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A New Heuristic UTD Diffraction Coefficient for
Nonperfectly Conducting Wedges

Peter D. Holm

Abstract—A new heuristic UTD diffraction coefficient for non-
perfectly conducting wedges is proposed. The coefficient is an ex-
tension of the heuristic one given by Luebbers and as simple as that
to compute. In the case of forward-scattering and neglecting the
surface wave effects, the new coefficient gives a result close to Mal-
iuzhinets’s solution, also deep in the shadow region where the pre-
vious one fails. Moreover, it makes the special care used by Lueb-
bers to deal with grazing incidence unnecessary.

Index Terms—Diffraction coefficients, geometrical theory of
diffraction, nonperfectly conducting surfaces.

I. INTRODUCTION

PROPAGATION over irregular terrain is a complex problem
but is of interest when it comes to siting ground links,

for instance. In order to find practical solutions, simplifying
assumptions are required. One approach is to apply the uni-
form geometrical theory of diffraction (GTD) [1] to a piece-
wise-linear terrain profile. Besides a piecewise approximation
of the terrain, this theory requires the scattering events to be
local phenomena, i.e., independent. For large distances com-
pared to the wavelength, typically several hundred wavelengths,
this condition is thoroughly satisfied. On the other hand, to en-
sure this, the terrain profile has to be approximated with only a
few piecewise-linear segments. Even so, some good results have
been reported [2]–[5].

The advantage of a piecewise-linear terrain profile is in the
application of available solutions for diffraction by a wedge that
are numerically efficient. In 1962, Keller formulated the GTD
and an enclosed wedge diffraction coefficient [6]. This original
coefficient is numerically simple but not valid in the vicinity
of shadow and reflection boundaries, i.e., boundaries where di-
rect and reflected rays, respectively, appear or disappear. The
one used today is valid in the vicinity of shadow and reflection
boundaries and still quite numerically efficient to evaluate. This
coefficient was formulated by Kouyoumjian and Pathak in 1974
[7] and resulted in a uniform theory, the uniform geometrical
theory of diffraction (UTD), which is valid everywhere in space
as long as the incident fields are ray optical and reflection and
diffraction events can be considered local phenomena.

The diffraction coefficient in [7] is for wedges with perfectly
conducting surfaces. Wedge diffraction solutions for nonper-
fectly conducting surfaces are available [8]–[14], but many of
these are based on Maliuzhinets’s solution [8] and are rather
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cumbersome to use. The special function introduced by Mali-
uzhinets [8] is difficult to calculate for an arbitrary wedge angle,
so these solutions are not practical for path-loss predictions over
real terrain due to the complexity of the problem.

The difficulties of using rigorous solutions for path-loss pre-
dictions over real terrain force simplifications to be made. In
[2]–[5], the heuristic diffraction coefficient formulated in [3]
is used. This coefficient, which does not account for surface
waves, is efficient to evaluate. Moreover, when neglecting sur-
face wave effects, it will give results close to Maliuzhinets’s
solution in the vicinity of the reflection boundaries [15], [16].
However, in the shadow region, it generally gives a diffracted
field that does not agree very well with Maliuzhinets’s solution
[16], [17], especially deep in the shadow region. In this paper,
a solution that agrees very well with Maliuzhinets’s solution in
the shadow region is proposed. The solution is heuristic and not
formally based on Maxwell’s equations. The result, however, is
very convincing.

II. THEORY

The ray method UTD (or GTD) uses basically three kinds of
rays: direct, reflected, and diffracted rays [1]. The diffracted rays
are multiplied by diffraction coefficients (and proper spreading
factors) and the coefficient for diffraction by a wedge reads as
[1], [7]

(1)

where and are the reflection coefficients for the zero-
and -face, respectively (see Fig. 1). For perfectly conducting
surfaces, is 1 for soft (horizontal) and 1 for hard (ver-
tical) polarization. The components ( ) of the
diffraction coefficient in (1) are given by

(2)

where
wave number;

;
exterior angle of the wedge;
transition function defined in [7];

;
;
;
.

Here, as in [18], we use the result put forward in [19] and [20],
which removes the integer defined by Kouyoumjian and
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Fig. 1. Ray geometry for diffraction by a noncurved wedge.

Pathak [7]. As far as we know, this does not give a significantly
different result. Instead, it means some computational simplifi-
cations.

The basic idea of the UTD is that diffracted rays can be treated
in the same way as reflected rays in the geometrical optics (GO),
i.e., diffraction events can be seen as independent local phe-
nomena. The field of the diffracted ray in Fig. 1 can be written
straightforwardly as [1]

(3)

where

(4)

is the field incident on the wedge, and the relative amplitude
of a spherical source; or in a more compact form as

(5)

where is the total path distance. Here, we have as-
sumed spherical waves. However, by altering spreading factors,
the calculations or the expressions can be made valid for other
waves, such as plane or cylindrical waves [7]. Furthermore, an

time dependence has been implicitly assumed and sup-
pressed throughout.

Now, if the diffraction events can be seen as local phenomena,
the field of the doubly diffracted ray in Fig. 2 can directly be
written as [1], [18]

(6)

where

(7)

is the field incident on the second wedge

(8)

is the field incident on the first wedge and and are the
diffraction coefficients of the first and the second wedge, respec-
tively; or in a more compact form as

(9)

Fig. 2. Ray geometry for diffraction by two noncurved wedges.

Fig. 3. Diffraction by two joined wedges when using a factor of 1/2 for grazing
incidence.

where is the total path distance. Furthermore,
for the sake of simplicity, the arguments of and are sup-
pressed here and assumed to be understood.

The field in (6) or in (9) is the first-order diffracted field of
the ray in Fig. 2 and gives a good enough result if
and are satisfied. The latter condition is
fundamental for a high-frequency method such as the UTD, at
least if one expects the theory to give a reliable result. Further-
more, the additional condition ensures that higher
order diffracted fields are negligible (see Appendix). If this is
not the case, higher order fields might contribute, even though

. If so, they have to be included, which re-
sults in the field [18]

(10)

for the ray in Fig. 2, where the first-order diffracted field is the
term . Here, one may note that diffraction events are
not local if (10) has to be used, which is not in line with the
basic idea of the UTD, or the GO, where scattering events are
considered to be independent. Thus, by using (10), one is able
to cling to a picture that, to some extent, has broken down. Note:
there is a misprint in [18]; [18, eq. (14)] should read as (10) in
this paper.

A special case of double diffraction will be considered in this
paper. The case is illustrated in Fig. 3. Here, the second wedge
is illuminated at grazing incidence by the field from the first
wedge. The factor of 1/2 in Fig. 3 is used in order to handle
the special case of grazing incidence [1], [7]. Moreover, this
multiplying factor has become accepted practice for perfectly
conducting surfaces.

III. H EURISTICDIFFRACTION COEFFICIENT BYLUEBBERS

The diffraction coefficient in (1) is formulated for diffraction
by a wedge with perfectly conducting faces. In [3], a heuristic
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Fig. 4. Diffracted field for a spherical source in the presence of two joinedn =

3=2 wedges when using a factor of 1/2 for grazing incidence. The frequency is
300 MHz, the relative permittivity� = 15, and the conductivity� = 0:012
S/m.

extension for nonperfectly conducting faces is made. The coef-
ficients and in (1) are simply replaced by proper Fresnel
plane wave reflection coefficients and surface roughness atten-
uation factors. Here, this heuristic approach will be considered.
However, in order to get a result for a single wedge that corre-
sponds to the solution by Maliuzhinets [8], we will only use the
Fresnel plane wave reflection coefficient; no surface roughness
will be considered. In addition, the surface roughness attenua-
tion factor does not follow from Maxwell’s equations.

The heuristic coefficient by Luebbers [3] works very well in
the vicinity of the reflection boundaries, but not deep in the
shadow region [16], [17], [21]. In [22], that coefficient is ap-
plied to diffraction by two joined wedges. Diffraction by two
joined wedges will also be considered here but without a surface
roughness attenuation factor. Furthermore, in [22], first- and
second-order diffracted fields are used, i.e., the terms and

in (10). We will use terms up to . When dealing
with multiple diffraction, higher order diffracted fields might
be required for a good result and, depending on the diffraction
geometry, terms up to order 2 might not be sufficient. For the
double-diffraction examples in this paper, however, the first-
and the second-order field give good enough results. Also, when
using Fresnel plane wave reflection coefficient, derivatives of
the reflection coefficients have to be elaborated [22], which is
cumbersome for large .

In Fig. 4, we have used the heuristic coefficient by Lueb-
bers [3] together with a factor of 1/2 for grazing incidence. The
diffraction geometry in Fig. 4 is the one used in [22] (Figs. 2 and
3). The result is discontinuous. (For a single wedge, the coeffi-
cient by Luebbers always gives a continuous result, at least for
an exterior wedge.) Obviously, the factor of 1/2 used to deal with
grazing incidence does not work for nonperfectly conducting
surfaces.

In [22], the above problem was solved by introducing gain
factors, where a gain factor is equal to the ratio of the incident
field to an incident-plus-reflected field. The introduction is rea-
sonable, as the gain factors are in line with the origin of the

Fig. 5. As in Fig. 4, except for the use of the approach for grazing incidence
in [22].

Fig. 6. As in Fig. 5, when turning around the height profile and varying the
transmitter height.

factor of 1/2 in the perfectly conducting case [1], [7]. Further-
more, these factors are only applied to the first-order diffracted
field. For the slope diffraction term (the term ), the usual
factor of 1/2 is used and, in our case, also for the third-order dif-
fracted field (the term ). The result, which is shown in
Fig. 5, is continuous and smooth. Now, if we use this approach
for grazing incidence but turn around the height profile and vary
the transmitter height instead, we should end up with the same
result as in Fig. 5. However, this is not the case, as can be seen
in Fig. 6. The result is not only different from the one in Fig. 5,
it is also discontinuous. Evidently, the approach for grazing in-
cidence in [22] does not necessarily give continuous nor recip-
rocal results. Luebbers coefficient in [3] used together with a
factor of 1/2, on the other hand, gives reciprocal, but not con-
tinuous, results. (If Luebbers coefficient is used together with
a factor of 1/2 for the diffraction geometry in Fig. 6, the result
will be the same as the one in Fig. 4.) Thus, there is more to the
problem than altering the factor of 1/2. Note: Figs. 4–6 show
only diffracted fields, no reflections are considered, i.e., the re-
flections from the horizontal segments near the antennas are ne-
glected (which also is done in [22]).
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Fig. 7. Ray geometry for diffraction by two joined wedges.

Due to the findings above, let us see what happens in the
vicinity of the shadow boundary when using a factor of 1/2 for
grazing incidence and when using the gain factors introduced in
[22]. In the vicinity of the shadow boundary, the height in
Fig. 4 or 5, is close to 500 m. Considering Fig. 7, if we put the
reflection coefficients associated with the double diffraction by
the two wedges to ,

, , and
, where the arguments of the reflection coefficients follow

from Fig. 2, the two diffraction coefficients for the doubly dif-
fracted ray in Fig. 7 can be written as

(11)

and

(12)

where , and the
arguments of ( ) are omitted and as-
sumed to be understood. Furthermore, here the notation ,
for instance, simply means that either or can be used
as for the diffraction geometry in Fig. 7.

The case that we are interested in is when and
, as that corresponds to the height m in Fig. 4

or 5. For the sake of simplicity, let us assume that
(which really is not true for the height profiles in Figs. 4 and 5)
and approximate (12) by

for

for

(13)

which, when considering (9), gives the approximate first-order
field

(14)

for the doubly diffracted ray when using a factor of 1/2 for
grazing incidence and when using , where stands
for . If we use the approach

by Luebbers for grazing incidence [22], this approximate field
becomes

for

for .
(15)

Besides a doubly diffracted ray, we also have a singly
diffracted ray for with the diffraction coefficient

, where and .
Furthermore, considering Fig. 7, for , i.e., for ,
we know that , which means that when

. Consequently, for and ,
the coefficient for the singly diffracted ray can be written
approximately as , which, according
to (5) gives the approximate field

for
for

(16)

for the singly diffracted ray. (Note: In order to avoid a sharp
peak at the shadow boundary of the second wedge, the appear-
ance of the singly diffracted ray has to occur exactly when the
diffraction coefficient of the second wedge changes sign. Here,
there are two possibilities; this may be allowed to occur when

or when . In [18], we use the latter definition.
In this paper, we use the former one, as it seems to be the one
most frequently used.)

Now, with respect to the fields in (14) to (16), obviously
the approach by Luebbers for grazing incidence gives ap-
proximately a continuous first-order field across the shadow
boundary, i.e., (15) (16) gives approximately a continuous
field across the shadow boundary, while the factor of 1/2 does
not, i.e., (14) (16) does not. However, both approaches give
first-order diffracted fields that are nonzero in the shadow
region, which is not expected. Considering the result of the
more rigorous solution for diffraction by a single nonperfectly
conducting wedge in reference [9] by Tiberoet al., except for
vertical (hard) polarization and perfectly conducting surfaces,
the diffracted field vanishes on the surface. Consequently, the
field diffracted by the first wedge and which incident on the
second wedge should be zero. In other words, the diffraction
coefficient in (11) should be zero for . Thus,
for double diffraction by two joined nonperfectly conducting
wedges, the first-order diffracted field is expected to be zero
in both polarization cases, contrary to perfectly conducting
wedges, where only horizontal (soft) polarization gives a
zero first-order field. In addition, for two joined wedges with
nonperfectly conducting faces, this means that it has to be the
diffracted fields of second-order and higher that give rise to a
nonzero doubly diffracted field.

There are clearly problems associated with the heuristic co-
efficient by Luebbers. For instance, it overestimates the field
strength in shadow region [16], [17] and for two joined wedges
(when using a factor of 1/2 for grazing incidence), it gives a dis-
continuous result at the shadow boundary, problems to which
the approach in [22] offers no solution.
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Fig. 8. Illustration of the Fresnel–Kirchhoff theory applied to a noncurved
wedge.

IV. NEW HEURISTIC DIFFRACTION COEFFICIENT

Considering the diffraction coefficient in (1), one may note
that there are no shadow boundaries for . In this case,
the first two terms in (1) are associated with double-reflection
boundaries. The first has a boundary of an incident field first re-
flected from the -face and then from the zero-face, whereas the
second has a boundary of an incident field first reflected from
the zero-face and then from the-face. In line with the heuristic
diffraction coefficient by Luebbers [3], this means thatin (1)
would read as for
an interior wedge. For perfectly conducting surfaces, the factor

will always be equal to 1 both for soft and hard po-
larizations. However, assuming that the heuristic approach by
Luebbers [3] is valid, this will not be the case for nonperfectly
conducting wedge faces. This factor, which will be important in
this section, can assume other values than one here.

For scattering in the forward direction, the Fresnel–Kirchhoff
theory can be used for diffraction by a wedge [23], [24]. Con-
sidering Fig. 1, assuming perfectly conducting surfaces and that

, for close to one and close to , it can
be shown that the Fresnel–Kirchhoff theory gives a result com-
parable to more rigorous solutions [23]. In Fig. 8, the use of this
theory is illustrated for diffraction by a noncurved wedge. The
field can be divided into four parts, one direct–direct, one re-
flected–reflected, one reflected–direct, and one direct–reflected.
In a UTD context, this would correspond to the following pro-
posed new heuristic diffraction coefficient:

(17)

This new coefficient is an extension of the one in [3] and is as
simple to compute. Furthermore, with restriction to scattering in
the forward direction, the coefficient in (17) would be valid both
for and , as the above comparison is possible both
for and . Thus, no matter whether the wedge is an
exterior or an interior one, the four components in (17) should
be associated with the boundaries of the four possible rays in the
presence of a wedge, i.e., the boundaries of a direct ray, a doubly
reflected ray, and two singly reflected rays. In the following text,
the validity of the new coefficient, especially whenis greater
than one, is discussed.

For , it is justified to put the factor
in front of the component , where the arguments of the re-

Fig. 9. Diffracted field for an incident plane wave in the presence of an =

3=2 wedge. The angle� = 5 , the relative permittivity� = 8, and the
conductivity� = 0:001 S/m.

Fig. 10. As in Fig. 9, except for the relative permittivity� = 3 and the
conductivity� = 0:002 S/m.

flection coefficients follow from Fig. 1. The issue here, how-
ever, is whether the component should be multiplied by
this factor or not. As it is associated with the double-reflection
boundary of a field incidenting opposite to the forward direc-
tion, it should be multiplied by the factor
and not . On the other hand, for forward-scat-
tering, the component will stand for a contribution that is
small, at least if one considers that means that we are
always in the lit region. Thus, for and forward scattering,
the coefficient in (17) is a reasonable solution in line with the
heuristic coefficient by Luebbers.

For the other case, i.e., , it does not seem to be justified
to put the factor in front of . Here,
is associated with the shadow boundary of a field incidenting
opposite to the forward direction. For forward scattering,
will always stand for a small contribution. However, that is also
the case for the other diffraction components in the shadow re-
gion. Thus, we have here a region where it is possible to test the
coefficient in (17). Furthermore, it is the region where a better
heuristic solution than the previous one by Luebbers is desired.
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Fig. 11. As in Fig. 9, except for the angle� = 0:1 and the conductivity
� = 0:002 S/m.

A first indication that (17) might provide a better result than
the previous one is seen when the diffraction coefficients in (11)
and (12) are written down using (17). For (17), these coefficients
read as

(18)

and

(19)

Here, the expression for yields that a singly diffracted field
vanishes on the wedge surface as . This is a desired
property, which thus gives a zero first-order diffracted field for
two joined wedges. Furthermore, it also makes the approach for
grazing incidence in [22] unnecessary, as the proposed gain fac-
tors in [22] are only applied to first-order diffracted fields, i.e.,
we are back to the use of a factor of 1/2 for grazing incidence.

Now, the really interesting results are revealed when (17)
is used to calculate the diffracted fields for some examples
showing results based on Maliuzhinets’s solution without
surface wave effects [9], [16], [17]. In Figs. 9–12, the new
and the old heuristic coefficient can be compared with these
more rigorous solutions. The new coefficient gives results
surprisingly close to the ones based on Maliuzhinets’s solution,
while the old one does not, at least not in the shadow regions;
see also [25]. Note: In Figs. 9–11, the solution given in [16]
and [17] has been used for , which corresponds
to one over the normalized surface impedance for horizontal
polarization at normal incidence. Here,is the complex relative
permittivity, i.e., . In Fig. 12, the solution
given in [9] has been used for , which
corresponds to the normalized surface impedance for vertical
polarization at normal incidence.

It may be noted that none of Figs. 9–11 show a result for an-
gles below 90, i.e., , as the argument in

would then exceed the grazing angle, which has
no meaning. Moreover, it is in the backscattering region, which
is not of interest in this paper. However, forabove ,
it should be possible to obtain good results forbelow
by using the diffraction coefficient

Fig. 12. Total far field for a line source in the presence of ann = 3=2 wedge
with equal face impedances.

Fig. 13. As in Fig. 6, except for the use of the new heuristic diffraction
coefficient in (17) for nonperfectly conducting surfaces and a factor of 1/2 for
grazing incidence.

. What happens in be-
tween, on the other hand, is hidden in Maliuzhinets’s solution.

In Fig. 9, one can see that both the new and the old coeffi-
cient start to give bad results when the angleapproaches 90.
However, if the geometrical optics field is added, this failure of
the heuristic coefficients might not show. In Fig. 12, the geomet-
rical optics field dominates in the lit region. Consequently, here
the new coefficient give good results within the whole range of
angles, from 0 to 270 .

For the diffraction example in Fig. 6, we obtained discontin-
uous results. If we perform the same calculation as in Fig. 6,
but for the new heuristic coefficient in (17), we end up with the
result shown in Fig. 13. The discontinuities are gone, besides a
small one for vertical polarization. Furthermore, if we use (17)
for the diffraction geometry in Fig. 4 (or Fig. 5), the result will
be exactly the same as in Fig. 13, including the small disconti-
nuity for vertical polarization. This is very important as it means
that (17) is able to provide a reciprocal result.

Turning back to the small discontinuity for vertical polariza-
tion in Fig. 13, it cannot be removed by adding more higher
order terms. (For all doubly diffracted fields, we use terms up to
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Fig. 14. Total field for a spherical source in the presence of a wedge. The
frequency is 300 MHz, the relative permittivity� = 15, and the conductivity
� = 0:012 S/m. The total path distance is 2.7 km and the transmitter is 5 cm
above the first face.

Fig. 15. As in Fig. 14, except for the use of the heuristic coefficient by
Luebbers [3].

and the term improves the result very little.) Here,
we have a failure that is due to the heuristic approach in finding
(17). In Fig. 14, the failure should be obvious. The results in the
nonperfectly conducting case are continuous but with discontin-
uous slopes. For small grazing angles and vertical polarization,
the reflection coefficient varies rapidly as the angle varies, and
in Fig. 14, a reflection with a rapid varying coefficient appears
at the height m. Consequently, the expression in
(17) gives a continuous result but does not account for varying
reflection coefficients in a proper way, which, in this case, re-
sults in a small slope discontinuity for vertical polarization in
Fig. 13.

The above problem is also something that the expression by
Luebbers in [3] suffers from, as can be seen in Fig. 15. Of course,
this is expected, as the coefficient in (17) is simply an exten-
sion of the one in [3]. In Fig. 5, however, as the approach for
grazing incidence in [22] gives a nonzero first-order field, it does
not show. On the other hand, for a larger transmitter height, we
will end up closer to a region of overlapping transition regions,

Fig. 16. Diffracted field for a spherical source in the presence of two joined
n = 3=2 wedges. The new heuristic coefficient in (17) is used together with a
factor of 1/2 for grazing incidence. The old is used together with the approach for
grazing incidence in [22]. The frequency is 300 MHz, the relative permittivity
� = 15, and the conductivity� = 0:012 S/m. Thex- and they-grid in the
small figure are 10 m and 1 dB, respectively.

which means that the slope diffraction term will become more
important and the discontinuity of the coefficient in [3] might
become visible. This is what happens in Fig. 16, where the dis-
continuities of the new heuristic coefficient in (17) and the one
in [3] are about 1.5 and 1 dB, respectively. Thus, both the new
and the old coefficient fail to some extent when a rapid varying
reflection coefficient is involved.

The results in the nonperfectly conducting case in Fig. 13 are
obtained using derivatives of the reflection coefficients. If we
use higher order terms without making use of the derivatives of
the reflection coefficients, these results will be worse. In fact,
they will be very similar to the ones in Fig. 14, i.e., continuous
but with discontinuous slopes. Consequently, even though (17)
does not account for varying reflection coefficients in a proper
way, it is not completely wrong. Moreover, if the thickness of
the ridge is increased, the small discontinuity for the vertical
polarization decreases and for a ridge thickness of 4 km, i.e.,

km, it is almost gone. Furthermore, an increase in the
first distance of the height profile in Fig. 14 will also give a
better result, as can be seen in Fig. 17, where the results of the
new and old coefficients are shown for vertical polarization and
for the same grazing angle, i.e., the same angle, as in Figs. 14
and 15. Here, the large distance to the wedge means that we
have an approximate incident plane wave. Thus, rapid varying
reflection coefficients cause errors. However, if the separation
distances between the source, the wedge or the wedges, and the
field point are large enough, the errors will be small.

V. CONCLUSION

An extension of the heuristic diffraction coefficient by Lueb-
bers, which, at least, is valid for scattering in the forward di-
rection, has been proposed. When neglecting surface waves,
the new heuristic coefficient gives results in good agreement
with what the more exact diffraction coefficient by Maliuzhinets
gives, even deep in the shadow region, where the previous co-
efficient fails. Even so, it is as simple as the previous one to
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Fig. 17. Total field for a spherical source in the presence of a wedge. The
frequency is 300 MHz, the relative permittivity� = 15, and the conductivity
� = 0:012 S/m. The total path distance is 52.2 km and the transmitter is 5 m
above the first face.

compute. Moreover, it does not require any special care when
grazing incidence occurs, i.e., the usual factor of 1/2 can be used.

The new coefficient works very well for incident plane
waves, which is not unexpected as the reflection coefficients
used are for plane waves. For a wedge illuminated by a spher-
ical source, however, problems might arise. Here, reflection
coefficients with rapid spatial variations can be involved, which
causes errors. This is also a problem of the old coefficient
and is hard to do anything about. However, if the separation
distances between the source, the wedge or the wedges and the
field point are large enough, the errors will be small.

APPENDIX

Considering the doubly diffracted ray in Fig. 2, provided that
we have forward scattering and are well outside the reflection
transition regions, the field in (10) can approximately be written
as

(20)

for overlapping shadow transition regions, where the derivatives
and follow from [18] and read as

(21)

and

(22)

where
;

;
;

; and
transition function of order introduced in [18].

For overlapping shadow transition regions, both the angles
and will be close to zero, a case that we will take a

closer look at here. Furthermore, for overlapping shadow tran-
sition regions, the arguments of the above transition functions
will be small. Using [18], for a very small argumentin ,
it can be shown that

for
for

(23)

which gives the usable limit

for
for

(24)

Now, let us consider the case where the doubly diffracted ray
is the only one existing. In other words, let us consider the case
when and . Using (24), in the limits

and , (21) and (22) result in

for
for

(25)

and

for
for

(26)

respectively, as and
. These last two equations make it possible to

write approximately the field in (20) in the compact form

(27)

where

for
for

(28)
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which, finally, can be rewritten as

(29)

where

(30)

The approximate field in (29) is thus only valid when the
source and the field point are immediately below the straight
line formed by the two wedges. In addition, in order for the
approximation to be accurate, we have to be well outside the
reflection transition regions.

As far as the convergence is concerned, the series in (29) will
always converge. The factors and

are less than or equal to one, so the convergence
of the series can be assured by comparing it with a geometric
series with quotient . Thus, since will always be smaller than
one (except for ), the series will always converge and the
convergence will be fast if . If , on the
other hand, the convergence will be very slow aswill be close
to one. In addition, it may be noted that the convergence does
not depend on the wavelength; it is the mutual relations between

, , and that determine the convergence.
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