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Abstract—The Daubechies orthogonal wavelet (DOW) is com-
pared with the nonorthogonal cardinal spline wavelet (NCSW) in
the wavelet transform approach and it is shown that the DOW is
better than the NCSW in view of the computation cost. First, the
computation cost required for the wavelet transform based on the
DOW is less than that based on the NCSW because the DOW has
smaller support provided the same number of vanishing moments
of wavelets is used. Second, in contrast with the fact that the wavelet
transform based on the DOW does not affect the condition number
of the impedance matrix, that, based on the NCSW, has an effect
to make it very large. As a result, even though the NCSW results
in a sparser impedance matrix, it requires more computation cost
for solving the resultant matrix equation in comparison with the
DOW because the cost depends not only on the sparsity, but also
on the condition number of the matrix.

Index Terms—Method of moments (MoM), wavelet, wavelet
transform approach.

I. INTRODUCTION

T HE wavelet transform approach, in combination with the
conventional method of moments (MoM), becomes a fa-

miliar method for solving the electromagnetic integral equa-
tions. In this method, the impedance matrices obtained by the
MoM are reduced to sparse ones by a wavelet matrix trans-
form and, hence, the computation cost is dramatically lowered
[1]–[4]. Xiang and Lu [1] compared the nonorthogonal car-
dinal spline wavelet (NCSW) with the Daubechies orthogonal
wavelet (DOW), where advantages of the NCSW are empha-
sized mainly from a standpoint of matrix compression rate. A
similar comparison has been done with a similar conclusion in
the wavelet basis expansion method [5]. However, computation
cost was not discussed in detail. The computation cost is mainly
consumed in performing wavelet transform and solving the re-
sultant impedance matrix equation: the former depends on the
sparsity of the wavelet matrix, the latter depends not only on the
sparsity but also on the condition number of the impedance ma-
trix.

In this paper, the choice of wavelet bases for the wavelet trans-
form approach will be discussed from a standpoint of computa-
tion cost. Two wavelets with compact support, the DOW and the
NCSW, will be compared with each other. As is already known
[1], [5], the NCSW actually results in a sparser impedance ma-
trix than the DOW does. On the contrary, wavelet matrices have
less nonzero elements in the DOW than in the NCSW, because
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the former has more compact support than the latter provided
the number of vanishing moments of wavelets is the same. As
the result, the computation cost required for the wavelet trans-
form based on the DOW is less than that based on the NCSW.
Furthermore, the wavelet transform based on the DOW does not
affect the condition number of the impedance matrix while the
NCSW transform has an effect to make it very large. Conse-
quently, this property is also helpful for the DOW approach to
reduce the computation cost. In conclusion, the DOW can be
said to provide a better approach compared to the NCSW. In
this paper, an effective construction method for the wavelet ma-
trix will be proposed where the circulant elements of the wavelet
matrix is given explicitly. In addition, both the computation cost
and the allocation storage necessary for the wavelet matrix will
be shown to be extremely reduced and the computation cost re-
quired for the wavelet transform will be estimated.

II. FORMULATION

A. Wavelet Transform Approach

By using the MoM, we obtain the matrix equation

(1)

where is a dense impedance matrix. Introducing a wavelet
matrix , the matrix equation is then transformed as

(2)

where

(3)

Here stands for the transpose of a matrix. Onceis solved,
the desired solution is obtained as

(4)

The wavelet matrix must be chosen so that the resultant
impedance matrix has a great number of very small elements
that are deleted due to a preselected threshold without seriously
affecting the solution. Another very important requirement is
that must be sparse enough to reduce the computation cost
of the wavelet transform. Finally, the condition number of
must not be much larger than that of.

It is known that many types of wavelets can be used to spar-
sify an original matrix. However, wavelets with infinite support,
such as the Battle–Lemarié or the Meyer wavelets, will not be
taken into account here because they produce dense wavelet ma-
trices. Both the DOW and the NCSW have compact support and
it is worthwhile to compare with each other.
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B. Wavelet Matrix

Both the DOW and the NCSW can be generated by the two-
scale relations in terms of finite sets of the coefficients and

[6]:

(5)

(6)

where and are the scaling and the wavelet functions, re-
spectively, and are related with the number of vanishing
moments of the corresponding wavelet

(7)

for the DOW

(8)

for the NCSW.
Wavelet matrix of order is constructed by using

periodic wavelets [1], [3]

(9)

where is defined as

(10)

Here denotes a unit matrix of rank, and are matrices
of order and their elements are defined as

(11)

(12)

(13)

(14)

Obviously, and are periodic with the period of and
only and are nonzero
during one period. It should be noted that is orthogonal for
the DOW, but this is not for the NCSW.

C. Effective Construction of the Wavelet Matrix

In this section, we will propose an effective construction
method for the wavelet matrix where the circulant elements of
the matrix are given explicitly. The computation cost necessary
for the construction as well as the allocation storage for the
matrix will be estimated. Only the operation of multiplication
is counted as the computation cost without loss of generality.

For the sake of convenience, we consider a new matrix

(15)

For example

(16)

Repeating this operation yields

...

(17)

where and are matrices of order given by

(18)

(19)

(20)

(21)

and are periodic with the period of and
only and

are nonzero
during one period, where . It is easily
obtained that

(22)

(23)

The computation cost for construction of is less than

(24)

or with . Only and need to be stored
into memory, then the allocation storage is

(25)
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or less than . Finally, the number of nonzero elements of
is

(26)

or less than .

III. COMPUTATION COST

A. Wavelet Transform

The computation cost required for the wavelet transform de-
pends on the number of nonzero elements of the wavelet ma-
trix . Let the number of unknowns be and the cost is

or less than .
As will be demonstrated in the next section, this cost dom-

inates the total computation cost and should be reduced in the
top priority. The cost depends only on the sparsity of the wavelet
matrix and is determined by the length of the coefficients of the
corresponding wavelet. Wavelets with infinite support are not
suitable for the wavelet transform approach since they lead to
dense wavelet matrices.

Among compact supported wavelets, the more compact the
support of wavelet becomes, the sparser the wavelet matrix be-
comes. Consequently, a relative small number of vanishing mo-
ments of wavelets should be chosen for both the DOW and the
NCSW. The DOW always yields a sparser wavelet matrix than
the NCSW provided the same number of vanishing moments is
used. Table I lists the sparsity of the wavelet matrix for both of
the wavelets, where the sparsity is defined as the ratio of the
number of nonzero elements to the total number of elements of
the matrix.

B. Sparse Solver

After the wavelet transforming and the thresholding, a sparse
matrix equation can be obtained. The sparse matrix equation
must be treated by an effective sparse solver. An iterative
method is, in general, more suitable for the matrix equation,
which has a random sparsity structure rather than a direct
method [7]. When the iterative method such as the conjugate
gradient (CG) method is applied, the computation cost for each
iteration depends on the sparsity of the matrix, but the conver-
gence of solution, that is, the number of the iteration necessary
for a converged solution, depends on the sparsity structure or
the condition number of the matrix which is defined as

(27)

where s are the nonzero singular values of.
Actually, it is known that the NCSW yields a sparser

impedance matrix than the DOW [1]. On the other hand, the
transformed impedance matrix based on the DOW has
exactly the same condition number as the original matrix,
but based on the NCSW has much larger condition number
than due to the nonorthogonality of the NCSW

(28)

TABLE I
SPARSITY OFWAVELET MATRIX W

The CG method is used here and the corresponding computation
cost will be discussed in the next section.

IV. NUMERICAL RESULTS

In this section, the scattering from an array of 2-D metal strips
shown in Fig. 1 is numerically calculated, where the number of
the strips is five, all the strips have the width of, the wave-
length of the incident wave, and are separated by also. A TM
plane wave is assumed to be incident with an angle of 45. The
number of vanishing moments of both the DOW and the NCSW
is set to four because this relative small number gives a faster
solution [8]. Decomposition is carried out as far as possible for
construction of the wavelet matrix. For example, the decompo-
sition level is nine for , ten for , etc.

The elements of whose magnitudes are smaller than
are set to zero, whereis a preselected threshold and is the
largest elements of .

The sparsity of truncated matrix and the associated relative
error of the scattering cross sectionwhich is defined as

(29)

are shown in Tables II and III, respectively. Here the relative
error caused by the truncation is defined by

(30)
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Fig. 1. Configuration for analysis.

TABLE II
SPARSITY OFTRUNCATEDZ

where is the solution obtained by the MoM and is that
obtained from the truncated matrix and denotes the
norm. It is actually shown that the sparsity by the NCSW trans-
form is much smaller than that by the DOW one, owing to the
smoothness of the NCSW functions. However, Table III shows
that smaller threshold must be used for the NCSW than for the
DOW if the same order of accuracy is required for both bases.
The fact that the error is quite large and even not monotonic with

for NCSW with large value of is caused by the rank defi-
ciency of resulting matrix.

Fig. 2 illustrates the current distribution on the first strip from
the left side and shows that the solutions obtained by both the
DOW and the NCSW transforms coincide with that obtained by
the MoM except very close proximity to the strip edges.

Fig. 3 shows the condition number of constructed by the
NCSW versus the matrix size. The condition number becomes
larger as the matrix size increases and, at the same time, the
larger the number of vanishing moments, the larger the condi-
tion number. It is noteworthy that the condition number of

TABLE III
RELATIVE ERROR OFSCATTERING CROSSSECTION

Fig. 2. Current distribution on the first strip from left side (N = 4096).

constructed by the DOW with any number of vanishing mo-
ments is unity.

Fig. 4 shows the condition number of corresponding trans-
formed impedance matrix where the upper limit
is also plotted as a reference. has much larger condition
number than the original matrix. This implies that more com-
putation cost is required for reasonable solutions.

Fig. 5 shows the number of iteration required for a converged
solution in a CG method based sparse solver from the SLATEC
Common Mathematical Library [9]. The number based on the
NCSW is larger than that based on the DOW. It should be
pointed out that no solution or only solutions with very poor
accuracy can be obtained for matrices with very large condition
numbers.

Fig. 6 shows the computation time required for the sparse
solver. The computation time required for performing the
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Fig. 3. Condition number ofW constructed by the NCSW.

Fig. 4. Condition number ofZ transformed by the NCSW.

Fig. 5. Iteration number required by the CG method.

wavelet transform is also plotted. The computation time re-
quired for recovery of from is not plotted together because
it is too small, e.g., 0.18 s for the DOW and 0.19 s for the
NCSW when . The computations were performed
on a PC with a 333 MHz Pentium II central processing unit
(CPU). It is shown that the NCSW needs more computation
cost than the DOW, not only in the wavelet transform, but also
in the sparse solver. In conclusion, we can say that the DOW
is superior to the NCSW as far as the computation cost is
concerned. Considering that the DOW is much better than the

Fig. 6. CPU time for the sparse solver and the wavelet transform.

NCSW with regard to the cost required by the sparse solver,
the advantage is expected to be more significant for ill-posed
problems since the cost consumed by the sparse solver will
take a large percentage of the total cost in that case. It is also
obvious that the computation cost required for the wavelet
transform is larger than that required for the sparse solver and
then dominates the total computation cost as the number of
unknowns increases.

V. CONCLUSION

The DOW is compared with the NCSW in the wavelet
transform approach. Even though the NCSW yields a sparser
impedance matrix than the DOW does, the impedance matrix
obtained by the NCSW has much larger condition number
than that obtained by the DOW. As the result, the NCSW
based impedance matrix requires more computation cost for
its solution than the DOW. Especially for the computation
cost required for performing the wavelet transform, which is a
dominant part of the total computation cost, the DOW is better
than the NCSW.
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