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Specifying PML Conductivities by Considering
Numerical Reflection Dependencies

Scott C. Winton and Carey M. Rappapddenior Member, IEEE

Abstract—Berenger’s perfectly matched layer (PML) absorbing performance at normal incidence. Although large angle effects
boundary condition (ABC) has greatly enhanced finite-difference  may be minor if waves incident on a PML at grazing angles
time-domain (FDTD) scattering analysis. In a discretized domain, reflect nearly normally incident on an adjacent PML, it has

however, performance is signal-dependent and large-angle per- S .
formance is poor due to a rapid reduction in layer decay rate. been shown [7] that there are several applications where this

Increasing the conductivity to offset this reduction increases the 1S Not the case and that the performance at large incidence
discretization errors, especially at near-normal incidence angles. angles is important to the overall performance of the ABC.

However, by carefully specifying the conductivity in each of the Consequently, the improvement of large angle performance of
PML sublayers, it is possible to balance the small and large the PML is an important problem.

angle performance. The signal-dependence of reflections may be - N . . .
described in terms of the number of spatial points per wavelength. Dlscretlzatlon QIS(_) prevents _the PML from be'”g 5|gn§\I-|n-
This lends itself to an overall strategy for which to search for PML  dependent, as it is in the continuous case. Most investigators

profiles that provide superior performance for waves incident on choose to describe this signal-dependence as a function of fre-
a PML at angles between 0-75and signals that have at least 15 quency. Because FDTD involves spatial and temporal sampling,

spatial points per wavelength sampling. A one-dimensional (1-D) \ye syggest that it may be simpler to describe the signal-depen-
projection method may be employed to allow an exhaustive search d int f tial point | th
to become a viable alternative to optimization. Such a search ence in terms or spatial points per wavelengtn.

provides profile parameters that, while not necessarily “optimal,” There has also been much effort to analyze numerical reflec-

give excellent wide-angle wide-band reflection performance. ticans in the PML in order to optimize [16]-[20] wave absorp-
Index Terms—Finite-difference time-domain (FDTD) methods, tion. Obtaining a 9Iosed—form expression for the reflecuqn from

perfectly matched layers (PMLs). a PML as a function of the PML parameters, however, is a dif-

ficult problem. This difficulty lies in the fact that numerical re-
flections are created each time a wave passes from one layer
to another. These reflections, in turn, create more reflections
HE finite-difference time-domain (FDTD) method foras they encounter different layers. Keeping track of all reflec-
electromagnetic scattering problems is particularly useftibns becomes increasingly difficult as the number of layers is
because it is wide band, easily implemented, and adaptable ioeieased. Furthermore, this type of analysis can only be per-
wide variety of problems. To keep FDTD simulations from beformed for one frequency at a time, complicating any effort for
coming computationally expensive, edges of the computatiorgitimization.
domain must be kept as close to the scatterer as possible. Tdhe approach being used for this current work is largely
avoid reflections from the edges of the domain from scatter8guristic. We wish to understand the mechanisms that affect
fields propagating in all directions, an absorbing boundargflections from a PML in order to develop a strategy that will
condition (ABC) must absorb waves incident from all anglegllow us to identify PML parameters that will provide enhanced
Historically, ABCs have had only limited success in absorbirgerformance over the widest range of angles and signals.
waves incident at all angles [2]-[5], but this recently changadfith the aid of computational analysis tools, an automated
with the introduction of the Berenger perfectly matched laysearch has been developed for PML parameters . Although
(PML) [6]. the “optimal” piofile may depend on the specific application,
The PML works perfectly in continuous analysis, absorbinifie parameters determined in this analysis provide the best
waves incident at arbitrary angles with arbitrary attenuatiowide-band wide-angle performance reported in the standard
Unfortunately, in order to be used in computer simulationBterature.
the PML must be discretized. This discretization limits the
conductivity increase for offsetting the reduction in decay rate [I. REFLECTION DEPENDENCIES

as the angle of incidence increases and thus limits the overali,o decay rate of the PML in continuous time and space is
performance of the PML. Although many efforts IMProVeyiven asy = oo cos @ [9], whered is the incidence angle is

the PML [7]-[15], few of these deal with performance as gq conductivity of the PML , and, is the impedance of free-

function of angle, choosing instead to concentrate on improviggace_ Note that the decay rate is proportionaitod. Since

there is no reflection at the PML interface,may be chosen
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reflections caused by these larger jumps in conductivity are
attenuated by the initial lossy layers both for forward and
backward propagation. Yet even with the parabolic conductivity
profile o; = o(i/N)? [6], the total reflection from an eight
PML at 75 incidence is shown to be abou83 dB, compared
to the —100 dB achieved at normal incidence. It is noted
that as the angle of incidence is increased, the numerical
experimental results more closely match the theoretical loss,
which, for the case of [6] at 75 was —31 dB. This can
be explained by the fact that as the angle of incidence is
increased, the projected spatial increméntos ¢ decreases,
which has the effect of decreasing the discretization error;
the jumps in conductivity variations at every layer interface
are smaller, giving lower sublayer reflections.
Fig. 1. Lattice geometry and typical plane wave incident dnlayer Slncea*/uo :_O/C’ whereo™ is the magnetic COI’ldUCtIVIty,.
conductivity profiled PML ABC. o /e may be used in both Ampere’s and Faraday’s laws [13]. Dis-
crete conductivity values,, can be assigned to every half sub-

angle. Unlike with the continuous case, the discretizeith the layer. Using the half-layer profile specification and assuming no
ith PML sublayer may not be chosen arbitrarily large. In gefliscretization error, the two-way loss equation is
eral, since FDTD simulations calculate electric and magnetic
fields on complementary overlapping lattices, they are sensitive
to changes in the parameters of adjacent layers. Stated another
way, at any air-PML or PML—PML interface, the discreta equa-
tions for the fields at the interface are dependent on unmatcheith conductivity profile taking the formr,, = o;(n/2N)?,
conductivities. n =1,2,...2N. For this profile form, the decay rat¢ may

As an example, assume thgtare constant over a PML half- be described by ; = o ;A andp. A conductivity profile with a
space. An incident wave encounters only one interface: thmiwer dependence is simple to implement and does not change
between free-space and the PML. The difference equation &w rapidly as a profile with an exponential dependence, which
the field at the interface will be dependent on the conductivityas found to not perform as well.
of the free-spaces( = 0.0) and the conductivity of the PML  The three different time-domain signals shown in Fig. 3 have
(¢ = constant). Ifs is very small, the resulting reflection will differenttemporal increments (Sigdt = 2 ps, Sig.2At = 1.8
also be very small. It is increased, the decay rate increaseps, Sig.3At = 1.7 ps), as well as the different waveforms,
but there will also be a larger reflection from the interface. Mvhich account for the different frequency contents. These
a Gaussian pulse Ekpc?(t — t9)?/W?], wheret, is the time signals have been used as the excitation for a one-dimensional
at which the pulse is at its maximum, excites the first row dfLl-D) FDTD simulation to test various PML's with perfectly
an FDTD grid, Fig. 2 shows the total reflection from a constambnducting terminations. In each case, the Fourier transform
conductivity PML half-space versus angle for valueg @qual of the reflected field divided by the Fourier transform of
0.15, 0.3, and 0.45 S/m. For these simulations, the temporalthe incident field has been plotted versus the inverse of the
crementAt = 10 pS, spatial incremenh = 0.012 m and discrete frequency2r/wA¢ times the Courant numbeR,
W = (50/3)A = 0.2 m. It is apparent that the reflection in-which is also the number of spatial points per wavelength.
creases with an increasedrand that a# increases the discreteThe use of nonphysical units to describe PML reflection has
change in conductivity at the interface is moderated and the edso been used in [22]. The incident waveform was obtained
flection decreases. by using a much larger FDTD simulation, where the wave

It should be noted that the time and space steps need not haasses over the receiver location just outside the PML and
physical units. Instead, the entire FDTD simulation includinthe simulations is stopped before reflection can occur. Results
the PML may be entirely specified by the Courant numBiet  for the 1-D FDTD simulations at normal incidence in Fig. 4
cAt/A and theith layer decay raté; = o; Ang and the perfor- show all three signals practically overlapping for all three
mance of the PML may be parameterized in terms of two unPML layer configurations ofNV = 8, 10, 12. The layer size
less parameters$: = (51, S2, ..., S—N), A/A and the angle and normalized conductivity profile is indicated for each set
of incidencef. Given theseA and the wave phase velocity allof graphs. Note that since the curves coincide for each PML
other physical quantities can be determined. configuration, PML reflections are independent @fand of

One way reflection from the PML is reduced is to varghe waveform, but dependent primarily on the relationship
the sublayer conductivities from small values near the frémetween the two (i.e.A/A).
space interface to larger values toward the final sublayer. ThisTo further investigate the PML reflection dependencies, we
profiling of PML conductivity improves absorption, providingconsider the same three signals, but in this case maintain the
an alternative to increasing the number of sublayers, whitdmporal increment and conductivity profile, but use three dif-
is computationally expensive. Since incoming waves do nferent spatial increments and, hence, different Courant num-
encounter larger values of until well within the layer, the bers and different values of the decay rateHere we test the

2N A
L=¢2 n 60— 1
e nz::lrf 7o COS 5 (1)
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Fig. 2. Reflection as a function of angle for PML half-spaces with constant conductivity profite 0.45 (x), 0.30(0), and 0.15+).
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Fig. 3. Three time-domain signals and their associated power spectral densities. For Sigral 2 ps; Signal 2At = 1.8 ps; Signal 3\t = 1.7 ps.

eight-layer PML only; the results are in Fig. 5. Note that theather the nonphysical quantiti€sand\/A. This intuitive re-
magnitudes of the reflection coefficients for the different sigsult follows since the PML works “perfectly” in the continuous

nals are very different.

domain specified by physical parameters, while reflections that

These figures clearly indicate that it is not the physical quaarise from the discretized PML depends on discretization pa-

tities w and o that determine the reflection from the PML, butrameters.
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Fig. 4. Reflection coefficient as a function 8f A for various PMLs as determined using three different signils: 0.6 mm. Signal 1 (-) At = 2 ps); Signal
2 (..) At = 1.8 ps); Signal 3 (=) At = 1.7 ps).
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Fig. 5. Reflection coefficient as a function aff A for various PMLs as determined using three different signals. Signal Ng)=£ 2 ps,A = 0.6 mm,
S;A = 0.018, p = 3.675); Signal 2 (..) 0t = 1.8 ps,A = 0.54 mm, S;A = 0.0162, p = 3.675); Signal 3 (-) A\t = 1.7 ps,A = 0.51 mm,o,A =
0.0153, p = 3.675).

[ll. EXHAUSTIVE SEARCH VERSUSOPTIMIZATION PML, incident angle, incident signas,s, andp. Such analytic
expressions which have been numerically verified for small
One obvious method for improving PML performance igvV PMLs appear in the literature [18], [22]. For an eight-layer
to optimize the PML parameterS; and p over all angles PML, analytic expressions in the literature have not been found
and signals. To do this would require an analytic expressitm accurately predict numerical reflections for all angles and
for reflections from the PML as a function of the size of théncident waveforms.
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Even assuming confidence with an analytic expression of thewve moves with a velocity/ cos 6, wherec is the velocity
reflection coefficient, optimization of the PML over all profiles,of the 2-D wave in the propagation direction perpendicular to
signals, and angles is a nontrivial problem. By relaxing the “ophe planar wavefront. The PML only attenuates in the direction
timality” requirement, we may utilize an exhaustive search twormal to its interface, so there are no transverse variations in
identify profiles that will provide superior performance over ¢he PML, but since the normal variations are specified by the

wide range of signals and angles. same FDTD formalism as the 2-D, the 1-D FDTD simulation
efficiently demonstrates the complete reflection and transmis-
V. EXHAUSTIVE SEARCH sion characteristics of the PML.

This can be shown analytically. It has been shown [13] that the

. The k.JaS'C idea behind the exhausnve_z search is mm_ple: Fp-{il’%e harmonic curl equations for TM waves inside a continuous
simulations are run for each PML profile under conS|derat|oE,ML may be written as

The search continues until suitable profile parameters have been
identified. Because we must account for both the angle depen-
dence and signal dependence, however, steps must be taken to —
make the search viable and manageable.
Having described the PML signal dependence, we now con-
. o Co OF, 1 .
sider angle dependence. Similar to an optimization problem, = jwpoH, (3b)

OE.
dy

= jwﬁLOHx (38.)

we must create a criterion on which to judge the results. Fur- dr \1—jo/we
thermore, recall that the decay ratein the PML is given as
- . OH, 1 OH, .
o = o cos 6. Therefore, regardless of the profile, we can y — . (3c)
. . ge . . a 1 " a J I’LO z
expect significant reflection from a PML with a perfectly con- z —Jjo/weo Y

ducting termination at very large angles. It is therefore appro-

priate to introduce a weighting function. To improve large angle The time-harmonic plane wave solution for (3) is of the form
performance without sacrificing near-normal performance, we

have chosen the simple “minimax” criteria with a weighting E. = Eoe—jkﬁmlw—jkyyﬂwt (42)
function

where the time dependeneé&’* will be suppressed in the fol-
O(Sf7 p, A/A) = mgxx {Ire, Ofs Py A D)W} (2) lowing:

E., . . "
whereW (8) is a weighting function and'(, o ¢, p, \/A) is H = %(x sin § — § cos 6) (4b)
the reflection from the PML. Note that is not a function ob. )
We seek the values &f; andp that minimizeC'. This function With
is well suited to the wide-angle minimum reflection because it
does not penalize for a realizationofd) that has a large vari- et — g <1 _ ji>
ation. The weighting functiof (8) is equal to unity (0 dB) up “ T weg
to and including 60, at which point it drops off at-12 dB/5 w
to a minimum of—36 dB at 75. This dropoff from 60 to 75° = (E - jano) cos 0. ®)

accounts for the reduction in performance predicted by (1). In-

cident angles larger than 7%are not considered. Note that the velocity of the 1-D slice inside the PML is
To deal with the signal dependence, we describe reflectieficos 6. So the 1-D solution should take the form

as a function of spatial points per wavelength and break inci-

dent signals into three groups. These groups have, respectively, Eip  =3E. (6a)
a minimum of 15, 20, and 30 spatial point per wavelength sam- b N

pling for frequencies that have power densities withié dB

of the maximum power density. The results reported in this Hip,,., =9H, (6b)

work are, therefore, worst-case reflections for signals adhering

to these groups. aty — 6,

Because the solution in (6) does not satisfy Maxwell’s curl
equations, Ampere’s Law must be modified. Taking the partial
Running a two-dimensional (2-D) FDTD simulation for everglerivative of H,, and H, from (4b) with respect tay and «,
St andp is time prohibitive. Furthermore, depending on the typeespectively, ay = 0, with k, = (w/c) sin 6 gives
of excitation used, analysis of the reflection at a single angle is

V. ONE-DIMENSIONAL PROJECTIONMETHOD

quite complicated. Fortunately, it has been shown that 2-D uni- O0H, i B ey,

form plane waves may be represented using 1-D FDTD simula- oy Jko(sin 9)%6 ) (7a)
tions [21]. Reflections from a PML may also be analyzed using

1-D FDTD simulations. Basically, a 1-D “slice” of a 2-D wave 0H, . 2 . E, ey,

is taken in the direction normal to the PML under test. This 1-D 5y 9 Folcos” O)(1 — ja/weo)%e e (7h)
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Fig. 6. Gaussian plane wave incident on an eight-layer PML located=aB892A at 30> (from lower right to left). These are views of a portion of a 40000
grid. (a) Incident field. (b) Scattered field showing specular reflection from PML five orders of magnitude lower than the incident field. Tiofgslphs in (c)
4150 time steps of those in (a) and (b). (c) Cross-section of reflected field from 2-D simulation and reflected field from 1-D simulation. Timersldesahg
(c) +150 time steps of those in (a) and (b).

These are equated as Thus, the left-hand side of (3c) becomes

OH,  —(1—cos®6) OH, 1 6H,
dy  cos? O(1 — jo/wey) Ox cos? O(1 — jo/weg) Oz
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Now (3) for the 1-D curl equations in the time domain be- TABLE |
comes EIGHT-LAYER PML
aEmmez - aHlepml 1 O'NOH (8a) )‘/A Sf p I (dB)
oz =Ho It ‘o y1Dpml
L OHypp _ OBaimpme o (8b) 1 00152 7 902
=€ OLiz1Dpml-.
cos? 6 Ox ot v 20 0.0160 3.74 -93.71
Equation (8) should be recognized as the lossy Faraday and
. . .01 3.78 -98.83
Ampere laws with an impedaneg™' matched to that of free- 30 0.0177
spacey/ /0 = E./H,.
It can be shown that there are 1-D equivalents for TE waves TABLE I
inside the PML as well. The derivation proceeds along similar TEN-LAYER PML
lines.
To verify the proceeding derivation, we have run 2-D FDTD ~ A/A Sy D I’ (dB)
simulations and compared them with the 1-D equivalents. The
results are found in Fig. 6. In Fig. 6, a TM plane wave incidentat 15 0.0215 3.93 -106.17
30 is partially absorbed by an eight-layer PML at the back wall.
The incident wave is propagating toward the left rear corner. og 0.0179 3.99 -108.95
Fig. 6(b) shows the reflected field. Note that the incident and
reflected fields obeys Snells’s law and that the reflected field 3g 0.0193 6.98 114.17
is several orders of magnitude smaller than the incident field.
Fig. 6(c) shows a cross section of the reflected field from the
2-D grid taken at 5 from the right-hand side as well as the TABLE Il
reflected field from 1-D simulation. The time stamp of the plots TWELVE-LAYER PML
of Fig. 6(c) are 150 timesteps from those of Fig. 6(b). Note the
similarities in the pulse shape and amplitude. The 2-D plane A/A St p I" (dB)
wave was created by using 1-D FDTD simulations on the left-
and right-hand sides of the grid as described in [21]. The absence 15 0.026 4.20 -119.69
of additional reflection artifacts along the left and right sides
indicate that the existing reflected field is generated from the 20 0.020 4.50 -122.37
PML only.
The 1-D method comprises a simple and efficient means to 30 0.021 4.40 -127.29
test PML reflections. The attenuation is in one direction, the di-
rection normal to the boundary. A careful dispersion analysis
shows that the error from representing a 2-D wave with a 1-D TABLE IV
slice is comparable to the error involved in numerical dispersion FOURTEEN-LAYER PML
which is inherent to 2-D FDTD simulations. In two dimensions,
Maxwell’s curl equations for the PML require either a supple- AlA Sy P I' (dB)
mental equation, as used in [13] or split-field equations as used
by [6]. 15 0.020 4.70 -130.73
Armed with this powerful tool, the search f&f; andyp is
greatly simplified and, hence, can be automated. A search pro- 20 0.023 5.00 -138.12
gram may iterate through different valuestofS; andp. Fur-
thermore, since reflections can be described in terms of spatial 3¢ 0.023 5.00 -138.12

points per wavelength, we may use a single wide-band incident-

wave as a test signal and be able to account for the signal de-

pendence of the PML as described in the previous sections. In each case, a wide-band test signal was the incident wave. The
reflection coefficient is calculated by

JIHE?)

VI. RESULTS IT(A/A)| = 20 log max{‘w

W(e)}

Using the techniques described in the previous sectionghere
several automated searches were performed to identify th&'(A/A) reflection;
PML profile parametersS; and p that will yield superior E* scattered field;
performance. E incident field.
For each profile tested, a 1-D FDTD simulation was run for Our experiments indicate thdf(A/A) becomes nonin-
every angle between and including@&nd 7% at 5 increments. creasing after a certain value of points per wavelength, usual



1062 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 7, JULY 2000

-40F * * * Results reported in[6] o b
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Fig. 7. Reflection coefficients a¥-layer PMLs as a function df. (N, p, o,A) = (8, 3.74, 0.016) (-), (10, 3.91, 0.025) (- -) and the results reported in [6]
(). The values of¥ andA used in the simulations were chosen to match those used in [6].

between 100 and 150. Therefore, oiite/A) has been calcu- TEN_LAYERTSEtENS/WElGHTlNG
lated for a given profile and angle, the maximum between 15, 20,
30, and 200 points per Wave_le_ngth, respect_ivel)_/, are rec_:orded. A/A Sy D T (dB)
Then these maxima are multiplied by the weighting function as
necessary to yield the overall maximum for a given profile. The
parameters that yield the smallest overall maximums are found 15 0.0260 3.90 -102.30
in Tables I-IV.

As the results reported in the tables are “worst case” for the 20 0.0295 3.90 -106.42
discrete frequency with the greatest reflection, depending on the
incident time-domain signal, results may be significantly better 30 0.0345 3.90 -107.43
than those reported in the tables. For example, a Gaussian puls _
with a 10At time constant has been used as the incident signal
to test plane waves incident on the PML at various angles for TABLE VI
some of the profiles found in Tables | and Il. This is the same TWELVE-LAYER PML NO WEIGHTING
test signal used in [6]. The reflections coefficient as calculated
by A/A Sy P ' (dB)

E'S
|IT'| = 20 log max " 15 0.0270 4.2 -116.64

have been plotted versus angle in Fig. 7 for the eight-layer PML 20 0.0305 41 -120.83
with conductivity profile parametet$; = 0.016 andp = 3.74.
The results reported by Berenger [6] have also been plotted. 30 0.0365 4.1 -122.49

Note that there is more than an order of magnitude improvement
at both 45 and 75. Using the same test signal, the reflection
coefficient for a ten-layer PML with conductivity profile param-needed for larger PMLs. To explore this idea, several additional
etersS; = 0.025 andp = 3.91 has also been plotted on Fig. 7 searches were performed without including the weighting func-
Using an additional two layers, we may further decrdd@ tion, the results for these searches are found in Tables V-VII. Al-
by 2 orders of magnitude at 75 though the results for searches that do not employ the weighting

The improved performance shown by the ten-layer PML &inction are not quite as good overall, these profiles provide ex-
large angles suggests that the weighting function may not tellent performance across the entire rangeeff®.
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TABLE VI [8] W. Chew and W. Weedon, “A 3-D perfectly matched medium of modi-
FOURTEEN-LAYER PML NO WEIGHTING fied Maxwell's equations with stretched coordinatdgjtrowave Opt.
Technol. Lett.vol. 7, no. 13, pp. 559-604, Sept. 1994.
)\/A Sf p I (dB) [9] C. Rappaport, “Perfectly matched absorbing boundary conditions based

on anisotropic lossy mapping of spacksEE Microwave Guided Wave
Lett, vol. 5, pp. 90-92, Mar. 1995.

15 0.028 4.5 -129.13 [10] D.Katz, E. Thiele, and A. Taflove, “Validation and extension to three di-
mensions of the Berenger PML absorbing boundd&EE Microwave
Guided Wave Lettvol. 4, pp. 268—-270, Aug. 1994.

20 0.028 4.5 -129.13 [11] M. Gribbon, S. Lee, and A. Cangellaris, “Modification of Berenger’s
perfectly matched layer for the absorption of electromagnetic waves in
30 0.031 4.9 -132.66 layered media,” ifProc. 11th Annu. Rev. Progress Appl. Computat. Elec-

tromagn. Symp. DigMonterey, CA, Mar. 1995, pp. 498-503.
[12] S.Gedneyand A. Roden, “The uniaxial perfectly matched layer (UPML)
truncations of FDTD lattices for generalized media,”URSI Symp.
Dig., Baltimore, MD, July 1996, p. 366.
VIl. ConcLUsIoN [13] C. Rappaport, “Interpreting and improving the PML absorbing
We have explored the mechanisms that govern reflection form ~ boundary condition using anisotropic lossy mapping of spaléeE
. . . Trans. Magn, pp. 968-974, May 1996.
PML absorbing boundaries. In so doing, we have presented ETM]

) ) A Z. Wu and J. Fang, “High-performance PML algorithmiEE Mi-
simple means of accounting for the signal dependence of PM crowave Guided Wave Lettol. 6, pp. 335-337, Sept. 1996.

reflections. Furthermore, we have shown that it is the “discretefl5] L. Gianluca and O. Gandhi, “On the optimal design of the PML ab-
sorbing boundary condition for the FDTD codéEEE Trans. Antennas

parameters points per \(va\{eleng\tm and loss per PML sub- Propagat, vol. 45, pp. 914-916, May 1997.
layer.S, which govern this signal dependence and not the “physfi6] z. wu and J. Fang, “Numerical implementation and performance of
ical” parameters, ando. perfectly matched layer boundary condition for waveguide structures,”

, . IEEE Trans. Mi Theory Teghvol. 43, pp. 2676-2683, Dec.
We have presented a fast and simple method to determine the  1gg5 rans. Microwave Theory Teglvol. 43, pp. 2676-2083, Dec

reflection from a PML due to uniform plane wave at arbitrary[17] J. wu, R. Lee, and J. Lee, “The use of higher order edge-based finite

ang|e_ This method does not require the use of an anisotropic eleme;ynts to improve the; accuracy of the anisotropic perfectly matched
dia or a split-field formulation. Plane wave decompositio layer," in URSI Symp. DigBaltimore, MD, July 1996, p. 361.

me P T i : - p n[18] J. Fang and Z. Wu, “Closed-form expression of numerical reflection co-

may be used to gain insight into the overall reflection from ar- efficient of perfectly matched layers,” Proc. URSI Symp. DigBalti-

bitrary waves. more, MD, July 1996, p. 364.
. 19] “private communication,” unpublished, 1996.
Employing these methods, we have conducted searches fb'?)] Z. Wu and J. Fang, “Closed-form expression of numerical reflection

conductivity profiles that provide improved performance. As- coefficient at PML interfaces and optimization of PML performance,”

suming adequate sampling, profile parameters have been pro- |EEE Microwave Guided Wave Lettol. 6, pp. 332-334, Sept. 1996.
ided that will i ti | £ id [21] S. Winton and C. Rappaport, “Implementation of a two dimensional
vide at will Insure excepuonal perrormance over a wide va- plane wave FDTD using one dimensional FDTD on the lattice edges,” in

riety of scattering problems. This approach removes the burden  Proc.’97 ACES Symp. DigMonterey, CA, Mar. 1997, pp. 1156-1162.
of seeking adequate ABC absorption from the FDTD user. (2] ) De MOGVF')OOSG a”d,\';/'- Stulcg'éﬂ “An lemCiegtlw% tocompare ABC's."
. . - . t t. .38, no. 1, pp. 71-75, . .
Despite the obvious utility of the method, caution must be niennas Fropagat. Mag/o no- - pp €
exercised to ensure that extreme angiegx’) are minimized.
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