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Specifying PML Conductivities by Considering
Numerical Reflection Dependencies
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Abstract—Berenger’s perfectly matched layer (PML) absorbing
boundary condition (ABC) has greatly enhanced finite-difference
time-domain (FDTD) scattering analysis. In a discretized domain,
however, performance is signal-dependent and large-angle per-
formance is poor due to a rapid reduction in layer decay rate.
Increasing the conductivity to offset this reduction increases the
discretization errors, especially at near-normal incidence angles.
However, by carefully specifying the conductivity in each of the
PML sublayers, it is possible to balance the small and large
angle performance. The signal-dependence of reflections may be
described in terms of the number of spatial points per wavelength.
This lends itself to an overall strategy for which to search for PML
profiles that provide superior performance for waves incident on
a PML at angles between 0–75 and signals that have at least 15
spatial points per wavelength sampling. A one-dimensional (1-D)
projection method may be employed to allow an exhaustive search
to become a viable alternative to optimization. Such a search
provides profile parameters that, while not necessarily “optimal,”
give excellent wide-angle wide-band reflection performance.

Index Terms—Finite-difference time-domain (FDTD) methods,
perfectly matched layers (PMLs).

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method for
electromagnetic scattering problems is particularly useful

because it is wide band, easily implemented, and adaptable to a
wide variety of problems. To keep FDTD simulations from be-
coming computationally expensive, edges of the computational
domain must be kept as close to the scatterer as possible. To
avoid reflections from the edges of the domain from scattered
fields propagating in all directions, an absorbing boundary
condition (ABC) must absorb waves incident from all angles.
Historically, ABCs have had only limited success in absorbing
waves incident at all angles [2]–[5], but this recently changed
with the introduction of the Berenger perfectly matched layer
(PML) [6].

The PML works perfectly in continuous analysis, absorbing
waves incident at arbitrary angles with arbitrary attenuation.
Unfortunately, in order to be used in computer simulations,
the PML must be discretized. This discretization limits the
conductivity increase for offsetting the reduction in decay rate
as the angle of incidence increases and thus limits the overall
performance of the PML. Although many efforts improve
the PML [7]–[15], few of these deal with performance as a
function of angle, choosing instead to concentrate on improving
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performance at normal incidence. Although large angle effects
may be minor if waves incident on a PML at grazing angles
reflect nearly normally incident on an adjacent PML, it has
been shown [7] that there are several applications where this
is not the case and that the performance at large incidence
angles is important to the overall performance of the ABC.
Consequently, the improvement of large angle performance of
the PML is an important problem.

Discretization also prevents the PML from being signal-in-
dependent, as it is in the continuous case. Most investigators
choose to describe this signal-dependence as a function of fre-
quency. Because FDTD involves spatial and temporal sampling,
we suggest that it may be simpler to describe the signal-depen-
dence in terms of spatial points per wavelength.

There has also been much effort to analyze numerical reflec-
ticans in the PML in order to optimize [16]–[20] wave absorp-
tion. Obtaining a closed-form expression for the reflection from
a PML as a function of the PML parameters, however, is a dif-
ficult problem. This difficulty lies in the fact that numerical re-
flections are created each time a wave passes from one layer
to another. These reflections, in turn, create more reflections
as they encounter different layers. Keeping track of all reflec-
tions becomes increasingly difficult as the number of layers is
increased. Furthermore, this type of analysis can only be per-
formed for one frequency at a time, complicating any effort for
optimization.

The approach being used for this current work is largely
heuristic. We wish to understand the mechanisms that affect
reflections from a PML in order to develop a strategy that will
allow us to identify PML parameters that will provide enhanced
performance over the widest range of angles and signals.
With the aid of computational analysis tools, an automated
search has been developed for PML parameters . Although
the “optimal” piofile may depend on the specific application,
the parameters determined in this analysis provide the best
wide-band wide-angle performance reported in the standard
literature.

II. REFLECTION DEPENDENCIES

The decay rate of the PML in continuous time and space is
given as [9], where is the incidence angle, is
the conductivity of the PML , and is the impedance of free-
space. Note that the decay rate is proportional to . Since
there is no reflection at the PML interface,may be chosen
arbitrarily large in order to offset the loss of decay rate due to
the factor.

The geometry for the discrete PML is shown in Fig. 1 The
decay rate in the discretized PML also decreases with increasing
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Fig. 1. Lattice geometry and typical plane wave incident onN -layer
conductivity profiled PML ABC.

angle. Unlike with the continuous case, the discretizedin the
th PML sublayer may not be chosen arbitrarily large. In gen-

eral, since FDTD simulations calculate electric and magnetic
fields on complementary overlapping lattices, they are sensitive
to changes in the parameters of adjacent layers. Stated another
way, at any air-PML or PML–PML interface, the discreta equa-
tions for the fields at the interface are dependent on unmatched
conductivities.

As an example, assume thatare constant over a PML half-
space. An incident wave encounters only one interface: that
between free-space and the PML. The difference equation for
the field at the interface will be dependent on the conductivity
of the free-space ( ) and the conductivity of the PML
( constant). If is very small, the resulting reflection will
also be very small. If is increased, the decay rate increases,
but there will also be a larger reflection from the interface. If
a Gaussian pulse Exp , where is the time
at which the pulse is at its maximum, excites the first row of
an FDTD grid, Fig. 2 shows the total reflection from a constant
conductivity PML half-space versus angle for values ofequal
0.15, 0.3, and 0.45 S/m. For these simulations, the temporal in-
crement pS, spatial increment m and

m. It is apparent that the reflection in-
creases with an increase inand that as increases the discrete
change in conductivity at the interface is moderated and the re-
flection decreases.

It should be noted that the time and space steps need not have
physical units. Instead, the entire FDTD simulation including
the PML may be entirely specified by the Courant number

and the th layer decay rate and the perfor-
mance of the PML may be parameterized in terms of two unit-
less parameters: , and the angle
of incidence, . Given these, and the wave phase velocity all
other physical quantities can be determined.

One way reflection from the PML is reduced is to vary
the sublayer conductivities from small values near the free
space interface to larger values toward the final sublayer. This
profiling of PML conductivity improves absorption, providing
an alternative to increasing the number of sublayers, which
is computationally expensive. Since incoming waves do not
encounter larger values of until well within the layer, the

reflections caused by these larger jumps in conductivity are
attenuated by the initial lossy layers both for forward and
backward propagation. Yet even with the parabolic conductivity
profile [6], the total reflection from an eight
PML at 75 incidence is shown to be about33 dB, compared
to the 100 dB achieved at normal incidence. It is noted
that as the angle of incidence is increased, the numerical
experimental results more closely match the theoretical loss,
which, for the case of [6] at 75, was 31 dB. This can
be explained by the fact that as the angle of incidence is
increased, the projected spatial increment decreases,
which has the effect of decreasing the discretization error;
the jumps in conductivity variations at every layer interface
are smaller, giving lower sublayer reflections.

Since , where is the magnetic conductivity,
may be used in both Ampere’s and Faraday’s laws [13]. Dis-

crete conductivity values can be assigned to every half sub-
layer. Using the half-layer profile specification and assuming no
discretization error, the two-way loss equation is

(1)

with conductivity profile taking the form ,
. For this profile form, the decay rate may

be described by and . A conductivity profile with a
power dependence is simple to implement and does not change
as rapidly as a profile with an exponential dependence, which
was found to not perform as well.

The three different time-domain signals shown in Fig. 3 have
different temporal increments (Sig.1 ps, Sig.2
ps, Sig.3 ps), as well as the different waveforms,
which account for the different frequency contents. These
signals have been used as the excitation for a one-dimensional
(1-D) FDTD simulation to test various PML’s with perfectly
conducting terminations. In each case, the Fourier transform
of the reflected field divided by the Fourier transform of
the incident field has been plotted versus the inverse of the
discrete frequency times the Courant number ,
which is also the number of spatial points per wavelength .
The use of nonphysical units to describe PML reflection has
also been used in [22]. The incident waveform was obtained
by using a much larger FDTD simulation, where the wave
passes over the receiver location just outside the PML and
the simulations is stopped before reflection can occur. Results
for the 1-D FDTD simulations at normal incidence in Fig. 4
show all three signals practically overlapping for all three
PML layer configurations of . The layer size
and normalized conductivity profile is indicated for each set
of graphs. Note that since the curves coincide for each PML
configuration, PML reflections are independent ofand of
the waveform, but dependent primarily on the relationship
between the two (i.e., ).

To further investigate the PML reflection dependencies, we
consider the same three signals, but in this case maintain the
temporal increment and conductivity profile, but use three dif-
ferent spatial increments and, hence, different Courant num-
bers and different values of the decay rate. Here we test the



WINTON AND RAPPAPORT: PML CONDUCTIVITIES BY REFLECTION DEPENDENCIES 1057

Fig. 2. Reflection as a function of angle for PML half-spaces with constant conductivity profile� = 0:45 (�), 0.30(�), and 0.15(+).

Fig. 3. Three time-domain signals and their associated power spectral densities. For Signal 1�t = 2 ps; Signal 2�t = 1:8 ps; Signal 3�t = 1:7 ps.

eight-layer PML only; the results are in Fig. 5. Note that the
magnitudes of the reflection coefficients for the different sig-
nals are very different.

These figures clearly indicate that it is not the physical quan-
tities and that determine the reflection from the PML, but

rather the nonphysical quantitiesand . This intuitive re-
sult follows since the PML works “perfectly” in the continuous
domain specified by physical parameters, while reflections that
arise from the discretized PML depends on discretization pa-
rameters.
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Fig. 4. Reflection coefficient as a function of�=� for various PMLs as determined using three different signals.� = 0:6 mm. Signal 1 (-) (�t = 2 ps); Signal
2 (..) (�t = 1:8 ps); Signal 3 (–) (�t = 1:7 ps).

Fig. 5. Reflection coefficient as a function of�=� for various PMLs as determined using three different signals. Signal 1 (-) (�t = 2 ps,� = 0:6 mm,
S � = 0:018; p = 3:675); Signal 2 (..) (�t = 1:8 ps,� = 0:54 mm,S � = 0:0162; p = 3:675); Signal 3 (–) (�t = 1:7 ps,� = 0:51 mm,� � =

0:0153; p = 3:675).

III. EXHAUSTIVE SEARCH VERSUSOPTIMIZATION

One obvious method for improving PML performance is
to optimize the PML parameters and over all angles
and signals. To do this would require an analytic expression
for reflections from the PML as a function of the size of the

PML, incident angle, incident signal, , and . Such analytic
expressions which have been numerically verified for small

PMLs appear in the literature [18], [22]. For an eight-layer
PML, analytic expressions in the literature have not been found
to accurately predict numerical reflections for all angles and
incident waveforms.



WINTON AND RAPPAPORT: PML CONDUCTIVITIES BY REFLECTION DEPENDENCIES 1059

Even assuming confidence with an analytic expression of the
reflection coefficient, optimization of the PML over all profiles,
signals, and angles is a nontrivial problem. By relaxing the “op-
timality” requirement, we may utilize an exhaustive search to
identify profiles that will provide superior performance over a
wide range of signals and angles.

IV. EXHAUSTIVE SEARCH

The basic idea behind the exhaustive search is simple: FDTD
simulations are run for each PML profile under consideration.
The search continues until suitable profile parameters have been
identified. Because we must account for both the angle depen-
dence and signal dependence, however, steps must be taken to
make the search viable and manageable.

Having described the PML signal dependence, we now con-
sider angle dependence. Similar to an optimization problem,
we must create a criterion on which to judge the results. Fur-
thermore, recall that the decay ratein the PML is given as

. Therefore, regardless of the profile, we can
expect significant reflection from a PML with a perfectly con-
ducting termination at very large angles. It is therefore appro-
priate to introduce a weighting function. To improve large angle
performance without sacrificing near-normal performance, we
have chosen the simple “minimax” criteria with a weighting
function

(2)

where is a weighting function and is
the reflection from the PML. Note that is not a function of .
We seek the values of and that minimize . This function
is well suited to the wide-angle minimum reflection because it
does not penalize for a realization of that has a large vari-
ation. The weighting function is equal to unity (0 dB) up
to and including 60, at which point it drops off at 12 dB/5
to a minimum of 36 dB at 75. This dropoff from 60 to 75
accounts for the reduction in performance predicted by (1). In-
cident angles larger than 75are not considered.

To deal with the signal dependence, we describe reflection
as a function of spatial points per wavelength and break inci-
dent signals into three groups. These groups have, respectively,
a minimum of 15, 20, and 30 spatial point per wavelength sam-
pling for frequencies that have power densities within6 dB
of the maximum power density. The results reported in this
work are, therefore, worst-case reflections for signals adhering
to these groups.

V. ONE-DIMENSIONAL PROJECTIONMETHOD

Running a two-dimensional (2-D) FDTD simulation for every
and is time prohibitive. Furthermore, depending on the type

of excitation used, analysis of the reflection at a single angle is
quite complicated. Fortunately, it has been shown that 2-D uni-
form plane waves may be represented using 1-D FDTD simula-
tions [21]. Reflections from a PML may also be analyzed using
1-D FDTD simulations. Basically, a 1-D “slice” of a 2-D wave
is taken in the direction normal to the PML under test. This 1-D

wave moves with a velocity , where is the velocity
of the 2-D wave in the propagation direction perpendicular to
the planar wavefront. The PML only attenuates in the direction
normal to its interface, so there are no transverse variations in
the PML, but since the normal variations are specified by the
same FDTD formalism as the 2-D, the 1-D FDTD simulation
efficiently demonstrates the complete reflection and transmis-
sion characteristics of the PML.

This can be shown analytically. It has been shown [13] that the
time harmonic curl equations for TM waves inside a continuous
PML may be written as

(3a)

(3b)

(3c)

The time-harmonic plane wave solution for (3) is of the form

(4a)

where the time dependence will be suppressed in the fol-
lowing:

(4b)

with

(5)

Note that the velocity of the 1-D slice inside the PML is
. So the 1-D solution should take the form

(6a)

(6b)

at .
Because the solution in (6) does not satisfy Maxwell’s curl

equations, Ampere’s Law must be modified. Taking the partial
derivative of and from (4b) with respect to and ,
respectively, at , with gives

(7a)

(7b)
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(c)

Fig. 6. Gaussian plane wave incident on an eight-layer PML located atx = 392� at 30 (from lower right to left). These are views of a portion of a 400� 100
grid. (a) Incident field. (b) Scattered field showing specular reflection from PML five orders of magnitude lower than the incident field. Time sliceof graphs in (c)
+150 time steps of those in (a) and (b). (c) Cross-section of reflected field from 2-D simulation and reflected field from 1-D simulation. Time slice of graphs in
(c)+150 time steps of those in (a) and (b).

These are equated as Thus, the left-hand side of (3c) becomes
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Now (3) for the 1-D curl equations in the time domain be-
comes

(8a)

(8b)

Equation (8) should be recognized as the lossy Faraday and
Ampere laws with an impedance matched to that of free-
space .

It can be shown that there are 1-D equivalents for TE waves
inside the PML as well. The derivation proceeds along similar
lines.

To verify the proceeding derivation, we have run 2-D FDTD
simulations and compared them with the 1-D equivalents. The
results are found in Fig. 6. In Fig. 6, a TM plane wave incident at
30 is partially absorbed by an eight-layer PML at the back wall.
The incident wave is propagating toward the left rear corner.
Fig. 6(b) shows the reflected field. Note that the incident and
reflected fields obeys Snells’s law and that the reflected field
is several orders of magnitude smaller than the incident field.
Fig. 6(c) shows a cross section of the reflected field from the
2-D grid taken at 50 from the right-hand side as well as the
reflected field from 1-D simulation. The time stamp of the plots
of Fig. 6(c) are 150 timesteps from those of Fig. 6(b). Note the
similarities in the pulse shape and amplitude. The 2-D plane
wave was created by using 1-D FDTD simulations on the left-
and right-hand sides of the grid as described in [21]. The absence
of additional reflection artifacts along the left and right sides
indicate that the existing reflected field is generated from the
PML only.

The 1-D method comprises a simple and efficient means to
test PML reflections. The attenuation is in one direction, the di-
rection normal to the boundary. A careful dispersion analysis
shows that the error from representing a 2-D wave with a 1-D
slice is comparable to the error involved in numerical dispersion
which is inherent to 2-D FDTD simulations. In two dimensions,
Maxwell’s curl equations for the PML require either a supple-
mental equation, as used in [13] or split-field equations as used
by [6].

Armed with this powerful tool, the search for and is
greatly simplified and, hence, can be automated. A search pro-
gram may iterate through different values of, and . Fur-
thermore, since reflections can be described in terms of spatial
points per wavelength, we may use a single wide-band incident
wave as a test signal and be able to account for the signal de-
pendence of the PML as described in the previous sections.

VI. RESULTS

Using the techniques described in the previous sections,
several automated searches were performed to identify the
PML profile parameters and that will yield superior
performance.

For each profile tested, a 1-D FDTD simulation was run for
every angle between and including 0and 75 at 5 increments.

TABLE I
EIGHT-LAYER PML

TABLE II
TEN-LAYER PML

TABLE III
TWELVE-LAYER PML

TABLE IV
FOURTEEN-LAYER PML

In each case, a wide-band test signal was the incident wave. The
reflection coefficient is calculated by

where
reflection;
scattered field;
incident field.

Our experiments indicate that becomes nonin-
creasing after a certain value of points per wavelength, usual



1062 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 7, JULY 2000

Fig. 7. Reflection coefficients ofN -layer PMLs as a function of�. (N; p; � �) = (8; 3:74; 0:016) (–), (10; 3:91; 0:025) (- -) and the results reported in [6]
(�). The values ofW and� used in the simulations were chosen to match those used in [6].

between 100 and 150. Therefore, once has been calcu-
lated for a given profile and angle, the maximum between 15, 20,
30, and 200 points per wavelength, respectively, are recorded.
Then these maxima are multiplied by the weighting function as
necessary to yield the overall maximum for a given profile. The
parameters that yield the smallest overall maximums are found
in Tables I–IV.

As the results reported in the tables are “worst case” for the
discrete frequency with the greatest reflection, depending on the
incident time-domain signal, results may be significantly better
than those reported in the tables. For example, a Gaussian pulse
with a time constant has been used as the incident signal
to test plane waves incident on the PML at various angles for
some of the profiles found in Tables I and II. This is the same
test signal used in [6]. The reflections coefficient as calculated
by

have been plotted versus angle in Fig. 7 for the eight-layer PML
with conductivity profile parameters and .
The results reported by Berenger [6] have also been plotted.
Note that there is more than an order of magnitude improvement
at both 45 and 75 . Using the same test signal, the reflection
coefficient for a ten-layer PML with conductivity profile param-
eters and has also been plotted on Fig. 7.
Using an additional two layers, we may further decrease
by 2 orders of magnitude at 75.

The improved performance shown by the ten-layer PML at
large angles suggests that the weighting function may not be

TABLE V
TEN-LAYER PML NO WEIGHTING

TABLE VI
TWELVE-LAYER PML NO WEIGHTING

needed for larger PMLs. To explore this idea, several additional
searches were performed without including the weighting func-
tion, the results for these searches are found in Tables V–VII. Al-
though the results for searches that do not employ the weighting
function are not quite as good overall, these profiles provide ex-
cellent performance across the entire range of 0–75 .
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TABLE VII
FOURTEEN-LAYER PML NO WEIGHTING

VII. CONCLUSION

We have explored the mechanisms that govern reflection form
PML absorbing boundaries. In so doing, we have presented a
simple means of accounting for the signal dependence of PML
reflections. Furthermore, we have shown that it is the “discrete”
parameters points per wavelength and loss per PML sub-
layer , which govern this signal dependence and not the “phys-
ical” parameters and .

We have presented a fast and simple method to determine the
reflection from a PML due to uniform plane wave at arbitrary
angle. This method does not require the use of an anisotropic
media or a split-field formulation. Plane wave decomposition
may be used to gain insight into the overall reflection from ar-
bitrary waves.

Employing these methods, we have conducted searches for
conductivity profiles that provide improved performance. As-
suming adequate sampling, profile parameters have been pro-
vided that will insure exceptional performance over a wide va-
riety of scattering problems. This approach removes the burden
of seeking adequate ABC absorption from the FDTD user.

Despite the obvious utility of the method, caution must be
exercised to ensure that extreme angles (75 ) are minimized.
The method developed here also does not account for evanescent
waves.
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