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On a Choice of Wavelet Bases in the Wavelet
Transform Approach
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Abstract—The Daubechies orthogonal wavelet (DOW) is com- the former has more compact support than the latter provided
pared with the nonorthogonal cardinal spline wavelet (NCSW) in - the number of vanishing moments of wavelets is the same. As
the wavelet transform approach and it is shown that the DOW is - yagylt, the computation cost required for the wavelet trans-
better tha_n the NCSW_ln view of the computation cost. First, the form based on the DOW is less than that based on the NCSW
computation cost required for the wavelet transform based on the :
DOW is less than that based on the NCSW because the DOW hasFurthermore, the wavelet transform based on the DOW does not
smaller support provided the same number of vanishing moments affect the condition number of the impedance matrix while the
?fwa;/elet?);sslézegﬁ ?heecODrg\}\}rélg%gt:%Sttggfi;Zmﬁgi?rtZﬁitcmen \lfjvriﬁa'?t NCSW transform has an effect to make it very large. Conse-
ranstorm . .
of the impedance matrix, that, based on the NCSW, has an effect quently, this property_ls also helpful for the DOW approach to
to make it very large. As a result, even though the NCSW results fe‘?'uce the (;omputat|on cost. In conclusion, the DOW can be
in a sparser impedance matrix, it requires more computation cost Said to provide a better approach compared to the NCSW. In
for solving the resultant matrix equation in comparison with the  this paper, an effective construction method for the wavelet ma-
DOW because the cost depends not only on the sparsity, but alsotrix will be proposed where the circulant elements of the wavelet
on the condition number of the matrix. matrix is given explicitly. In addition, both the computation cost

Index Terms—Method of moments (MoM), wavelet, wavelet and the allocation storage necessary for the wavelet matrix will
transform approach. be shown to be extremely reduced and the computation cost re-

quired for the wavelet transform will be estimated.

. INTRODUCTION
Il. FORMULATION

HE wavelet transform approach, in combination with the
T conventional method of moments (MoM), becomes a f& Wavelet Transform Approach
miliar method for solving the electromagnetic integral equa- By using the MoM, we obtain the matrix equation
tions. In this method, the impedance matrices obtained by the
MoM are reduced to sparse ones by a wavelet matrix trans- zI=Vv 1)

form and,_ hence, the computation cost is dramatically lowergd ore 7 is a dense impedance matrix. Introducing a wavelet
[1}-[4]. Xiang and Lu [1] compared the nonorthogonal Cafmatrix 1#7 | the matrix equation is then transformed as
dinal spline wavelet (NCSW) with the Daubechies orthogonal

wavelet (DOW), where advantages of the NCSW are empha- Z'r =V @)
sized mainly from a standpoint of matrix compression rate. A
similar comparison has been done with a similar conclusion Y€
the wavelet ba_sis expar!sion method [5]. Howeyer, computat_ion 7 =wzwT I = (WT)_l I, V =WV. (@)
cost was not discussed in detail. The computation cost is mainly

consumed in performing wavelet transform and solving the relere7” stands for the transpose of a matrix. Od¢és solved,
sultant impedance matrix equation: the former depends on the desired solution is obtained as

sparsity of the wavelet matrix, the latter depends not only on the
sparsity but also on the condition number of the impedance ma-

trix. The wavelet matri¥¥ must be chosen so that the resultant

Inthis paper, th_e choi(_:e of wavelet bases forth_e wavelet trariﬁ'pedance matrig’ has a great number of very small elements
form approach will be discussed from a standpoint of COMPUtga; are deleted due to a preselected threshold without seriously
tion cost. Two wavelets with compact support, the DOW and thgrecting the solution. Another very important requirement is

NCSW, will be compared with each other. As is already knowi ¢ 11 must be sparse enough to reduce the computation cost
[1], [5], the NCSW actually results in a sparser impedance Mar the wavelet transform. Finally, the condition numberZsf
trix than the DOW does. On the contrary, wavelet matrices haye <t not be much larger than that Bf

less nonzero elements in the DOW than in the NCSW, becausq‘:t is known that many types of wavelets can be used to spar-

sify an original matrix. However, wavelets with infinite support,
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B. Wavelet Matrix For example
Both the DOW and the NCSW can be generated by the two-
scale relations in terms of finite sets of the coefficiefts} and Vici =UsUy
i} [6]: T pJ—1
{a:} (6] _ |:SJ—1:| 0 |:PJ:|
L 0 IQJ —2J4—1 QJ
\/_nz_:opn 37—71 (5) 'PJ—IPJ / SJ—l
N, — QJ—IPJ é TI-1] . (16)
J J
=v2 3" gup(20 —n) (6) L @ T
n=0
Repeating this operation yields
where¢ and are the scaling and the wavelet functions, re-
spectively,N, and N, are related with the number of vanishing Si
moments of the corresponding wavelet 3
T
_ | 7vtt _
Np:Nq:2m—1 (7) V;_ T. » W=h (17)
for the DOW T’
Np=m, Ng=3m-—2 (8) wheres7 and7” are matrices of orde’ ! x 27 given by
for the NCSW. g (18)
Wavelet matrixi¥ of order2” x 27 is constructed by using nk _Sk 27-3ttn
periodic wavelets [1], [3] 17, —tk pr ity (19)
271
W: Ul-..UJ—lUJ (9) 3’7] = p;sii—;ijl7 3;] :p‘z] (20)
whereU; is defined as ;_01
y24 0 ti = Q{Sgi—glJ—jlv t%] = q;]- (21)
U= || @’ (10) =0
0 IQJ_Qj N - ) i ) )
{s!} and {t!} are periodic with the period of’ and
Herel; denotes a unit matrix of rank P/ and@’ are matrices only {s;: 0 < ¢ < Nf = N5+1 + 2/7IN,} and
of order2/~! x 27 and their elements are defined as {t/ 0 < ¢ < NI = N;,, +2//N,} are nonzero
) ) during one period, wher&Vs = min(27, N,). It is easily
P, Ipi on (11) obtained that
e = T (12) J fod—jtl
o S (19 Np=minf2, (200 N (@)
Nt min [2‘], (2‘]_]"'1 —1) N, + 2J_]N,I] . (23)
Qf = Z 4241+ (14)
4

The computation cost for constructiondf is less than

Obviously,{p! } and{¢/ } are periodic with the period & and  ;_;

only {p}: 0 < ¢ < N,} and{g/: 0 < ¢ < N,} are nonzero Z [(Nj +1) (N +1) + (N]t. +1) (N, + 1)]
during one period. It should be noted thitis orthogonal for ;=;

the DOW, but this is not for the NCSW. < [T =14 (27 =T =3) N} (N, +1)

+ -1+ (2 -T-1)N,+ (2" - 2) N, ] (N, + 1)
(24)

C. Effective Construction of the Wavelet Matrix

In this section, we will propose an effective construction
method for the wavelet matrix where the circulant elements of
the matrix are given explicitly. The computation cost necessa@yO(IV) with ;' = 27. Only {s} } and{t] }7_, needto be stored
for the construction as well as the allocation storage for o memory, then the allocation storage is
matrix will be estimated. Only the operation of multiplication
is counted as the computation cost without loss of generality. J .

For the sake of convenience, we consider a new matrix Z Nj+ 1) + (N7 +1)

j=1

Vi=U;-- Uy (15) <@ -JT-2)N,+ (27 1) N+ J+1 (25)



1188 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 8, AUGUST 2000

or less tharO(N). Finally, the number of nonzero elements of TABLE |
W is SPARSITY OF WAVELET MATRIX W
J
Ny = Z 2/t (N; +1) + (N7 +1) Sparsity (%)
J=1 . B B Base | m | N=512 | 1024 | 2048 | 4096
<J2TEN, (27 1N +27 -1 (26) 2| 4495 | 2.540 | 1.416 | 0.781
or less tharO(N log N). 3| 6.653 | 3.812 | 2.149 | 1.196
4 8.612 4.985 | 2.833 | 1.587
lll. COMPUTATION COST 511040 | 6.067 | 3.470 | 1.954
A. Wavelet Transform DOW | 61198 | 7.047 | 4.057 | 2.296
The computation cost required for the wavelet transform de- 7| 13.55 8.026 | 4.643 | 2.638
pends on the number of nonzero elements of the wavelet ma- ]
trix Nyw-. Let the number of unknowns & and the cost is 8 | 1512 9.006 | 5.230 | 2.980
O(N Ny ) or less tharO(N? log N). 9 | 16.60 9.912 | 5.774 | 3.299

As will be demonstrated in the next section, this cost dom- 1011780 11070 | 6.264 | 3.592
inates the total computation cost and should be reduced in the
top priority. The cost depends only on the sparsity of the wavelet 2| 4689 2.637 | 1465 | 0.806
matrix and is determined by the length of the coefficients of the 3| 7.037 | 4.005 ) 2.246 | 1.245
corresponding wavelet. Wavelets with infinite support are not 41 9189 | 5.276 | 2.979 | 1.660
suitable for the Wav_elet transform approach since they lead to 511116 6.451 | 3.664 | 2.051
dense wavelet matrices.

Among compact supported wavelets, the more compact the NCSW |\ 61292 | 7.527 | 4.299 | 2.417
support of wavelet becomes, the sparser the wavelet matrix be- 7| 14.69 8.603 | 4.934 | 2.784
comes. Consequently, a relative small number of vanishing mo- 8 | 16.45 9.679 | 5.569 | 3.150
ments of wavelets should be chosen for both the DOW and the
NCSW. The DOW always yields a sparser wavelet matrix than 91807 | 1067 | 6.158 | 3.493
the NCSW provided the same number of vanishing moments is 10 | 1945 | 11.55 | 6.696 | 3.810

used. Table | lists the sparsity of the wavelet matrix for both of

the wavelets, where the sparsity is defined as the ratio of s cG method is used here and the corresponding computation

tnhumbe: pf nonzero elements to the total number of elementscgfst will be discussed in the next section.
e matrix.

B. Sparse Solver IV. NUMERICAL RESULTS

After the wavelet transforming and the thresholding, a sparse'” this section, the scattering from an array of 2-D metal strips
matrix equation can be obtained. The sparse matrix equat®@#Wn in Fig. 1 is numerically calculated, where the number of
must be treated by an effective sparse solver. An iteratife® Strips is five, all the strips have the width bf the wave-
method is, in general, more suitable for the matrix equatiolgngth of the incident wave, and are separated by &loTM
which has a random sparsity structure rather than a dird¢gn€ wave is assumed to be incident with an angle &f Aise
method [7]. When the iterative method such as the conjugdtémber of vanishing moments of both the DOW and the NCSW
gradient (CG) method is applied, the computation cost for ealhSet to four because this relative small number gives a faster
iteration depends on the sparsity of the matrix, but the convéflution [8]. Decomposition is carried out as far as possible for
gence of solution, that is, the number of the iteration necess&BStruction of the wavelet matrix. For example, the decompo-
for a converged solution, depends on the sparsity structureS§{on level is nine forV = 512, ten for V' = 1024, etc.

the condition number of the matrix which is defined as The elements o’ whose magnitudes are smaller thail/

are set to zero, whereis a preselected threshold afdlis the

K(A) = Prmax (27) largest elements of’.
Pmin The sparsity of truncated matrix and the associated relative
wherefs are the nonzero singular values-f error of the scattering cross sectigrwhich is defined as
Actually, it is known that the NCSW vyields a sparser ESS)(¢) 2

impedance matrix than the DOW [1]. On the other hand, the o(¢) = 2mr | = o) (29)
transformed impedance matriX’ based on the DOW has E:

exactly the same condition number as the original malfix 5re shown in Tables Il and Il respectively. Here the relative
but 7’ based on the NCSW has much larger condition numbgt,or . caused by the truncation is defined by

thanZ due to the nonorthogonality of the NCSW

_ lloo = orlly
K (Z) =k (WZWT) < R2(W)R(Z). (28) T el (%0
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TABLE I
RELATIVE ERROR OFSCATTERING CROSSSECTION

Relative error
. Base T N =1024 2048 4096
26 1074 | 2.9x107% | 5.2x107% | 1.0x107?
S 107 | 2.2x107* | 9.0x107° | 1.4x10~*
10-% | 29%x107% | 4.9x10"¢ | 1.0x10°%
Fig. 1. Configuration for analysis. DOW 10-7 7.3%x10~? 9.4x10~8 2.3%10~7
10~% | 4.4x10-9 | 3.3%x1079 | 2.8x107°
TABLE I 10~ | 9.8x10-10 | 8.8x1071° | 4.3x10~1°
SPARSITY OF TRUNCATED Z’
10~10 | 7.7x10710 | 9.1x10710 | 5.5x10~10
1074 | 9.3x10° 1.2x10! 1.5x10!
Sparsity (%)
1078 | 2.2x10° 4.9%x10° 8.1x10°
Base T N =1024 2048 4096
1079 | 2.5x10° 4.9x10"1 | 1.0x10°
10~¢ 2.969 1.104 0.4120
NCSW | 10~7 | 4.8x10™3 | 1.2x1072 | 1.4x10°
10-% 5.076 2.088 0.8475
10-8 | 4.6x104 | 4.6x107* | 2.3x1073
109 7.791 3.279 1.361
10792 | 2.2x107% | 4.4x107% | 2.7x10~*
DOW [ 10-7 | 10.77 4.657 1.994
10710 | 1.6x107% | 2.6x107% | 8.8x10~°
1078 | 14.86 6.432 2.757
107% | 21.19 8.977 3.832
10~10 | 28.74 12.06 5.158
1074 0.06104 0.01526 | 0.003791 4 Y va—
1075 | 0.2007 | 0.05803 | 0.01425 NOW (7 = 1o
106 0.8460 0.2503 | 0.04423
NCSW | 1077 1.634 0.5539 | 0.1670
10-8 3.381 1.068 0.3137
10-° 4.721 1.800 0.6819
10-10 | 6.292 2.422 0.9903
00 0.2 014 0.6 018 1
z/width

whereo, is the solution obtained by the MoM and is that
obtained from the truncated matrix afjd ||, denotes the.?
norm. It is actually shown that the sparsity by the NCSW trans-

form is much smaller than that by the DOW one, owing to theonstructed by the DOW with any number of vanishing mo-
smoothness of the NCSW functions. However, Table Il showgents is unity.

that smaller threshold must be used for the NCSW than for theFig. 4 shows the condition number of corresponding trans-
DOW if the same order of accuracy is required for both basdermed impedance matri%’ where the upper limit?(W ) (Z)

The fact that the error is quite large and even not monotonic with also plotted as a referenc&’ has much larger condition

7 for NCSW with large value of is caused by the rank defi- number than the original matriZ. This implies that more com-
ciency of resulting matrix. putation cost is required for reasonable solutions.

Fig. 2illustrates the current distribution on the first strip from Fig. 5 shows the number of iteration required for a converged
the left side and shows that the solutions obtained by both thalution in a CG method based sparse solver from the SLATEC
DOW and the NCSW transforms coincide with that obtained lommon Mathematical Library [9]. The number based on the
the MoM except very close proximity to the strip edges. NCSW is larger than that based on the DOW. It should be

Fig. 3 shows the condition number Bf constructed by the pointed out that no solution or only solutions with very poor
NCSW versus the matrix size. The condition number becomascuracy can be obtained for matrices with very large condition
larger as the matrix size increases and, at the same time, rinenbers.
larger the number of vanishing moments, the larger the condi-Fig. 6 shows the computation time required for the sparse
tion number. It is noteworthy that the condition numben®f solver. The computation time required for performing the

Fig. 2. Current distribution on the first strip from left sid& (= 4096).
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200 performing WZWT (NCSW) ——
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1600 | solving Z' (NCSW, 7 = 10710) e
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Fig. 6. CPU time for the sparse solver and the wavelet transform.

NCSW with regard to the cost required by the sparse solver,
the advantage is expected to be more significant for ill-posed
problems since the cost consumed by the sparse solver will
take a large percentage of the total cost in that case. It is also
obvious that the computation cost required for the wavelet
transform is larger than that required for the sparse solver and
then dominates the total computation cost as the number of
unknowns increases.

V. CONCLUSION

The DOW is compared with the NCSW in the wavelet
transform approach. Even though the NCSW yields a sparser
impedance matrix than the DOW does, the impedance matrix
obtained by the NCSW has much larger condition number
than that obtained by the DOW. As the result, the NCSW
based impedance matrix requires more computation cost for
its solution than the DOW. Especially for the computation
cost required for performing the wavelet transform, which is a
dominant part of the total computation cost, the DOW is better
than the NCSW.
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