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A New Heuristic UTD Diffraction Coefficient for
Nonperfectly Conducting Wedges

Peter D. Holm

Abstract—A new heuristic UTD diffraction coefficient for non- cumbersome to use. The special function introduced by Mali-
perfectly conducting wedges is proposed. The coefficient is an ex-yzhinets [8] is difficult to calculate for an arbitrary wedge angle,
tension of the heuristic one given by Luebbers and as simple as that g, these solutions are not practical for path-loss predictions over

to compute. In the case of forward-scattering and neglecting the 't in due to th lexity of th bl
surface wave effects, the new coefficient gives a result close to Mal-Feal terrain due to the complexity of the problem.

iuzhinets’s solution, also deep in the shadow region where the pre-  The difficulties of using rigorous solutions for path-loss pre-
vious one fails. Moreover, it makes the special care used by Lueb- dictions over real terrain force simplifications to be made. In

bers to deal with grazing incidence unnecessary. [2]-[5], the heuristic diffraction coefficient formulated in [3]
Index Terms—Diffraction coefficients, geometrical theory of IS used. This coefficient, which does not account for surface
diffraction, nonperfectly conducting surfaces. waves, is efficient to evaluate. Moreover, when neglecting sur-

face wave effects, it will give results close to Maliuzhinets’s

solution in the vicinity of the reflection boundaries [15], [16].

However, in the shadow region, it generally gives a diffracted
ROPAGATION over irregular terrain is a complex problenfield that does not agree very well with Maliuzhinets’s solution
but is of interest when it comes to siting ground links}16], [17], especially deep in the shadow region. In this paper,

for instance. In order to find practical solutions, simplifyinga solution that agrees very well with Maliuzhinets’s solution in

assumptions are required. One approach is to apply the whie shadow region is proposed. The solution is heuristic and not

form geometrical theory of diffraction (GTD) [1] to a pieceformally based on Maxwell’s equations. The result, however, is

wise-linear terrain profile. Besides a piecewise approximatia@ry convincing.

of the terrain, this theory requires the scattering events to be

local phenomena, i.e., independent. For large distances com- Il. THEORY

pared to the wavelength, typically several hundred wavelengths . .
this condition is thoroughly satisfied. On the other hand, to en—The ray method UTD (or GTD) uses basically three kinds of

. . X . . rays: direct, reflected, and diffracted rays [1]. The diffracted rays
sure this, the terrain profile has to be approximated with only a S ; . - .

. T are multiplied by diffraction coefficients (and proper spreading
few piecewise-linear segments. Even so, some good results hfav? - . .

acfors) and the coefficient for diffraction by a wedge reads as
been reported [2]-[5]. 11, [7]
The advantage of a piecewise-linear terrain profile is in tf{e '
application of available solutions for diffraction by a wedge thatp — D(L, n; ¢, ¢') = DY 4+ D@ 4+ RyD® + R, D® (1)
are numerically efficient. In 1962, Keller formulated the GTD _ o
and an enclosed wedge diffraction coefficient [6]. This originavhere Ko and R, are the reflection coefficients for the zero-
coefficient is numerically simple but not valid in the vicinityandn-face, respectively (see Fig. 1). For perfectly conducting
of shadow and reflection boundaries, i.e., boundaries where #irfaces Ko, ,, is —1 for soft (horizontal) and-1 for hard (ver-
rect and reflected rays, respectively, appear or disappear. 1&l) polarization. The compone_rﬂ%(” (I=1, 2,3, 4) of the
one used today is valid in the vicinity of shadow and reflectiofiffraction coefficient in (1) are given by
boun_dc_';lrles and still quite numerically efﬂment to evalua'Fe. This DO — p® (L, n: 6, &)
coefficient was formulated by Kouyoumjian and Pathak in 1974 ina
—e ™

. INTRODUCTION

[7] and res_ulted_in a uniform Fhegry, the uniform geqmetrical = cot YWF, (gkLn2 sin? ,y(l)) 2)
theory of diffraction (UTD), which is valid everywhere in space 2nV 2k

as long as the incident fields are ray optical and reflection agghere

diffraction events can be considered local phenomena. Lk wave number:

The diffraction coefficient in [7] is for wedges with perfectly | s's/(s + s);
conducting surfaces. Wedge diffraction solutions for nonper-,,..  exterior angle of the wedge;
fectly conducting surfaces are available [8]-[14], but many of F, transition function defined in [7];
these are based on Maliuzhinets’s solution [8] and are rathenyo) [r — (¢ — ¢')]/2n;

A& [+ (¢ = )]/ 2m;
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Fig. 1. Ray geometry for diffraction by a noncurved wedge. . . .
Fig. 2. Ray geometry for diffraction by two noncurved wedges.

Pathak [7]. As far as we know, this does not give a significantly

different result. Instead, it means some computational simplifi- Dy D,
cations. =

The basic idea of the UTD is that diffracted rays can be treated Field
in the same way as reflected rays in the geometrical optics (GO), ~ Source,E, point

i.e., diffraction events can be seen as independent local phe-
nomena. The field of the diffracted ray in Fig. 1 can be written

straightforwardly as [1] Fig.3. Diffraction by two joined wedges when using a factor of 1/2 for grazing
incidence.
i s’ —jks
Eyrp = £'D m e 3 wherest = s; + s2 + s3 is the total path distance. Furthermore,
for the sake of simplicity, the argumentsBi and D, are sup-
where pressed here and assumed to be understood.

ik The field in (6) or in (9) is the first-order diffracted field of
pi - Boc™’ (4) therayin Fig. 2 and gives a good enough resudbifs- s, s3

! and ksy, kso, ks3 > 1 are satisfied. The latter condition is
is the field incident on the wedge, a the relative amplitude fundamental for a high-frequency method such as the UTD, at
of a spherical source; or in a more compact form as least if one expects the theory to give a reliable result. Further-
more, the additional conditios, >> s, s3 ensures that higher
order diffracted fields are negligible (see Appendix). If this is
not the case, higher order fields might contribute, even though

) . ks, ksa, ksz > 1. If so, they have to be included, which re-
wherest = s’ + s is the total path distance. Here, we have agyjts in the field [18]

sumed spherical waves. However, by altering spreading factors,
the calculations or the expressions can be made valid for other B Ege—iksT ST i 1 -1\"
waves, such as plane or cylindrical waves [7]. Furthermore, an UTD = e sisas3 = ml \ jkss

expti«t time dependence has been implicitly assumed and sup- 9" D: 9™ D
1 2

S

Eye—ikst s
Eyrp = OT D i )

pressed throughout. — - (10)
Now, if the diffraction events can be seen as local phenomena, 9o1" O™

the field of the doubly diffracted ray in Fig. 2 can directly bgoy the ray in Fig. 2, where the first-order diffracted field is the
written as [1], [18] termm = 0. Here, one may note that diffraction events are
) ST T 55 not local if (10) has to be used, which is not in line with the

Eyrp = EyDs \/— e Ikes (6) basic idea of the UTD, or the GO, where scattering events are

53 (514 52+ 53) considered to be independent. Thus, by using (10), one is able

where to cling to a picture that, to some extent, has broken down. Note:
there is a misprint in [18]; [18, eq. (14)] should read as (10) in

Ei=FED L S (7) this paper.

52 (51 + 52) A special case of double diffraction will be considered in this

paper. The case is illustrated in Fig. 3. Here, the second wedge
is illuminated at grazing incidence by the field from the first

. Egeikm wedge. The factor of 1/2 in Fig. 3 is used in order to handle
B = T s ®)  the special case of grazing incidence [1], [7]. Moreover, this

_ R ) multiplying factor has become accepted practice for perfectly
is the field incident on the first wedge aiéh and D, are the conducting surfaces.

diffraction coefficients of the first and the second wedge, respec-
tively; or in a more compact form as

is the field incident on the second wedge

I1l. HEURISTIC DIFFRACTION COEFFICIENT BY LUEBBERS

Eye—ikst s The diffraction coefficient in (1) is formulated for diffraction
Eyrp = ———— DDy, [— 9) )

ST 518283 by a wedge with perfectly conducting faces. In [3], a heuristic
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Fig. 4. Diffracted field for a spherical source in the presence of two joined Fig. 5. Asin Fig. 4, except for the use of the approach for grazing incidence

3/2 wedges when using a factor of 1/2 for grazing incidence. The frequenc;}ri]s[zz]‘
300 MHz, the relative permittivity, = 15, and the conductivity = 0.012
S/m.

extension for nonperfectly conducting faces is made. The coef-
ficients Ry andR,, in (1) are simply replaced by proper Fresnel
plane wave reflection coefficients and surface roughness atten-
uation factors. Here, this heuristic approach will be considered.
However, in order to get a result for a single wedge that corre-
sponds to the solution by Maliuzhinets [8], we will only use the
Fresnel plane wave reflection coefficient; no surface roughness
will be considered. In addition, the surface roughness attenua-

,/ Heuristic Luebbers, VP

Diffracted field over free space (dB)

tion factor does not follow from Maxwell's equations. -100p _ -~ e — — — Heuristic Luebbers, HP 1
.. .. - i Perfectly Conduct., VP
The heuristic coefficient by Luebbers [3] works very wellin & .. . Perfectly Conduct., HP
the vicinity of the reflection boundaries, but not deep in the -129 . . . : e 00
shadow region [16], [17], [21]. In [22], that coefficient is ap- 00 800 Tfao,?smme?ﬂgigm thso(%)

plied to diffraction by two joined wedges. Diffraction by two

joined wedges will also be considered here but without a surfagg. 6. As in Fig. 5, when turning around the height profile and varying the
roughness attenuation factor. Furthermore, in [22], first- at@nsmitter height.

second-order diffracted fields are used, i.e., the terms 0 and

m = 1in (10). We will use terms up te: = 2. When dealing t5ctor of 1/2 in the perfectly conducting case [1], [7]. Further-
with multiple diffraction, higher order diffracted fields mightyqre these factors are only applied to the first-order diffracted
be required for a good result and, depending on the diffractiqaiy ror the slope diffraction term (the term = 1), the usual
geometry, terms up to order 2 might not be sufficient. For thg (o of 1/2 is used and, in our case, also for the third-order dif-
double-diffraction examples in this paper, however, the firsfrycted field (the termn = 2). The result, which is shown in
and the second-order field give good enough results. Also, Whey 5 s continuous and smooth. Now, if we use this approach
using Fres_nel plan_e_wave reflection coefficient, denvatlv_es ﬂ;rgrazing incidence but turn around the height profile and vary
the reflection coefficients have to be elaborated [22], which jga transmitter height instead, we should end up with the same
cumbersome for large:. result as in Fig. 5. However, this is not the case, as can be seen

In Fig. 4, we have used the heuristic coefficient by Luelin Fig. 6. The result is not only different from the one in Fig. 5,
bers [3] together with a factor of 1/2 for grazing incidence. Thigis also discontinuous. Evidently, the approach for grazing in-
diffraction geometry in Fig. 4 is the one used in [22] (Figs. 2 angldence in [22] does not necessarily give continuous nor recip-
3). The result is discontinuous. (For a single wedge, the coeffbcal results. Luebbers coefficient in [3] used together with a
cient by Luebbers always gives a continuous result, at least faétor of 1/2, on the other hand, gives reciprocal, but not con-
an exterior wedge.) Obviously, the factor of 1/2 used to deal witihuous, results. (If Luebbers coefficient is used together with
grazing incidence does not work for nonperfectly conductingfactor of 1/2 for the diffraction geometry in Fig. 6, the result
surfaces. will be the same as the one in Fig. 4.) Thus, there is more to the

In [22], the above problem was solved by introducing gaiproblem than altering the factor of 1/2. Note: Figs. 4-6 show
factors, where a gain factor is equal to the ratio of the incideanly diffracted fields, no reflections are considered, i.e., the re-
field to an incident-plus-reflected field. The introduction is redlections from the horizontal segments near the antennas are ne-
sonable, as the gain factors are in line with the origin of thgected (which also is done in [22]).
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by Luebbers for grazing incidence [22], this approximate field

becomes
EL ~ EoC_]kST Dy
UTh ST 2\/81 S3

A+ Rs) DY — 5, for gy < m (15)
(14+R3) D&Y+ /53, for ¢y > .

Fig. 7. Ray geometry for diffraction by two joined wedges.

Besides a doubly diffracted ray, we also have a singly

Due to the findings above, let us see what happens in tdi#fracted ray for¢, < = with the diffraction coefficient
vicinity of the shadow boundary when using a factor of 1/2 foP(L, n1; ¢, ¢ = ¢|), whereL = s's/(s' 4+ s) ands’ = s;.
grazing incidence and when using the gain factors introducedftrthermore, considering Fig. 7, fgs ~ 7, i.e., for¢ ~ ny7,
[22]. In the vicinity of the shadow boundary, the height in  we know thats ~ s» + s3, which means thal. ~ s; when
Fig. 4 or 5, is close to 500 m. Considering Fig. 7, if we put thez >> s1, s3. Consequently, fog; > s, s3 and¢y ~ m,
reflection coefficients associated with the double diffraction bjpe coefficient for the singly diffracted ray can be written
the two wedges tdp 1(¢}) = Ri, R, 1(nim — ¢ = 0) = approximately ad(sy, ny; nmm, ¢}) = Dy, which, according
Ry = —1, Ry »(¢h, = 0) = Ry = —1,andR, 2(nam — ¢2) = 10 (5) gives the approximate field
R3, where the arguments of the reflection coefficients follow

from Fig. 2, the two diffraction coefficients for the doubly dif- _ Eoe?®T Dy 1, forge <
e . Eyrp =~ (16)
fracted ray in Fig. 7 can be written as sp /51 |0, forgy >

, for the singly diffracted ray. (Note: In order to avoid a sharp
Dy =D (Ly, nas 1 =mm, ¢1) peak at the shadow boundary of the second wedge, the appear-
= (14 Ry) DY + (1+ Ry) D (11) ance of the singly diffracted ray has to occur exactly when the
diffraction coefficient of the second wedge changes sign. Here,
and there are two possibilities; this may be allowed to occur when
P2 < 7 or wheng, < w. In [18], we use the latter definition.
Dy =D (Ls, ny; ¢a, ¢y =0) In this]c paper, \INe uszI ';he former one, as it seems to be the one
1.3 24 most frequently used.
= (1 +8) Dé '+ 1+ R?’)Dé : (12) Now, with respect to the fields in (14) to (16), obviously
the approach by Luebbers for grazing incidence gives ap-
whereL, = Sl(ff/(sl +52), Ly = s283/(s2 + 53) and the proximately a continuous first-order field across the shadow
arguments ob;” (I = 1, 2, 3, 4; < = 1, 2) are omitted and)as- boundary, i.e., (15)(16) gives approximately a continuous
sumed to be understood. Furthermore, here the not&ifor’,  field across the shadow boundary, while the factor of 1/2 does
for instance, simply means that eithf" or D{*) can be used not, i.e., (14}-(16) does not. However, both approaches give
angl) = D§4) for the diffraction geometry in Fig. 7. first-order diffracted fields that are nonzero in the shadow
The case that we are interested in is whgn< ny7 — 7 and  region, which is not expected. Considering the result of the
¢2 ~ m, as that corresponds to the height ~ 500 m in Fig. 4 more rigorous solution for diffraction by a single nonperfectly
or 5. For the sake of simplicity, let us assume that>> s1, s3  conducting wedge in reference [9] by Tibegbal., except for
(which really is not true for the height profiles in Figs. 4 and S)ertical (hard) polarization and perfectly conducting surfaces,

and approximate (12) by the diffracted field vanishes on the surface. Consequently, the
field diffracted by the first wedge and which incident on the
Dy~ D (Ly & s3, na; o & 7, ¢y = 0) second wedge should be zero. In other words, the diffraction

@ 1 coefficient D, in (11) should be zero fokR, = —1. Thus,
(1+R3) Dy — > (1+ R2) /53, forg> <7  for double diffraction by two joined nonperfectly conducting
24 1 wedges, the first-order diffracted field is expected to be zero
(1 +R3)D§ '+ 2 1+ £2) /53, forgs 2 in both polarization cases, contrary to perfectly conducting
(13) wedges, where only horizontal (soft) polarization gives a
zero first-order field. In addition, for two joined wedges with
which, when considering (9), gives the approximate first-ordeonperfectly conducting faces, this means that it has to be the
field diffracted fields of second-order and higher that give rise to a
nonzero doubly diffracted field.
B2 o Ege—7kst Dy There are clearly problems associated with the heuristic co-
UTD ™ st 2y/5153 efficient by Luebbers. For instance, it overestimates the field
strength in shadow region [16], [17] and for two joined wedges
for the doubly diffracted ray when using a factor of 1/2 fofwhen using a factor of 1/2 for grazing incidence), it gives a dis-
grazing incidence and when usidy = —1, whereD; stands continuous result at the shadow boundary, problems to which
for D(L1 =~ s1, n1; ¢1 = nim, ¢f). If we use the approach the approach in [22] offers no solution.

~
~

(1+R3) DY (14)
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IV. NEW HEURISTIC DIFFRACTION COEFFICIENT

Considering the diffraction coefficient in (1), one may noteig. 9. Diffracted field for an incident plane wave in the presence of &
that there are no shadow boundariesfok. 1. In this case, 3/2 wedge. The angle’ = 5°, the relative permittivitye, = 8, and the
the first two terms in (1) are associated with double-reflectigfi"ductvitys = 0.001 S/m.
boundaries. The first has a boundary of an incident field first re-
flected from then-face and then from the zero-face, whereas the
second has a boundary of an incident field first reflected from
the zero-face and then from theface. In line with the heuristic
diffraction coefficient by Luebbers [3], this means tiiain (1)
would read a®o R, DM + RoR,, D + Ry D® + R, D™ for
an interior wedge. For perfectly conducting surfaces, the factor
RoR,, will always be equal to+-1 both for soft and hard po-
larizations. However, assuming that the heuristic approach by
Luebbers [3] is valid, this will not be the case for nonperfectly
conducting wedge faces. This factor, which will be important in
this section, can assume other values than one here.

For scattering in the forward direction, the Fresnel-Kirchhoff
theory can be used for diffraction by a wedge [23], [24]. Con- - ‘ , , , , ,
sidering Fig. 1, assuming perfectly conducting surfaces and that 500 210 220 230 240 250 260 270
s'k, sk > 1, for n close to one an@yp — ¢’) close tor, it can © (degrees)
be shown that the Fresnel-Kirchhoff theory gives a result com-
parable to more rigorous solutions [23]. In Fig. 8, the use of thf#g: 10. Asin Fig. 9, except for the relative permittivity = 3 and the
theory is illustrated for diffraction by a noncurved wedge. Th(éonducuv'tya = 0.002 S/m.
field can be divided into four parts, one direct—direct, one re-
flected-reflected, one reflected—direct, and one direct-reflectfidction coefficients follow from Fig. 1. The issue here, how-
In a UTD context, this would correspond to the following proever, is whether the componeft) should be multiplied by

|
o

Plane wave incidence, HP
Frequency=1700 MHz, ks=100

i
~
o

Maliuzhinets [16],[17]
— — — Heuristic New
------- Heuristic Luebbers

Diffracted field over free space (dB)

|
o]
o

posed new heuristic diffraction coefficient: this factor or not. As it is associated with the double-reflection
boundary of a field incidenting opposite to the forward direc-
D=D(L,n; ¢, ¢) tion, it should be multiplied by the factdRy(¢)R,,(nm — ¢')

=DW + RyR,D® + R,D® + R, D™, (17) andnotRy(¢") R, (nm—¢). Onthe other hand, for forward-scat-
tering, the componer®) will stand for a contribution that is
This new coefficient is an extension of the one in [3] and is asnall, at least if one considers that< 1 means that we are
simple to compute. Furthermore, with restriction to scattering aways in the lit region. Thus, for < 1 and forward scattering,
the forward direction, the coefficient in (17) would be valid botlhe coefficient in (17) is a reasonable solution in line with the
forn > 1 andn < 1, as the above comparison is possible botheuristic coefficient by Luebbers.
forn > 1 andn < 1. Thus, no matter whether the wedge is an For the other case, i.en,> 1, it does not seem to be justified
exterior or an interior one, the four components in (17) shoutd put the factoi?y(¢' ) R,.(nm — ¢) in front of D . Here,D(®
be associated with the boundaries of the four possible rays in thessociated with the shadow boundary of a field incidenting
presence of awedge, i.e., the boundaries of a direct ray, a doulposite to the forward direction. For forward scatterifg2
reflected ray, and two singly reflected rays. In the following textyill always stand for a small contribution. However, that is also
the validity of the new coefficient, especially wheris greater the case for the other diffraction components in the shadow re-
than one, is discussed. gion. Thus, we have here a region where it is possible to test the
Forn < 1, itis justified to put the factoRo(¢’)R,,(nm — ¢) coefficient in (17). Furthermore, it is the region where a better
in front of the componenb(?), where the arguments of the re-heuristic solution than the previous one by Luebbers is desired.
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Fig. 11. As in Fig. 9, except for the anglé = 0.1° and the conductivity Fig- 12. Total far field for a line source in the presence ofas 3/2 wedge
o = 0.002 S/m. with equal face impedances.

A first indication that (17) might provide a better result than -20
the previous one is seen when the diffraction coefficients in (11)
and (12) are written down using (17). For (17), these coefficients

2
read as 8 407
o
1,4 2,3 *
D=1+ Ry) (D{"Y + DY) (18) 5 ool
and 2
(1,3) 2,9) 3 %
Dy = (1 + Ry) (D2 '3 | RyD ) . (19) 2
£ e Heuristic New, VP
Here, the expression fdp; yields that a singly diffracted field £ -100p T == ;IeL;riSttlicgewa Hf’ v
vanishes on the wedge surfacelfas = —1. This is a desired N - PZ;figtlz ngdzgt: vP
property, which thus gives a zero first-order diffracted field for 129 ; . ; . .
two joined wedges. Furthermore, it also makes the approach for 00 A0 miternaight hoqmy 0 %%

grazing incidence in [22] unnecessary, as the proposed gain fac-
tors in [22] are only applied to first-order dlﬁraCt_ed ﬂelds, I'e'Fig. 13. As in Fig. 6, except for the use of the new heuristic diffraction
we are back to the use of a factor of 1/2 for grazing incidenceoefficient in (17) for nonperfectly conducting surfaces and a factor of 1/2 for
Now, the really interesting results are revealed when (13fpzing incidence.
is used to calculate the diffracted fields for some examples
showing results based on Maliuzhinets’s solution withoud® + Ro(¢)D® + R,,(n7 — ¢')D™®. What happens in be-
surface wave effects [9], [16], [17]. In Figs. 9-12, the newween, on the other hand, is hidden in Maliuzhinets’s solution.
and the old heuristic coefficient can be compared with theseln Fig. 9, one can see that both the new and the old coeffi-
more rigorous solutions. The new coefficient gives resultsent start to give bad results when the anglkepproaches 90
surprisingly close to the ones based on Maliuzhinets’s solutidfpwever, if the geometrical optics field is added, this failure of
while the old one does not, at least not in the shadow regiotise heuristic coefficients might not show. In Fig. 12, the geomet-
see also [25]. Note: In Figs. 9-11, the solution given in [16]cal optics field dominates in the lit region. Consequently, here
and [17] has been used fain 6, ,, = /¢, which corresponds the new coefficient give good results within the whole range of
to one over the normalized surface impedance for horizontaigles, from 0 to 270.
polarization at normal incidence. Heeds the complex relative  For the diffraction example in Fig. 6, we obtained discontin-
permittivity, i.e.,e = ¢ — jo/weg. In Fig. 12, the solution uous results. If we perform the same calculation as in Fig. 6,
given in [9] has been used fein 6y ,, = 0.25 = 1/+/¢, which  but for the new heuristic coefficient in (17), we end up with the
corresponds to the normalized surface impedance for verticasult shown in Fig. 13. The discontinuities are gone, besides a

polarization at normal incidence. small one for vertical polarization. Furthermore, if we use (17)
It may be noted that none of Figs. 9-11 show a result for afor the diffraction geometry in Fig. 4 (or Fig. 5), the result will
gles below 99, i.e.,¢ = 7 /2, asthe argumentiR,,(nm—¢) = be exactly the same as in Fig. 13, including the small disconti-

R, (37 /2—¢) would then exceed the grazing anglevhich has nuity for vertical polarization. This is very important as it means
no meaning. Moreover, it is in the backscattering region, whighat (17) is able to provide a reciprocal result.

is not of interest in this paper. However, frabove(n—1/2)r, Turning back to the small discontinuity for vertical polariza-
it should be possible to obtain good results fobelow 7 /2 tion in Fig. 13, it cannot be removed by adding more higher
by using the diffraction coefficienRo(¢) R, (nm — ¢') DY) +  order terms. (For all doubly diffracted fields, we use terms up to
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Diffracted field over free space (dB)
|
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[}
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~ . . . ) ) _9 . . s . .
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Fig. 14. Total field for a spherical source in the presence of a wedge. Thig. 16. Diffracted field for a spherical source in the presence of two joined

frequency is 300 MHz, the relative permittiviey = 15, and the conductivity » = 3/2 wedges. The new heuristic coefficient in (17) is used together with a

o = 0.012 S/m. The total path distance is 2.7 km and the transmitter is 5 cfactor of 1/2 for grazing incidence. The old is used together with the approach for

above the first face. grazing incidence in [22]. The frequency is 300 MHz, the relative permittivity
e, = 15, and the conductivity = 0.012 S/m. Thexz- and they-grid in the
small figure are 10 m and 1 dB, respectively.

20
which means that the slope diffraction term will become more
important and the discontinuity of the coefficient in [3] might
become visible. This is what happens in Fig. 16, where the dis-
continuities of the new heuristic coefficient in (17) and the one
in [3] are about 1.5 and 1 dB, respectively. Thus, both the new
and the old coefficient fail to some extent when a rapid varying
reflection coefficient is involved.

The results in the nonperfectly conducting case in Fig. 13 are

T T

Total field over free space (dB)

Heuristic Luebbers, VP obtained using derivatives of the reflection coefficients. If we
e — — — Heuristic Luebbers, HP . . . . .
-80p.. Perfectly Conduct, VP ] use higher order terms without making use of the derivatives of
------- Perfectly Conduct., HP the reflection coefficients, these results will be worse. In fact,
-10 : : , - - they will be very similar to the ones in Fig. 14, i.e., continuous
00 300 400 500 600 700 800 o i
Receiver height hg (m) but with discontinuous slopes. Consequently, even though (17)

does not account for varying reflection coefficients in a proper
Fig. 15. As in Fig. 14, except for the use of the heuristic coefficient b)\’/\/a‘y’_It 1S nOt completely wrong. Mqreove_r' 'f_ the thlckness.of
Luebbers [3]. the ridge is increased, the small discontinuity for the vertical
polarization decreases and for a ridge thickness of 4 km, i.e.,
s2 = 4 km, it is almost gone. Furthermore, an increase in the

: . . . first distance of the height profile in Fig. 14 will also give a
we have a failure that is due to the heuristic approach in findi tter result, as can be seen in Fig. 17, where the results of the

(17). In Fig. 14, the f§|lure should be opwous. The r.esul_ts n trheew and old coefficients are shown for vertical polarization and
nonperfectly conducting case are continuous but with dlscont%—r the same grazing angle, i.e., the same apglas in Figs. 14

yous S'Op‘?s- For s_m_all graz?ng angles and vertical pola_rizati%n d 15. Here, the large distance to the wedge means that we
the reflection coefficient varies rapidly as the angle varies, and 1 approximate incident plane wave. Thus, rapid varying

In Fig. 14, a reflection with a rapid varying coefficient aPPeaTZ flaction coefficients cause errors. However, if the separation

at the.helgth " 500.22 m. Consequently, the expression "istances between the source, the wedge or the wedges, and the
(17) gives a continuous result but does not account for varyig, 4 point are large enough, the errors will be small

reflection coefficients in a proper way, which, in this case, re-

sults in a small slope discontinuity for vertical polarization in
Fig. 13. V. CONCLUSION

m = 2andthe termn = 2improves the result very little.) Here,

The above problem is also something that the expression byAn extension of the heuristic diffraction coefficient by Lueb-
Luebbersin [3] suffers from, as can be seenin Fig. 15. Of courders, which, at least, is valid for scattering in the forward di-
this is expected, as the coefficient in (17) is simply an exterection, has been proposed. When neglecting surface waves,
sion of the one in [3]. In Fig. 5, however, as the approach ftine new heuristic coefficient gives results in good agreement
grazing incidence in [22] gives a nonzero first-order field, it doesith what the more exact diffraction coefficient by Maliuzhinets
not show. On the other hand, for a larger transmitter height, \geres, even deep in the shadow region, where the previous co-
will end up closer to a region of overlapping transition regiongfficient fails. Even so, it is as simple as the previous one to
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20 where
ST Ly s15/(o1 + 52)
of 1 1 [ = (b1 — D1/ 204,

e Ly  s2s3/(s2 + s3);

o

z

5 1

z %Y [r = (¢2 = #h)]/2n0; and _

2 hr=8m F,,, transition function of order introduced in [18].

= _a0t . 500m

& f[--—"-"""°77° b . " .

3 L_ B l N\ For overlapping shadow transition regions, both the angles

f_: -60f 50km = 2.2 4 fyjfl) andfyél) will be close to zero, a case that we will take a

g Heuristic New, VP closer look at here. Furthermore, for overlapping shadow tran-

= -80r - ggr‘;;';‘l';égizggsﬁ : sition regions, the arguments of the above transition functions
....... Perfectly Conduct., HP will be small. Using [18], for a very small argumentn F,,(x),

1 . . . . ;
0 300 400 500 600 700 800 it can be shown that

Receiver height hg (m)

Fo() = (2jz)™/2 { Jazed™%t form=0,2,4, ...
m ~ T i
Fig. 17. Total field for a spherical source in the presence of a wedge. The mi! V2zed™% form =1, 3, 5,

frequency is 300 MHz, the relative permittiviey = 15, and the conductivity (23)
o = 0.012 S/m. The total path distance is 52.2 km and the transmitter is 5 m

above the first face. . . -
which gives the usable limit

m

compute. Moreover, it does not require any special care when,. .2
grazing incidence occurs, i.e., the usual factor of 1/2 can be use;}.gio Fn (a S ’7) dny™ cot

The new coefficient works very well for incident plane  m!(2ja)™/? +/rac™ form=0,2 4, ...
waves, which is not unexpected as the reflection coefficients — — ,n ° { —V2ae’™ % form=1,3,5, ...
used are for plane waves. For a wedge illuminated by a spher- (24)

ical source, however, problems might arise. Here, reflection

coefficients with rapid spatial variations can be involved, which Now, let us consider the case where the doubly diffracted ray
causes errors. This is also a problem of the old coefficieRtthe only one existing. In other words, let us consider the case
and is hard to do anything about. However, if the separatig\ﬂqen%l) S andfyél) — —0. Using (24), in the limits
distances between the source, the wedge or the wedges andYEh)eﬁ —0 andy$Y — —0, (21) and (22) result in

field point are large enough, the errors will be small.

lim angl)
APPENDIX Mg P
Considering the doubly diffracted ray in Fig. 2, provided that m!(jkLy)™? /I, 1 form = 0. 2. 4
we have forward scattering and are well outside the reflection = i 5 { —’\/2/7 form—1 35
transition regions, the field in (10) can approximately be written " ’ T ’('2'5')
as
Ege— ks s =1 -1\ and
Eurp & =2 \/ T Z — < . )
ST 518983 o m. ]kSQ y aranl)
1m
angl) angl) "/é1>—>—0 ad)IQm
’ SP™ a / m (20) . 2
o o ~ ml(jkL2)™? /Ly {1, form=0,24,...
- 1 ' = 5, ...
for overlapping shadow transition regions, where the derivatives e 2 2/m, form=1,35, (26)

8’"D§1) [ 0P andangl) /0¢5™ follow from [18] and read as
respectively, a$}/0¢; = (—1/2711)8/8751) andd/o¢L, =

omp® \ : .
3 — (1/2712)8/8751). These last two equations make it possible to
o1 - 5 write approximately the field in (20) in the compact form
—e I
= F, (2kLn? sin® 4V Y (21 . o
e L (2Land s oY) 2 ot oY @1 Bupp ~ 20 [als S5 aum! (L) "
v ST 818283 (m!)? s3
and m=0
@7)
om p§Y
P,™ where
—¢ Im/4 9 1/4 form=0,2, 4
— F,(2kL 2 .2 (1) " (1) 22 = s R . 28
oo m(ZkLany sin” vy D) g cot vy (22) a 1/(2x), form=1,3,5,... (28)
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which, finally, can be rewritten as [9]
—jksT
Eurp ~ Epe \/ ST [\/L1L2 + \/L1L2 [10]
ST 5189283 4 4
. i (2m — )N N 28y /7 (2m — 2)!! o [11]
— 2m)!l VILiLy (2m— D
(29)
[12]
where
L1L2 5153 [13]
xr = 3% = (31 + 32)(32 + 33) . (30)
[14]

The approximate field in (29) is thus only valid when the
source and the field point are immediately below the straightis)
line formed by the two wedges. In addition, in order for the
approximation to be accurate, we have to be well outside thﬁG]
reflection transition regions.

As far as the convergence is concerned, the series in (29) will
always converge. The factot&@m — 1)!'/(2m)!! and (2m —
D!/ (2m—1)!! are less than or equal to one, so the convergence
of the series can be assured by comparing it with a geometriég]
series with quotient. Thus, since: will always be smaller than
one (except fos; = 0), the series will always converge and the [19]
convergence will be fast i§; > sq, s3. If s2 < s1, s3, on the
other hand, the convergence will be very slow:asill be close
to one. In addition, it may be noted that the convergence doggi]
not depend on the wavelength; it is the mutual relations between
s1, s2, andsz that determine the convergence.

(20]
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