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A Method of Moments Solution for
Electromagnetic Scattering by Inhomogeneous
Dielectric Bodies of Revolution

Andrzej A. Kucharski

Abstract—A method of calculating the electromagnetic scat- heterogeneous [13]-[16] bodies. In three-dimensional (3-D)
tering from and internal field distribution of inhomogeneous models the number of unknowns in matrix equation is usually
dielectric bodies of revolution (BOR) is presented. The method ey |arge. Therefore, researchers often make use of certain
uses typical mode-by-mode solution scheme. The electric flux - ] . .
density is chosen as the unknown quantity, which, together with symmetries present in some classes of objects in ord_er to
the special construction of basis and testing functions, enables reduce the total number of unknowns. Among those techniques
considerable reduction of the number of unknowns. A key element the case of bodies of revolution (BOR) plays an important role
in this technique is expressing of the azimuthal field components [4]—[8], [10]-[12].
of basis functions in terms of transverse components. A Galerkin Among methods developed for BORs, some concern homo-
testing procedure is used, with special attention put on the effi- . .
ciency of calculating scalar potential term. Results of calculation 9€N€OUS bodies [4]-[8], other |nh0mogene0us_ ones [10]_[1_2]'
for a few classes of dielectric bodies are given and compared with however, most of methods use surface currents in order to satisfy
calculations done by other authors. boundary conditions. This leads to serious computational prob-

Index Terms—DPielectric bodies, integral equations, method of lems, when the gr?at number of very .Sma” homogeneous parts
moments (MoM). has to be treated in the model. This is particularly true, when
one wants to model objects with continuously varying dielec-
tric constant. Up until now, mainly hybrid methods mentioned
before are well suited for solving such problems, which usually

HE problem of scattering of electromagnetic waves by déeriously complicates the solution scheme.

electric bodies has been extensively studied by many au-Recently, the works of Viola [23], [24] have given a theoret-
thors because of its importance in areas such as propagaii background for efficient modeling of highly heterogeneous
through rain or snow, medical diagnostics, power absorptionBORs using the MoM techniques. Electric field integral equa-
biological bodies, performance of antennas in the presencetiohs (EFIEs) presented have the feature that differential oper-
dielectric innomogenity. Especially important is the problem gftors do not act on field components, which enables applying
the rigorous solution of Maxwell equations in the situation whegimple expansion scheme (pulse-basis functions). However, it
the size of dielectric body is comparable to the wavelengtis. done with the assumption that the dielectric constaris a
In this intermediate size region (resonance region) asymptotiell-behaved (continuously differentiable) function of position.
methods developed for large or very small bodies cannot Wefact, it means that incorporating for example step discontinu-
used. ities in permittivity profiles requires taking into account addi-

The era of using computer techniques to solve dielectric itional surface integrals [25].
teraction problems began with the early works of Richmond [1]. In this paper, another attitude is presented having similar to
Then a great number of methods have been developed for s¥é@!a’s solution efficiency factors (reducing the number of un-
tering problems [2]-[22]. A special attention is usually paid intsnowns). The main features of this solution can be summarized
those of these methods which use a method of moments (Mo#4) follows:
as the solution scheme [4]-[16]. More recently, a number of 1) differentiation operators acting on fields are left in equa-
hybrid methods [17]-[22] have been proposed, which use the tions;
method of moments to properly model radiation condition at 2) piecewise constant permittivity profile is assumed,;
the boundary of dielectric region and another technique like fi- 3) basis functions with linear capabilities are used in expan-
nite-element method to model fields inside the region. sion scheme; this allows to avoid convergence problems

In MoM methods, some have been developed for ho-  mentioned in [26];
mogeneous [4]-[9], partially homogeneous [10]-[12] or 4) basis functions for nonzeroth modes are divergenceless,

which is achieved by applying Gauss’ law and calculating
Manuscript received October 16, 1997; revised May 4, 2000. This work was azimuthal field components from transverse ones [23];
supported in part by the State Committee for Scientific Research of Poland under5) zeroth mode equations for azimuthal and transverse com-
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7) Galerkin testing is used, which allows to integrate byhich accounts for discontinuities in the normal component of
parts and efficiently calculate matrix components ref at media interfaces.
sulting from scalar potential term [15].

In the solution scheme, we generally follow the proceduf® Expansion of VIE Into Modes

given in [15] for arbitrary 3-D bodies. Up to this point we have made no use of the fact the body
of interest has a rotational symmetry. Taking advantage of this
Il. PROBLEM FORMULATION feature, we can expand all currents, fields, and scalar Green’s

A. Volume Integral Equation functions in Fourier series i@ [8]. Thus, we have

Let us assume, that a lossy, inhomogeneous, dielectric body

with the volumeV and complex dielectric consta#ét(r) = E'= Y E,(p2)d™ (12)
e(r) — jo (r) /w, wheres ando are the medium permittivity m=—oc0
and conductivity at position, is illuminated by an incident field 0 i
E’, defined as the field in the absence of the bodly. J= > dnlp )™ 13)
In the presence of the body, the total electric field consists of m=-00
“incident” and “scattered” field D= > Dun(p,2)e™m® (14)
E(r)=E' (r)+ E" (r) (1) =2

the scattered field being excited by the polarization curdent

J(r) = jw[e(r) — e E(r). @ Gz 2 o—¢)
—jkoR 1 oo i ,
E* is related to the polarization currefithrough the following =2 7" o > Gulp, 2 o, 2)™O) (15)
formulas: m=—00
E (r)=—jwA(@r) — Vo (r) 3)
_ Mo ’ ’ ' 2w .
A(r) —E/VJ ()G lr, 1) do @ Gp 2, ) = / Gp. 2 0, #, @)e=T™da. (16)
0
B (r) = — / o) G (r, ) v/ (5)
dreg Sy Expansion (15) follows from the fact th&t = |r—+| is periodic

where in the variable(¢ — ¢').
Substituting the expansions into formulas (1)—(10) and in-

,jk0|'r,'r’| . . . .
G(r, ) = e | : ©6) voking the ortogonality of azimuthal harmonics, we get
r—rT
Enl (p’ Z) :E:n (p’ ") (pa 7) (17)
kO = wm = 27T/)\0. (7) J;n (p7 ) IJCU[ (p7 “) ]Ern (p7 7) (18)
Ern (p7 ) = _JWArn (pv ) vrnq)rn ( Z) (19)

The charge density(r) is related to the polarization current in

(2) by the continuity equation where
V- J(r) = —jwq(r). (8) A, = 2‘; Tond g dt (20)
Equation (1) is, in fact, the integro-differential equation for the
polarization currend. However, following [15], it is convenient
to take as the unknown quantity the electric flux density rpm P o
o P
D =¢E 9 Tn=|TZ T2 T7%
. . .. e r~ I
which has a continuous normal component at media interfaces T ep TeE T
and is divergenceless. This second feature will be extensively Gm-1+Gmy1 0 M
used in the construction of basis and testing functions. 2 2j
We can now expres$ in terms of D = 0 Gm 0 . (21)
. Grn—l—l - Grn—l Grn—l + Grn—l—l
J(r) = jwr (r) D (r) (10) Y S S

where we define theontrast ratio[15] In the above formulas vector components are taken in the

(p, 2, ¢) order. The integration in (20) is on the transverse

_é(r)—eo
Rr)= —2— (1) surface of the BOR (see Fig. 1).

e(r)
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Fig. 1. Body of revolution and coordinate system.

The scalar potential is defined as

1

(Prn =
dreq

/ A G p’ dt’ (22)
T

where the electric charge density is related to the current,,
through

(b)
1 1 [18(JF aJz j
Gm=——Vm  J=—— { (5 4+ Jm J;’f) . Fig. 2. Discretization of the transverse plane of the body. (a) Rectangular basis
Jw Jw L Op Oz P ) functions. (b) Rectangular and triangular basis functions.

(23)

In (23) we introduce the harmonic divergence. Additionally, wi 1S €asy to find, that for all modes except= 0 we can derive
define the harmonic gradient operator the ¢ component off,, taking
aq)rn n 77’71 P 10 (p 7/771) 9 rzn

S L
T, (24) i P rak

(28)

It means that in the process of solution of (17) we can deal
only with “transverse” components. It is the desired feature
As mentioned before, the electric flux density has beesf number of unknowns reduction. The zeroth mode has to
chosen as the unknown quantity in the moment method sobe treated separately and the solution for this case will be
tion. Thus, we have discussed later on.
N We can note that in the divergence relation (27)ttdrected
_ ‘ field component is multiplied by, while thez-directed compo-
D(r)= ; Difi(r) (25) nent appears alone, i.e., without fheultiplier. Thus, as will be
seen in the subsequent paragraph, it is useful to use different ex-
or, for themth mode pansions for both components Bf When the “rooftop” func-
N tion [8] are used to represent the transverse fields, it is then ap-
Dy (p, 2) = Zsz‘fm (p, 2) (26) prppnate to e_xpanple using “ra_d|al” ro_oftop functlons, while
= it is appropriate to expand. directly in z-directed rooftop
functions. The consequence of this is the fact that a constant

whereXV is the total number of basis functions. variation inp is assured for both field components in the imme-
The main purpose in the process of basis functions devel@fate neighborhood of the-axis.

ment is to impose on the basis set the condition & diver-
genceless. Satisfying this condition allows to reduce the tofal Basis Functions on Rectangular Domains
number of unknowns.
Thus, we have
10(pft) | 0fn

an'fnl:_—+ +mfr?l:0 (27)
p dp dz Il

C. Basis Functions Development

Assuming that the transverse surface of the BOR is divided
into small rectangles [see Fig. 2(a)] with piecewise constant di-
electric parameters, we define two sets of basis functions (see
Fig. 3 for notations) as follows:
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z Thus, (26) now takes the form
2 N
VAl N
|—> 1 —] ZDnngnn p? ~ + z;Dnmhan (p7 ) (31)
7! = | = Z
_____ Coar oA whereV, and NV, are the numbers of functions defined by (29)
| i | and (30), respectively. Of coursd,, + N, = N.

»p The corresponding currents associated with basis functions
can be calculated from (10). The total modal current at given
point can be expressed as

b
A

0

e

_szDnm grnz (p’ “)

S i o
oy +ijD:;lm (P, 2) i (p, 2) . (32)
LS - i=1
. b’ By substituting (8) with (32) the charge density is found to be
I Tt represented by
pil pi2 > P qnl 12 “ Z Dnn P, “ rn "G (p7 Z)
(®)

N,
- Z Dfnigrni (p7 Z) ) V"l’i (p7 Z)
Fig. 3. Rectangle pairs and geometrical parameters associated with i=
rectangular basis functions. (a) Type(b) Typez.

N.
- Z ‘DrznikE (p7 Z) Vrn M hrni (p, Z)
=1

1) typep functions defined as N
- Z D7 ibemi (p5 2) + Vit (p, 2) . (33)

mi (p7 Z) =
1 (p p;") ;1 + 1,2 , : . .
P T —¢—5, PE (pi ) pz‘) » % € (757‘,7 77) The first and third summations in (33) represent volume charge
p a, Jjma; . . . . .

v v densities, which, in the case of divergenceless functions, (29)
L1 (pf,_ - p) +¢; 1 c ( ‘ ‘_) 2 e (71 72) and (30) are simply equal to zero. The second and fourth sum-
p P a; jma;’ PENPL P 2SN\ % mations, assuming piecewise constant profile of the contrast
0 otherwise ratio x, represent surface charge densities associated with basis

(29) functions

1
' “D(KET —RTY L (p,2) €l
2) typez functions defined as ¢ (p2)=14 p rnz( i i ) (p, 2) (34)
0, otherwise
hrni (p7 ) - D- ( t zf) ( ) c I
(7 — zf") AP z _ { mi g — Ry ), (P % i
2 i 1 2 + Tsmi \P> #) = . (35)
< bF - ¢me+a pE (pia pi) S (Zi s Zvi) ( ) 0, otherwise
z=2) . p L _ wherel; in (34) and (35) is associated wifhtype andz-type
S + d)jmb;’ pe (i pi). € (7 7)) basis functions, respectively.
0, otherwise From above equations it is easy to find that calculations of the

(30) scalar potential do not require calculating the surface integrals,
because the integral in (22) now becomes a contour integral.

If the internal edge of the basis function is on the body contour,
the basis function is defined only on rectangle intericf'tdNo
basis functions are associated with the edges lying on éxés. For triangular domains, basis functions similar to
It can be easily checked using (27) that functions (29) alRho-Wilton—Glisson (RWG) functions [27] can be easily
(30) are divergenceless. It should be remembered that “modafpiplied. Again we define basis functions associated with
basis functions should be understood in global expansitre edges rather than with triangles, which span over two
scheme as multiplied byxp(jm¢) factor. triangles (like classical rooftop functions over two rectangles).

. Basis Functions on Triangular Domains
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procedure has been applied, together with the scalar product de-
fined as

(.9 = | 15" dv @7)

For the moden we get

2w
Gog) = [ [ Fulo )™ g3 (o )™ pdp
rJ0

Fig. 4. Triangle pair and geometrical parameters associated with triangular (38)
basis function. . . . . .

which after performing the integration results in
ExpandingpD?,, (p, z) into RWG functions and calculating (Frn> Gm) = 27r/ £, (p, 2)-g% (p, 2)pdt  (39)
D¢, from (28), we get the basis function definition T

whereT’ is the “transverse” area of the body shown in Fig. 1.

tfl Li o1 & (p, 2) € T+ Equation (17) tested with the functidfi, ;, eitherp or = type,
" p 24F gm AF7 T g takes the form
frni (pv Z) = 21 ZZ ;1 ZZ — Drn . %
ti ; QA; * d) l_m A_;7 (p7 Z) © Tz <?’fnlj >+jw <Am7fmj>+<Vm(I)m’fmj>:<Em’fmj>
0, otherwise (40)
(36)

which, taking into account expansion (31), represents the de-
sired matrix equation with the vector of unknown coefficients
r{eDfni}, p = p, z. The integrations that must be performed to
- ) calculate elements of the moment matrix are onfreurface,
Formulas similar 'FO (32)_.(35) for representing currents aré‘ilcept for the scalar potential term. The surface integrations are
charges can be easily obtained. performed numerically, assuming that each triangle function in

It should be r_10ted.that functions (_36) are not at_)le to_r(_aprezg) and (30) is approximated with pulse functions [29]. This
sent correctly fields in subdomains in the immediate vicinity, o its in four points per rectangle integration scheme.
of z-axis. It is first because of piecewise constant character ofIt is well known [28], [29] that the modal Green’s function

the RWG function in the direction perpendicular to current flowy a5 an integrable singularity. Thus, while calculating “self
which results, after multiplying byt /p, with incorrect repre- terms” in (40), the integrations in the immediate vicinity of sin-

sentation ofD. component near the-axis. Second, becauseqmar points must be performed analytically.

of similar reasons, no basis function can be defined on triang €50me attention should be given to the scalar potential term
edges lying on the-axis. Taking into account that in order t0jy (49 The direct form of this term has an undesirable feature

represent field in any direction all three basis functions assoﬁ‘racting with gradient operation ab,,,. This, however, can be
ated with each triangle must be used, we find that fields in th@ .1 o1aq by the use of formula [15’]' ' '

vicinity of z-axis cannot be correctly represented by functions
defined in (36). On the other hand, omittingy term in the Vo, f) :/ Of - hdS _/
definition results in much complication of divergence formulas ’ s

}/:/;l(c::t?oc;]bswously cancels one of main advantages of using RWV(\;?']ich, considering that the weighting functions are divergence-

L : . ' less, after putting into “modal” form gives
One solution is to combine functions defined on rectangles for P 9 g

representation of fields near theaxis with functions defined on
triangles for the rest of the body. This would, however, require
defining additional “mixed” basis functions for edges separating .
rectangles and triangles [see Fig. 2(b)]. whereL is the contour off”.

In the examples in the next section only simple “rooftop” In (41) and (42)7 is the unit vector normal to the surfade

basis functions defined on rectangles have been applied, becdlls pntourL, respectively.

authors main interest was to show the idea of basis function de- "US: Only testing functions associated with the contour of

velopment rather than to look for the most optimal represemtg-e body give the nonzero contrlbut_lon into moment matrix ele-
tions of bodies curvatures. ments. This fact has reduced considerably amount of computa-

tions associated with the scalar potential term.
Again, care must be taken while calculating “self-term”
elements of the matrix because of Green’s function singularity,
In order to get unknown coefficients of the electric flux denwhich requires some analytical integration. It is worth pointing
sity expansion equation (17) must be tested to reduce it to it that the singularity problem in this case can be avoided by
set of simultaneous linear equations. In this work, the Galerksurrounding the body with the layer of “empty” basis functions

where thet" vectors responsible for the transverse fields a
defined in Fig. 4.

OV - frdv  (41)
v

(Voo o) =20 [ @020 Jiu (02 0l @2)

F. Testing Procedure
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(which means subdomains with dielectric permitivity equal 0.5 T T T
to that of surrounding space). In this case, there is no surface 8 S g..--’.f....!f
charge density on th& surface, which results in the fact that 047 © g 870
all “self-term” elements are explicitly equal to zero. Both cases g P4
has been tried in practice giving coinciding results. 03 g g iy 4
[E/EY| 8 g 3—> °
G. Zeroth Mode 02 g8 Y, .
The technique of basis function construction presented above ok Mie Series (Schaubert tal) o a
cannot be used in the caseraf = 0. In this case, however, it 00X Present Solution .Ei T/'“ X E!
can be noted that . | | |
1) there is no charge associated with the azimuthal field - 03 0 03 1
component; p/a, p=x.y.2

2) modal gradient operator has no azimuthal cgmponent;F_ 5 Fieldal < of incid side dielectric Soheses 36. kea —
3) G_l _ Gl, so thepd) and ¢p Components OF matrix Olgog leld along axis of Incidence inside dielectric spheres= , koa =
(21) are zero.
Thus, for zeroth mode, (17) decouples into two independent )
equations concerning transverse and azimuthal field comgd- Dielectric Sphere

nents. These equations can then be solved separately. A simple sphere model, with discretization similar to that of
Solving the equation for transverse field components, the gtig. 2(a), has been used to calculate the electric field inside a
thor has used the same transverse field representation as indigfectric sphere. In the model eight squares per the sphere ra-
previous subsection. However, one must remember, that bafiss have been used, which corresponds to 216 unknowns. First,
functions constructed in this manner are no longer divergencgial incidence of the incident field has been assumed, which re-
less. It means that we must take into account volume Charggéires performing computations only for thel and+1 modes.
which appear in (33) while computing the scalar potential. Netje|d calculations for low frequencies have shown that the elec-
also the second integral in (41) has to be considered when Gt field is within 5% of 3/(e, + 2) times the incident field,
culating the scalar potential contribution to impedance matrihich is the theoretical value.
elements. The mentioned steps cause in fact enforcing the zergt higher frequencies, the typical standing wave behavior has
divergence condition numerically. been observed. In Fig. 5 the comparison of results with analyt-
The equation for the azimuthal mode has very simple formga| solution [15] is presented for the sphere Wit = 0.408.
because it does not have the scalar potential term. In presghfe can see that the agreement is good. In order to verify pro-
work, it has been solved numerically using pulse basis functiogsdures for the zeroth mode and more sophisticated modal ex-
and the Galerkin testing scheme. pansions, the same calculations for different angles of incidence
Note that because of the equations decoupling, we never hgyg| polarizations has been performed. The small picture in the
to solve system of linear equation with more unknowns than #rner of Fig. 5 relates symbols used in the plot to the different
the case of nonzero modes. It means that the main advantaggcgfitering situations. The simplest case with the incidence along
the method is, in this case, preserved. z-axis is denoted with the diamond symbols. Again, very good
agreement has been obtained which validates all procedures de-
scribed in the previous section. The reader can notice that calcu-
lated solutions slightly differ from each other and from analyt-
In order to check the method described in the previous sécal solution near the ends of the plot. Itis caused by rather crude
tion, it has been applied to some problems for which solutioregpproximation of the sphere surface within applied model.
either analytical or numerical, obtained by other authors areField distributions for the layered sphere are presented in
available. Most of those solutions concern homogeneous or paig. 6. The calculations have been done for two grids. The so-
tially homogeneous bodies. In all calculations basis functiohgions 1 and 2 denote 8 and 16 squares per outer radius of
defined on rectangular domains have been used. the sphere, respectively. The solution 1 gives some error in the
As a first example, homogeneous dielectric sphere has beginity of the boundary of materials. It is because of nonprecise
considered. Next, a layered sphere has been modeled andnfadel of the inner sphere. Solution 2 gives a very good field
nally, the radar cross sections of bodies with simple shapes havediction. It proves improvement of accuracy when the inves-
been calculated and compared to results of methods develofigdted body is modeled using smaller volume elements. Note,
by other authors. that the jump inE,, component calculated alongaxis is per-
In all examples, the incident field has been assumed to feetly predicted. It is because correct behavior at media inter-
a plane wave. This requires applying formulas for plane wat&ces is built-in into the basis functions in the way similar to
expansion into modes. Similarly, when calculating radar crogkb]. It is also worth mentioning that even in the case of the so-
sections, the far field from individual modes has to be computddtion 1 the resolution of the model is about twice that of the
Formulas for these expansions can be easily obtained from thteteahedron (full 3-D) model [15]. However, thanks to the rota-
presented for example in [28] or [29] and will be not repeatdinal symmetry the number of unknowns is only 216 in com-
here. parison to 1088 in the tetrahedron model. In solution 2, with the

I1l. NUMERICAL RESULTS
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ExEi o6 |- L e

..... Mie Series [15]

04 - o Present Solution 1
x  Present Solution 2
0.2 | -+ Tetrahedrons [15]
0 | | |
-1 —0.5 (] 0.5 1
z/a
(@
1.2 T 1.2 T
1 |= - 1 |- -
n
X\\o
0.8 ~ : x\*\ - 0.8
o O I
. Kosg | 0 .
[EJE|06 f= %y & Xe - [EEles
I e ey
X
0.4 |~ 0.4
02 |- — 0.2
0 i 0 4 |
0 0.5 1 0 0.5 1
X/a X/a
(b) ©

Fig. 6. Fields inside inhomogeneous spherg: = 36, koa; = 0.3738, ¢, = 9, koas = 0.8168. (a) Relative magnitude df,, alongz axis. (b) Relative
magnitude ofE, alongz axis. (c) Relative magnitude d&. alongx axis.

resolution doubled in comparison to the solution 1, we have 8- 0.016
unknowns, which is still less than in the 3-D case.

T T T

; & =254

0.012 - f =9500 MHz
B. Scattering Calculations LW &

Both because of difficulties to measure field inside dielectrii o2 g 08
bodies and because of practical importance, the main parame
calculated and published in the literature is the radar cross s¢

Present solution
--------- Schaubert et al.

tion. In this work, the radar cross section of a thin dielectric roi I - Richmond (Integral Eqn.) |

has been computed and compared to the results of Richmc o Wang & Papanicolopulos

[30], Wang and Papanicolopulos [31] and Shauleédl. [15]. 0 L L 1

The BOR model consists of a single column of rectangular cel ! 15 2 23 3 em
(in the transverse plane). The results are presented in Fig. ., Length

where the agreement again is found to be excellent. Fig. 7. Radar cross section of a thin dielectric red: = 0.16 cm =

Next, the bistatic radar cross section of a dielectric cylindemnsx,, ¢, = 2.54.
has been calculated and compared to data given by Mautz and
Harrington [7]. The comparison is done in Fig. 8. analytical and numerical results given by Barbegal.[32]. In all
Finally, some calculations of resonant frequencies of dielecases, resonant frequencies predicted with the present method
tric spheres and cylinders have been performed and comparedéve within 0.5% from those of Barbet al.
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—  Present Solution
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(14]
Fig. 8. Plane wave scattering patterns for dielectric cylinder of radiasd
height2a. a = 0.25)\g, &, = 4. (a) ¢¢ polarization. (byé polarization.

IV. SUMMARY [15]

An efficient method of calculating the electromagnetic fields
scattered from and penetrating into inhomogeneous dielectrias]
bodies of revolution has been presented. The method uses spe-
cial, divergenceless basis functions defined on rectangular or
triangular domains in which the azimuthal component is calcu-
lated from transverse ones by the use of Gauss’ law. This allow]
one to considerably reduce the total number of unknowns used
in the solution procedure. Following [15] the basis functions au-
tomatically incorporate the boundary conditions of the normal8l
component of electric flux density.

The testing procedure used for the method of moments solyz9]
tion is a Galerkin scheme with the typical for bodies-of-revolu-
tion procedure of decoupling of the solving process into mode§20

Numerical results show that the method gives excellent re-
sults both while predicting internal fields distributions and scat-
tered fields. [21]

Finally, it is important that the solution remains within the
convenient mixed potential EFIE scheme. Therefore, it is ex-
pected that the generalization to the case of multilayered medl&?
should not present much theoretical difficulties [33], [34].

[23]
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