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Abstract—A new approach is proposed to reduce the memory triangular patches) typically results in an accuracy of 0.1 dB
requirements of the multilevel fast multipole algorithm (MLFMA) in the radar cross section (RCS) calculation. The average edge
when applied to the higher order Galerkin's method. This ;e ofthe patches is abdut\. As a result, itis very expensive
approach represents higher qrder basis functhns by a set of to achieve a high accuracy by using RWG bases or any other
point sources su_ch that a matrix—vector multlply is equwalent to ; e ' -

Ca|cu|at|ng the fields at a number of pomts from given current low-order functions. Hence, itis |mperat|Ve to use h|gher order
sources at these points. The MLFMA is then applied to calculate basis functions [10], [11] with vastly superior convergence
the point-to-point interactions. This permits the use of more levels properties to obtain accurate results using only a fraction of the
in MLFMA than applying MLFMA to basis-to-basis interactions ninowns required by low-order basis functions. It has been
directly and, thus, reduces the memory requirements significantly. demonstrated [11], [12] that using higher order basis functions
the sampling rate for an accuracy of 0.1 dB in RCS can be
reduced toi0 ~ 70 unknowns per square wavelength with an
|. INTRODUCTION average edge length 6f5 ~ 1.

. . . . .. However, when MLFMA is used to accelerate the solution of
HE electromagnetic (EM) interactions with arbitrarily, e higher order Galerkin-based MoM [12], its performance is
shaped objects can be characterized by seeking {Hﬁ '

; ) . o ited for the following reason. In MLFMA, only the near in-
solution of an integral equation whose unknown function is t &ractions of the MoM matrix are computed explicitly whereas

induced current. In this process, the integral equation is fll‘t?]te far interactions are computed implicitly by using the mul-

discretized into a matrix equa}tlon using the Ga_lerkm-bgs%ﬂole expansion of current distributions. In this procedure, the
method of moments (MOM) with sqbdomam basis functio atterer is first enclosed in a large cube, which is then divided
such as rooftop functions for curv!lmear quad pa?ches aﬂﬁo eight equally sized small cubes. Each of the small cubes
Rao-Wilton-Glisson (RWG) functions [1] for trlangularis further divided into eight smaller cubes recursively until the

patches. It is convenient to model objects with arbitrary sha fhallest cube size is about several times bigger than the longest

using triangular patCheS; hence, RWG .fur)ctpns are wide tch edge. Thus, the edge length limits the number of levels
used for representing unknown current distributions. used in MLEMA

When iterative solvers are used to solve the MoM matrix
equation, the calculations of matrix—vector multiplys can b )
accelerated using fast multipole method (FMM) or multilev
fast multipole algorithm (MLFMA) [2]-[4]. The FMM reduces
the complexity of a matrix—vector multiply fron®(~N?) to
O(N'3), whereN is the number of unknowns. The MLFMA
further reduces the complexity ©©(N log N). The memory
required by MLFMA is onlyO(N log N); hence, it can solve
very large problems on existing computers. Integral-equ
tion solvers that use RWG basis functions and employ the

Index Terms—Fast solvers, Galerkin’s method.

In Galerkin-based MoM using RWG basis functions since the
ge length is abouit 1, the finest cube is about a quarter of a

avelength. However, because of the large patch size used with
higher order basis functions, the number of levels in MLFMA
is at least one or two less than that for RWG basis functions. In
MLFMA, the radiation pattern of each basis is calculated and
stored. The number of sampling&’) in the radiation pattern is
gl_ven by

—_ 972 — I . \1/3
standard implementations of MLFMA such as FISC [5], [6] K =217, L = kd + a(kd) @)
and ScaleME [7]-[9] have been very successful in solvinﬁ _
large-scale problems. However, these basis functions hav réere.

wavenumber;

poor convergence and need a large number of unknowns for elvf
desired accuracy. For example, a sampling rate of ten unknown$'
per wavelength (about 200 unknowns per square wavelengttfl

for quad patches or 340 unknowns per square wavelength for cube as shown in Fig. 1(a).
Each higher order basis needs much more samplings than the
. . . _ WG basis. The average number of unknowns required is
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Publisher Item Identifier S 0018-926X(00)07704-8. tions have to be calculated and stored for each higher order

depends on the accuracy;
diameter of the group size, which is bigger than the
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for reducing Galerkin-based formulation for the solution of
integral equations to Nystrom-type discretizations [13]. In the
/( following section, this approach is first described in detail.
Analysis of computational complexity is conducted to show

< <§< > the memory and compl i t ired by thi
> N y _ plex operation counts required by this
< > 3 > approach. Numerical results validating the point-based method
Basis-based > S are then presented, which are followed by the conclusion.
group size N kl/>
<\k> N Il. APPLYING MLFMA TO POINT-BASED SOURCES
|
T s et \\< > > By testing the electric field integral equation (EFIE) with the
Basis-based . basis functiort;, the matrix elemeng;; is written as
groupr et I
(2) Zj = / dSt;(r) - / dS'G(r, ') - t;(v") )
TrryrTTTEITTYTTT T where the dyadic Green’s function is given by
_______________ , ‘ Point-based —_—
~group _ ik _ / ik |r—r
> B’a G(r,r’)=ﬂ{—¥}67,
...... <O 47 k lr — /|
) §><J - Point-based
I et :“;F' L= group size . . :
S : andn denotes the impedance. When the testing bésisis
______ |Z> <> : > sufficiently far away from the source basts), the integrals can
\k ; ) be evaluated by using Gaussian quadrature to give

: ; ; Q Q
NN T SO S S N 25 = 3" Wipty(r,) - 3 Glry, 1) - Wigti(ry)
=1

Q Q
Z J(ry) Z G(rp, rg) - Ji(ry)

Fig. 1. Applying MLFMA to (a) basis-based sources and (b) point-based r=1 q=1
sources.

where:

basis. Consequently, MLFMA cannot work very efficiently Q total number ofquadrature pomts on a_II patches;
with higher order Galerkin's method. W guadrature weight at theh _pomt, whlch is nonzero

To overcome this problem, we propose to implement pnly on the patch supporting the basjs
MLFMA based on point-to-point interactions, instead of th Ji(rp) is defined asv,t;(r,). . .
traditional basis-to-basis interactions. When we calculate th€ rre_spon_dmgly, the matrix—vector multiply for the far interac-
matrix elements for which the testing and source bases 5'%15 IS written as
not close to each other, we can apply Gaussian quadraturg, o o N
to evaluate the integrals. This process can be interpreted far, _ i ) ra ) ) )
replacing a continuous source distribution with discrete sourcez 2= Jilry) > Glrpira) -3 Jilro)ei (3)
as shown in Fig. 1(b). Thus, one matrix—vector multiply is
similar to the calculation of the electromagnetic fields for gneres; is the coefficient of theth basis function. By defining
given distribution ofV source bases and then testing them with
these bases. In this implementation, we first fl@dquivalent Q N
point sources from theseéV source bases, then calculate E, :Z Glry, ry) - Jy, J, :Z Ji(rzi  (4)
electromagnetic fields at thegg points, and finally test them et P
with each testing basis. The value@fdepends on the number
of patches and the quadrature rule used for each patch. Higuation (3) is simplified as
MLFMA is used to calculate electromagnetic fieldsapoints
generated by@ point sources. By doing so, the number of N Q
levels used is not limited by the size of basis functions, making Z Z3 ;= Z Ji(rp) - Ep.
MLFMA more efficiently. Furthermore, the near interaction i=1 p=1
part of the MoM matrix is redefined as the difference between
the original matrix and the interactions calculated by MLFMAThe above formulation means that for a given distribution of
Consequently, the memory requirement can be reduced fdsource bases, calculate the electric fields and test them with
well. The proposed scheme can be interpreted as a procedbese bases. The MLFMA can be used to calculate the fields

p=1 g=1 =1
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generated by current sources very efficiently. Defining a vanvhere

able I,; such that

. . . Y}’ 'f'q Z quyzl’ ’r‘q
[ { 1, p—ginteraction is calculated by MLFMA

bg

0, otherwise Substituting the above expression into (3) yields

the matrix-vector multiply calculated by MLFMA is modified N Q
as > Lt = Z S Woi(ry) - Gl

i=1 p=1 =1 g=1

N Q N 9
far Vai
Z; Zjttwi = Z Tj(ry) Z (G(rp, ) 2 Jiro)e S Al Yo (ry). ©)
= r=1 =1 ! =1
©)

Applying the addition theorem to the dyadic Green'’s function
Now, the near interaction part of the MoM matrix is redefined 48], [3] yields
the difference between the original matrix and the interactions

calculated by MLFMA, so we have Glry, ry) = ikn |z _VV ¢iMlro =]

e 47 k2 | Jrp — 1yl
near far n [ PN .
Zji = ZJZ - ij (6) = / ko (I — ]%]%) C_]k'(rpm_rqm,)oé(ka 'rrnrn’)
where (10)
ar el where
erz = Z Ji(ry) - Z LpgG(rp, 74) - Ji(ry).
p q L
ikn

olk, Tmm ) = — 21 +1)

Hence 4m Z

N

h(Q)(/w NP (7’ , - /%)
éineal‘ ;7 2[7fa.1‘ mm’ mny
Ji Ji T Ay

Tpg =Tp —Tqg=Tp —Tm T Tm —Tm —Tq

= / dStJ (’f‘) : / dS/C_;(’r7 ’f'/)ti (’f'/) - Z JJ(TP) =Tpm + T’ — Tgm/
pr
Z Im@(%, r,) - Ji(ry). andr,, andr,, are the group centers for the poinisand
2 q, respectively. Consequently, the far interactions of the ma-

trix—vector multiply can be written as
If the testing basis; and the source basisbelong to the nearby .
groups but are not very close to each other, the same quadrature N for
rule used for evaluating the far interactions is used to calculate Z Zji' i
the first term of the above equation. If all point—point interac- o 2
tions are calculated by MLFMAZ** equals zero. Therefore, . , 27 )
Z"e s a sparse matrix and has less nonzero elements than the z_:l ; Uipt / RV i () Z ok, 7o)
matrix for near interactions between bases. "

=1

Since the (_:urre_ntvectorin (4) has only two tangenti_al compo- Z Z Ve (B)Y(ry) (11)
nents, we write it in terms of two independent tangential vectors oo, i1 1
as
whereU;,; = Wy, the summation over:’ is carried out for
) = Z Ay ()i (ry). (7 all ngpneighbor groups,_denoted by, and the radiation and
= receiving patterns are given by
Therefore, currend, at thegth source point, is written as Vonip(k) = & 7o (7 _ ,%,%) -Ag(ry). (12)
N Since the point sources do not have any spatial extent, we
Sy = Z Wigti(rq )i can refine the finest cube in MLFMA as small as a quarter of a
= wavelength. There are two advantages in applying MLFMA to
_ Z ‘ Z Av(r i (r,)z; point-to-pointinteractio.ns. Firstofall,t.hegroup sizeisthe same
Fraet as the cube and there is no overlapping in sources as shown in
9 Fig. 1. Second, smaller group size means that much less sam-
- Z Ap ()Y (r,) (8) plings of radiation patterns are needed. As a consequence, the

1 memory requirements for the radiation pattern can be reduced.
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Further reductions can be obtained if the radiation patterns &g 3. (a) Memory requirements and (b) CPU time for a matrix-vector
calculated on the fly since no numerical integration is neededtyltiply of MLFMA as applied to the basis-based and point-based sources.
calculate the radiation pattern.

fourth, the memory requirement is a constant for all nonempty
cubes at each level. Consequently, the point-based approach
needs more memory than the traditional basis-based approach
The memory requirements in the MLFMA implementatiotin the third part; but, this increase is insignificant compared to
have three parts: one for near interaction elemeft§*, an- the reduction achieved in the second part. Hence, if we write
other for the radiation and receiving patterns for each basistbe total memory required &% NV log N + C> N, the proposed
point as given by (12), and the third for the radiation patterns farethod maintaing”; while it reduce<’s by a factor of four.
all nonempty groups at each level. The first part is unchangedThe number of operations in each matrix—vector multiply
from the traditional basis-based approach to the point-basmmhsists of three parts similar to the memory requirements: one
approach. This, however, is not the case for the second pé#ot. near interactions, another for calculating the radiation pat-
When the second-order basis is used, the number of levelgeéms for each group from its points or bases at the finest level
the point-based MLFMA is increased by two compared to thabrresponding to the last two summations in (11) and evaluating
for the basis-based MLFMA. The cubic size in the finest level the fields at each basis corresponding to the first two summa-
then reduced to one fourth, and by (1), the number of samplintians and the integral in (11), and the third for the translation at
of the radiation and receiving patterns for each point is reducedch level and interpolation/anterpolation from one level to an-
to one eighth. Since the number of points is about twice of tla¢her [4]. Since a large number of groups is needed in the trans-
number of bases, the second part of the memory requiremktion, which is the summation ovet’ in (11) and the interpo-
is reduced to one fourth. From one level to a coarser level, tlaion/anterpolation are required for batland¢, the number of
samplings in the radiation patterns are increased by a factoroplerations in the third part is dominant. Hence, the point-based
four and since the number of nonempty cubes is reduced to amproach needs more operations than the basis-based approach

I1l. COMPLEXITY ANALYSIS
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Fig. 5. Bistatic RCS of a PEC cube having a side length%of calculated by

Fig. 4. Bistatic RCS of a PEC sphere having a diamete500f using the the MLFMA as applied to the basis-based and point-based sources, respectively.

point-based approach (seven-level MLFMA, 5.43 Gb of memory).
increased memory access time in the basis-based approach

because of the added levels. If we write the total number of dpecause of its larger memory requirements.

erations a&’s N log N + C4 N, the proposed method maintains Next, the RCS of &0)-diameter sphere is calculated using
Cs while it increase<’. 322896 second-order basis functions. The root mean square

(rms) error is about 0.0877 dB and the corresponding bistatic
RCS pattern in thé&-plane is plotted in Fig. 4. Seven levels of
the point-based MLFMA with radiation patterns computed on
The point-based approach is verified by first computing tHéy are used, which requires 5.43 Gb of memory. The use of the
matrix elementsz; ; of a thin conducting strip using a five-levelbasis-based approach requires 12.69 Gb of memory.
MLFMA and then obtaining the error with respect to the direct Finally, the RCS of a conducting cube having a side length
computation. The actual size of the second-order basis functiéfid 5 is calculated using 45 320 second-order basis functions.
would permit only three levels of MLFMA, but the use of thelhe corresponding bistatic RCS patterns in theplane are
point-based approach allows two additional levels. The errorsiptted in Fig. 5. In this case, we use six levels of MLFMA with
the real and imaginary parts of the matrix elements are plotteafliation patterns computed on fly. The point-based approach
in Fig. 2 for the first row of the matri¥Z, ; as a function ofi. It ~ requires 474 MB of memory, whereas the basis-based approach
is observed that the error in the point-based MLFMA is simildequires 988 MB of memory.
to that in the basis-based MLFMA.
The inherent advantage in applying MLFMA to the V. CONCLUSION
point-based sources is shown by computing the RCS of a ; ;
perfectly electric conducting (PEC) sphere with differertt_; A new approach is presented to make the higher order

) X X . lerkin’s method work more efficiently with the MLFMA.
diameters using the second-order basis functions [12] ﬁl y

h inq th ded f vina MLEMA e far interactions in the matrix—vector multiply are calculated
then comparing the memory needed for applying t%y applying MLFMA to the point interactions. This approach

the basis—_based sources. The c_omputation is carried out OMiBws one to use more levels in MLEMA than applying
16-node I|nu_x cluster called arion [14]. Each node of the MLFMA to basis interactions directly and, hence, reduces the
cluster consists of a 100-MHz motherboard and a 350-M emory requirements significantly.

AMD K6-2 processor. Each board is equipped with a 25
SDRAM card leading to a total of 4 Gb of dynamic random
access memory. The MLFMA kernel used is ScaleME [7]-[9].
The discretization size is kept constant at 33 unknowns perThe authors would like to thank Dr. S. Velamparambil for the
square wavelength and the diameter of the sphere is increasgelcialization of ScaleME and his personal communications.
from 9\ to 36 A. The memory required is shown in Fig. 3(a),
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