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Abstract—A new approach is proposed to reduce the memory
requirements of the multilevel fast multipole algorithm (MLFMA)
when applied to the higher order Galerkin’s method. This
approach represents higher order basis functions by a set of
point sources such that a matrix–vector multiply is equivalent to
calculating the fields at a number of points from given current
sources at these points. The MLFMA is then applied to calculate
the point-to-point interactions. This permits the use of more levels
in MLFMA than applying MLFMA to basis-to-basis interactions
directly and, thus, reduces the memory requirements significantly.

Index Terms—Fast solvers, Galerkin’s method.

I. INTRODUCTION

T HE electromagnetic (EM) interactions with arbitrarily
shaped objects can be characterized by seeking the

solution of an integral equation whose unknown function is the
induced current. In this process, the integral equation is first
discretized into a matrix equation using the Galerkin-based
method of moments (MoM) with subdomain basis functions
such as rooftop functions for curvilinear quad patches and
Rao–Wilton–Glisson (RWG) functions [1] for triangular
patches. It is convenient to model objects with arbitrary shape
using triangular patches; hence, RWG functions are widely
used for representing unknown current distributions.

When iterative solvers are used to solve the MoM matrix
equation, the calculations of matrix–vector multiplys can be
accelerated using fast multipole method (FMM) or multilevel
fast multipole algorithm (MLFMA) [2]–[4]. The FMM reduces
the complexity of a matrix–vector multiply from to

, where is the number of unknowns. The MLFMA
further reduces the complexity to . The memory
required by MLFMA is only ; hence, it can solve
very large problems on existing computers. Integral-equa-
tion solvers that use RWG basis functions and employ the
standard implementations of MLFMA such as FISC [5], [6]
and ScaleME [7]–[9] have been very successful in solving
large-scale problems. However, these basis functions have a
poor convergence and need a large number of unknowns for a
desired accuracy. For example, a sampling rate of ten unknowns
per wavelength (about 200 unknowns per square wavelength
for quad patches or 340 unknowns per square wavelength for
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triangular patches) typically results in an accuracy of 0.1 dB
in the radar cross section (RCS) calculation. The average edge
size of the patches is about . As a result, it is very expensive
to achieve a high accuracy by using RWG bases or any other
low-order functions. Hence, it is imperative to use higher order
basis functions [10], [11] with vastly superior convergence
properties to obtain accurate results using only a fraction of the
unknowns required by low-order basis functions. It has been
demonstrated [11], [12] that using higher order basis functions,
the sampling rate for an accuracy of 0.1 dB in RCS can be
reduced to unknowns per square wavelength with an
average edge length of .

However, when MLFMA is used to accelerate the solution of
the higher order Galerkin-based MoM [12], its performance is
limited for the following reason. In MLFMA, only the near in-
teractions of the MoM matrix are computed explicitly whereas
the far interactions are computed implicitly by using the mul-
tipole expansion of current distributions. In this procedure, the
scatterer is first enclosed in a large cube, which is then divided
into eight equally sized small cubes. Each of the small cubes
is further divided into eight smaller cubes recursively until the
smallest cube size is about several times bigger than the longest
patch edge. Thus, the edge length limits the number of levels
used in MLFMA.

In Galerkin-based MoM using RWG basis functions since the
edge length is about , the finest cube is about a quarter of a
wavelength. However, because of the large patch size used with
higher order basis functions, the number of levels in MLFMA
is at least one or two less than that for RWG basis functions. In
MLFMA, the radiation pattern of each basis is calculated and
stored. The number of samplings in the radiation pattern is
given by

(1)

where:
wavenumber;
depends on the accuracy;
diameter of the group size, which is bigger than the
cube as shown in Fig. 1(a).

Each higher order basis needs much more samplings than the
RWG basis. The average number of unknowns required is
about 1.5 per patch for RWG basis, 5 and 10.5 for the first- and
second-order basis functions, respectively. Thus, the number
of unknowns in each group for higher order basis functions is
larger than that for RWG basis. Therefore, more near interac-
tions have to be calculated and stored for each higher order
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Fig. 1. Applying MLFMA to (a) basis-based sources and (b) point-based
sources.

basis. Consequently, MLFMA cannot work very efficiently
with higher order Galerkin’s method.

To overcome this problem, we propose to implement
MLFMA based on point-to-point interactions, instead of the
traditional basis-to-basis interactions. When we calculate the
matrix elements for which the testing and source bases are
not close to each other, we can apply Gaussian quadrature
to evaluate the integrals. This process can be interpreted as
replacing a continuous source distribution with discrete sources
as shown in Fig. 1(b). Thus, one matrix–vector multiply is
similar to the calculation of the electromagnetic fields for a
given distribution of source bases and then testing them with
these bases. In this implementation, we first findequivalent
point sources from these source bases, then calculate
electromagnetic fields at these points, and finally test them
with each testing basis. The value ofdepends on the number
of patches and the quadrature rule used for each patch. The
MLFMA is used to calculate electromagnetic fields atpoints
generated by point sources. By doing so, the number of
levels used is not limited by the size of basis functions, making
MLFMA more efficiently. Furthermore, the near interaction
part of the MoM matrix is redefined as the difference between
the original matrix and the interactions calculated by MLFMA.
Consequently, the memory requirement can be reduced as
well. The proposed scheme can be interpreted as a procedure

for reducing Galerkin-based formulation for the solution of
integral equations to Nyström-type discretizations [13]. In the
following section, this approach is first described in detail.
Analysis of computational complexity is conducted to show
the memory and complex operation counts required by this
approach. Numerical results validating the point-based method
are then presented, which are followed by the conclusion.

II. A PPLYING MLFMA TO POINT-BASED SOURCES

By testing the electric field integral equation (EFIE) with the
basis function , the matrix element is written as

(2)

where the dyadic Green’s function is given by

and denotes the impedance. When the testing basisis
sufficiently far away from the source basis , the integrals can
be evaluated by using Gaussian quadrature to give

where:
total number of quadrature points on all patches;
quadrature weight at theth point, which is nonzero
only on the patch supporting the basis;
is defined as .

Correspondingly, the matrix–vector multiply for the far interac-
tions is written as

(3)

where is the coefficient of theth basis function. By defining

(4)

Equation (3) is simplified as

The above formulation means that for a given distribution of
source bases, calculate the electric fields and test them with

these bases. The MLFMA can be used to calculate the fields
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generated by current sources very efficiently. Defining a vari-
able such that

– interaction is calculated by MLFMA
otherwise

the matrix-vector multiply calculated by MLFMA is modified
as

(5)

Now, the near interaction part of the MoM matrix is redefined as
the difference between the original matrix and the interactions
calculated by MLFMA, so we have

(6)

where

Hence

If the testing basis and the source basisbelong to the nearby
groups but are not very close to each other, the same quadrature
rule used for evaluating the far interactions is used to calculate
the first term of the above equation. If all point–point interac-
tions are calculated by MLFMA, equals zero. Therefore,

is a sparse matrix and has less nonzero elements than the
matrix for near interactions between bases.

Since the current vector in (4) has only two tangential compo-
nents, we write it in terms of two independent tangential vectors
as

(7)

Therefore, current at the th source point is written as

(8)

where

Substituting the above expression into (3) yields

(9)

Applying the addition theorem to the dyadic Green’s function
[2], [3] yields

(10)

where

and and are the group centers for the pointsand
, respectively. Consequently, the far interactions of the ma-

trix–vector multiply can be written as

(11)

where , the summation over is carried out for
all nonneighbor groups, denoted by and the radiation and
receiving patterns are given by

(12)

Since the point sources do not have any spatial extent, we
can refine the finest cube in MLFMA as small as a quarter of a
wavelength. There are two advantages in applying MLFMA to
point-to-point interactions. First of all, the group size is the same
as the cube and there is no overlapping in sources as shown in
Fig. 1. Second, smaller group size means that much less sam-
plings of radiation patterns are needed. As a consequence, the
memory requirements for the radiation pattern can be reduced.
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Fig. 2. (a) Absolute value of matrix elementsZ . (b) Relative error in
the basis-based approach. (c) Relative error in the point-based approach. (d)
Location ofZ .

Further reductions can be obtained if the radiation patterns are
calculated on the fly since no numerical integration is needed to
calculate the radiation pattern.

III. COMPLEXITY ANALYSIS

The memory requirements in the MLFMA implementation
have three parts: one for near interaction elements , an-
other for the radiation and receiving patterns for each basis or
point as given by (12), and the third for the radiation patterns for
all nonempty groups at each level. The first part is unchanged
from the traditional basis-based approach to the point-based
approach. This, however, is not the case for the second part.
When the second-order basis is used, the number of levels in
the point-based MLFMA is increased by two compared to that
for the basis-based MLFMA. The cubic size in the finest level is
then reduced to one fourth, and by (1), the number of samplings
of the radiation and receiving patterns for each point is reduced
to one eighth. Since the number of points is about twice of the
number of bases, the second part of the memory requirement
is reduced to one fourth. From one level to a coarser level, the
samplings in the radiation patterns are increased by a factor of
four and since the number of nonempty cubes is reduced to one

Fig. 3. (a) Memory requirements and (b) CPU time for a matrix–vector
multiply of MLFMA as applied to the basis-based and point-based sources.

fourth, the memory requirement is a constant for all nonempty
cubes at each level. Consequently, the point-based approach
needs more memory than the traditional basis-based approach
in the third part; but, this increase is insignificant compared to
the reduction achieved in the second part. Hence, if we write
the total memory required as , the proposed
method maintains while it reduces by a factor of four.

The number of operations in each matrix–vector multiply
consists of three parts similar to the memory requirements: one
for near interactions, another for calculating the radiation pat-
terns for each group from its points or bases at the finest level
corresponding to the last two summations in (11) and evaluating
the fields at each basis corresponding to the first two summa-
tions and the integral in (11), and the third for the translation at
each level and interpolation/anterpolation from one level to an-
other [4]. Since a large number of groups is needed in the trans-
lation, which is the summation over in (11) and the interpo-
lation/anterpolation are required for bothand , the number of
operations in the third part is dominant. Hence, the point-based
approach needs more operations than the basis-based approach
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Fig. 4. Bistatic RCS of a PEC sphere having a diameter of50� using the
point-based approach (seven-level MLFMA, 5.43 Gb of memory).

because of the added levels. If we write the total number of op-
erations as , the proposed method maintains

while it increases .

IV. NUMERICAL RESULTS

The point-based approach is verified by first computing the
matrix elements of a thin conducting strip using a five-level
MLFMA and then obtaining the error with respect to the direct
computation. The actual size of the second-order basis functions
would permit only three levels of MLFMA, but the use of the
point-based approach allows two additional levels. The errors in
the real and imaginary parts of the matrix elements are plotted
in Fig. 2 for the first row of the matrix as a function of . It
is observed that the error in the point-based MLFMA is similar
to that in the basis-based MLFMA.

The inherent advantage in applying MLFMA to the
point-based sources is shown by computing the RCS of a
perfectly electric conducting (PEC) sphere with different
diameters using the second-order basis functions [12] and
then comparing the memory needed for applying MLFMA to
the basis-based sources. The computation is carried out on a
16-node linux cluster called asOrion [14]. Each node of the
cluster consists of a 100-MHz motherboard and a 350-MHz
AMD K6-2 processor. Each board is equipped with a 256
SDRAM card leading to a total of 4 Gb of dynamic random
access memory. The MLFMA kernel used is ScaleME [7]–[9].
The discretization size is kept constant at 33 unknowns per
square wavelength and the diameter of the sphere is increased
from to . The memory required is shown in Fig. 3(a),
which clearly indicates that the memory requirements are
reduced by a factor of two. The corresponding CPU times
recorded for a matrix–vector multiply are plotted in Fig. 3(b).
The CPU time of the point-based approach is initially increased
for small problems, but eventually converges to that of the
basis-based approach for larger problems. This is due to the

Fig. 5. Bistatic RCS of a PEC cube having a side length of15� calculated by
the MLFMA as applied to the basis-based and point-based sources, respectively.

increased memory access time in the basis-based approach
because of its larger memory requirements.

Next, the RCS of a -diameter sphere is calculated using
322 896 second-order basis functions. The root mean square
(rms) error is about 0.0877 dB and the corresponding bistatic
RCS pattern in the -plane is plotted in Fig. 4. Seven levels of
the point-based MLFMA with radiation patterns computed on
fly are used, which requires 5.43 Gb of memory. The use of the
basis-based approach requires 12.69 Gb of memory.

Finally, the RCS of a conducting cube having a side length
of is calculated using 45 320 second-order basis functions.
The corresponding bistatic RCS patterns in the-plane are
plotted in Fig. 5. In this case, we use six levels of MLFMA with
radiation patterns computed on fly. The point-based approach
requires 474 MB of memory, whereas the basis-based approach
requires 988 MB of memory.

V. CONCLUSION

A new approach is presented to make the higher order
Galerkin’s method work more efficiently with the MLFMA.
The far interactions in the matrix–vector multiply are calculated
by applying MLFMA to the point interactions. This approach
allows one to use more levels in MLFMA than applying
MLFMA to basis interactions directly and, hence, reduces the
memory requirements significantly.
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