequency spacing is zero, the distance spacing
(about two wavelengths) corresponds to purely space diversity.
Similarly, for spatially coincident beams, the required purely
frequency diversity is an angular frequency spacing equal to the
inverse of the delay spread. A tradeoff example for the specific
situation here is to have a distance spacing of one wavelength
and a frequency spacing of Hz rads/s.

Such curves need to be derived for any particular scenario
to get the particular results. The algorithm is: for a range of
spacings , calculate a set of spatial correlation coefficients

and then, from the Fourier transform of the delay pro-
file, the corresponding frequency spacings can be found. For the
exponential delay profile model used here, the frequency spac-
ings are given by

(24)

where is the correlation coefficient value in the
above examples).

The trend of the design curves for different patterns behaves
intuitively. As the mean angle approaches broadside, i.e.,

, the curve of Fig. 6 moves to intercept the space axis closer
to the origin. For example, for , the intercept is at
0.7 wavelengths, with the angular frequency axis intercept un-
changed. A larger beamwidth results in a similar change of the
curve.

IV. CONCLUSION

The Fourier transform method for finding the conditions
for diversity is convenient and insightful. The derivation of
the transform relations are summarized and the quantities
are discussed in order to clarify assumptions and the physical
interpretation for the mobile communications case. The transfer
function of the mobile channel as a function of frequency and
position, is the transform of an effective scattering distribution,
which is a function of delay time and spatial Doppler frequency
(proportional to the directional cosine). The effective scattering
distribution is the incident wave distribution at the antenna
weighted by the pattern of the antenna. It is not possible, in
general, to relate the complete physical scattering of the envi-
ronment to the effective scattering distribution. This is because
the polarization information of the physical environment is
reduced to a scalar by the action of the antenna. The transform
relations can be used with models of the scenario for diversity
design and examples are given for spaced directive antennas
and space-frequency diversity. The assumptions of the scenario
models for the results presented are: wide sense stationarity;
Rayleigh fading; a smooth-lobed directive antenna pattern; a
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uniform angular distribution of incident power; an exponential
distribution of power decay with delay time; and the multipath
angle-of-arrival and delay time uncorrelated.
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