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Abstract—This paper discusses the causes of and some solutions
to the commonly observed problem of dc field offsets in fi- 2.0 R
nite-difference time-domain (FDTD) simulations. DC electric and |
magnetic field offsets are shown to be valid calculated responses -y
of the modeled systems, resulting from interaction between the !
turn-on characteristics of the source and the properties of the 1.0 | ,'
models. The dc offsets may be avoided in the time domain by ]
tailoring the source waveforms or in the frequency domain by ,‘
t
!

i
s |- -18bc
post-processing the FDTD output. ]

FDTD N

Index Terms—Finite-difference time-domain (FDTD) methods. =
-
|. INTRODUCTION 9;
N recent years, the finite-difference time-domain (FDTD) Eﬁ
method has become a popular tool for solving problems in- SN —— E,[V/m)
volving Maxwell’s equations [1]. Although the method is versa- = N == - Hyx377 [A/m] |
tile and conceptually straightforward, an FDTD simulatonmust | === Hy 2377 [A/m]
be carefully designed in order to yield meaningful results. In -2.0 t L L !
particular, if a highly conducting model has a closed current 0 50 100 150 200 250
path, physically correct dc currents that do not decay appre- time steps

ciably with time may be induced by the time-varying source
fields. These nonoscillating currents produce a constant mag-
netic field in the near field of the object, which may lead to in-
terpretation errors in both the time and frequency domains [2].

@
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Il. EXAMPLE OF DC OFFSET FOR ANINFINITE CIRCULAR
METAL CYLINDER

A dc magnetic field offset can be observed in the results of
an FDTD analysis of a perfectly conducting infinite circular
cylinder illuminated by a plane wave. The cylinder is 7.5 cm
(20 Yee cells) in diameter, modeled with a square cell size of
0.375 cm (/20 at 4 GHz) in a two-dimensional (2-D) model
space of 56< 56 cells. Each time step is 6.25 ps. Fig. 1 shows
time histories of the calculated fields at a point four cells in front
of the cylinder (for a frontally incident plane wave source). For

E, (1), H,(t), Hy(t) at point A

— E, [V/im]
case (a), the time dependence of the electric field of the source C -~ H %377 [A/m]
is a raised cosine pulse with a 2 V/m peak and a 4-GHz band- [ H,x377 (A/m] |
width (half-width half-maximum); for case (b) the source is an 2.0 1 ‘ ) 1
unramped 4-GHz continuous wave (CW), with 1 V/m peak. "0 50 100 150 200 250
time steps
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is v, (t) = r(¢t) sin(wt), wherer(¢) is either a linear ramp or a

iy — raised cosine (RC) ramp given by
r(t) =0, t<0
v (t) L 0.5[1 — cos(wt/2«)], 0<t<al (3)
1, t>al

where?’ is the period of the sine function, ands the number of

sine wave cycles during the ramp duratiefy. This excitation

Fig. 2. Circuit model of an ideal voltage source across an inductor usedl@s the desirable properties that both the function and its first

explain dc-offset phenomena in lossless FDTD simulations. derivative start at zero and are continuous for all values he
choice of ramp function can be evaluated by the simple circuit

d analogy of an ideal voltage source across an inductor. For the

A dc offset in the tangential magnetic fie{d..) is observed L
Amear ramp this gives

for the cylinder illuminated by a TM-polarized plane wave i
which the incident electric field is oriented in the axja) direc- . 1 <Sin(27ra))

L cos(wt) (4a)

tion]. This offset occurs with both pulsed and CW TM-polarized ut) = wL wL

excitation, as shown in Fig. 1(a) and (b). The offset is not ob-
served in any field component for TE-polarized excitation ng"d for the RC ramp
for TM polarized waves incident on a nonconducting cylinder. . 1 <1 + COS(QWQ)>

2o

L cos(wt). (4b)

The reason is that the TM-polarized plane wave induces a per-  ¢(t) = 20l 1_ 4a2 oL

manent axial dc current in the perfectly conducting cylinder, but
such an axial current will not be set up with a TE-polarizedhe first terms in (4a) and (4b) give the value of the dc current
source, and will not survive in an imperfectly conducting obRffset for each excitation. Note that although the excitation func-
ject. tion and its first derivative start at zero and are continuous, the dc
offset is zero only for particular values of Fig. 3 shows these
dc values for the linear and RC ramps, normalized to the magni-
[ll. CIRCUIT THEORY ANALOG TO DC OFFSETS tude of the offset produced by a step functign) as a function
f the ramp duration parameter As expected, the magnitude

To illustrate how dc offsets may be induced, consider a sim 2 the offset decreases as the ramps get longer. The RC ramp
circuit composed of an ideal voltage source exciting an inducti Coduces less offset than the linear ramp for values gfeater
load as shown in Fig. 2. The currentthrough the inductor is givgqa

n about 1.5. Also, the dc offset is identically zero for certain

by values ofa.
. To test the similarity of this circuit model to the results for
i(t) = l/ vs(T) dr. (1) the TM-illuminated perfectly conducting cylinder, the FDTD
L Jo simulations for the cylinder were repeated using the linear- and

RC-ramped sine excitations. The normalized magnitude of the
resulting dc offset in the circumferential magnetic field compo-
nent are superimposed as dots in Fig. 3. There is excellent agree-
1 1 ment (less than 5% difference) between the FDTD data and the
i(t) = ol oL cos(wt). (2)  results for the inductive circuit of Fig. 2; the change in sign of
the offset is also predicted correctly. The results demonstrate a
Assuming the initial conditiori(0) = 0, (2) shows that a dc strong similarity between these two models, and show clearly
offset is present in the circuit response. Further analysis showmv the dc offset may be controlled by the choice of excita-
that the dc offset is not required when loss is present in tkien ramp function in FDTD simulations. A dc offset will not,
system. It is reasonable to expect that similar phenomena nwdgourse, persist when a resistive loss is added to either model.
occur in FDTD simulations. The relationship between the cir-
cuit in Fig. 2 and the TM-illuminated cylinder is demonstrated V. REMOVAL OF DC OFFSETS IN THEFREQUENCY DOMAIN
in the next section.

For sine excitatior,(¢) = u(t)sin(wt), (1) gives

For CW excitation, the dc offset appears in the zero-fre-
quency term only, so it is easily separated from the higher
frequency terms in the frequency domain. For pulsed simula-
tions, the FDTD simulation is stopped when the output pulse

For pulsed excitations, the dc offset may be avoided by usingnverges (afteVyprp time steps), and this is often before
a bipolar pulse with equal positive and negative values. Thise discrete Fourier transform (DFT) summation has been
causes the dc offset that is established by the positive portmampleted (V4s: time steps). Without a dc offset this does not
of the pulse to be removed by the negative portion of the pulsmuse any problems; the fields are assumed to be zero after

For CW computations, we have also found (in all our teshe simulation is stopped, and the remaining terms in the DFT
cases) that the offset may be eliminated by multiplying the sinsammation are zero. However, when the pulse has a dc offset
soidal excitation by an appropriate ramp function. An examplas shown in Fig. 1(a)], stopping the summation before it is

IV. AVOIDING DC OFFSETS IN THETIME DOMAIN
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Fig. 3. Variation of normalized magnitude of the dc offset of magnetic field caused by linear and raised-cosine ramp envelgipé¢sonsaurce. Values are

plotted as functions of the ramp duration parameteSolid and dashed lines are for the inductive circuit model of Fig. 2. Discrete points are FDTD results for the
TM-illuminated perfectly conducting cylinder.

completed gives erroneous results. An efficient way to handle VI. CONCLUSION
complete the summation is to divide the Fourier sum into two This paper has demonstrated the occurrence of dc offsets in
summations

FDTD simulations. These offsets are shown to be due to the
physical response of the modeled system to certain sources.
Nerrrn ok | These offsets may be avoided in the time domain by tailoring
G(EAS) = At Z g(nAt) exp [L(”_)} the incident waveform, for example, by using a bipolar pulse for
fo— Na broad-band simulations or a ramped sine wave for CW simula-
Nart . tions. DC offsets may also be filtered from frequency-domain
—j2nk(n — 1) d
+9dc Z i By — data by post processing the FDTD output.
dft

n=NrpTD+1
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