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A Method of Moments Solution for
Electromagnetic Scattering by Inhomogeneous

Dielectric Bodies of Revolution
Andrzej A. Kucharski

Abstract—A method of calculating the electromagnetic scat-
tering from and internal field distribution of inhomogeneous
dielectric bodies of revolution (BOR) is presented. The method
uses typical mode-by-mode solution scheme. The electric flux
density is chosen as the unknown quantity, which, together with
the special construction of basis and testing functions, enables
considerable reduction of the number of unknowns. A key element
in this technique is expressing of the azimuthal field components
of basis functions in terms of transverse components. A Galerkin
testing procedure is used, with special attention put on the effi-
ciency of calculating scalar potential term. Results of calculation
for a few classes of dielectric bodies are given and compared with
calculations done by other authors.

Index Terms—Dielectric bodies, integral equations, method of
moments (MoM).

I. INTRODUCTION

T HE problem of scattering of electromagnetic waves by di-
electric bodies has been extensively studied by many au-

thors because of its importance in areas such as propagation
through rain or snow, medical diagnostics, power absorption in
biological bodies, performance of antennas in the presence of
dielectric inhomogenity. Especially important is the problem of
the rigorous solution of Maxwell equations in the situation when
the size of dielectric body is comparable to the wavelength.
In this intermediate size region (resonance region) asymptotic
methods developed for large or very small bodies cannot be
used.

The era of using computer techniques to solve dielectric in-
teraction problems began with the early works of Richmond [1].
Then a great number of methods have been developed for scat-
tering problems [2]–[22]. A special attention is usually paid into
those of these methods which use a method of moments (MoM)
as the solution scheme [4]–[16]. More recently, a number of
hybrid methods [17]–[22] have been proposed, which use the
method of moments to properly model radiation condition at
the boundary of dielectric region and another technique like fi-
nite-element method to model fields inside the region.

In MoM methods, some have been developed for ho-
mogeneous [4]–[9], partially homogeneous [10]–[12] or
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heterogeneous [13]–[16] bodies. In three-dimensional (3-D)
models the number of unknowns in matrix equation is usually
very large. Therefore, researchers often make use of certain
symmetries present in some classes of objects in order to
reduce the total number of unknowns. Among those techniques
the case of bodies of revolution (BOR) plays an important role
[4]–[8], [10]–[12].

Among methods developed for BORs, some concern homo-
geneous bodies [4]–[8], other inhomogeneous ones [10]–[12],
however, most of methods use surface currents in order to satisfy
boundary conditions. This leads to serious computational prob-
lems, when the great number of very small homogeneous parts
has to be treated in the model. This is particularly true, when
one wants to model objects with continuously varying dielec-
tric constant. Up until now, mainly hybrid methods mentioned
before are well suited for solving such problems, which usually
seriously complicates the solution scheme.

Recently, the works of Viola [23], [24] have given a theoret-
ical background for efficient modeling of highly heterogeneous
BORs using the MoM techniques. Electric field integral equa-
tions (EFIEs) presented have the feature that differential oper-
ators do not act on field components, which enables applying
simple expansion scheme (pulse-basis functions). However, it
is done with the assumption that the dielectric constantis a
well-behaved (continuously differentiable) function of position.
In fact, it means that incorporating for example step discontinu-
ities in permittivity profiles requires taking into account addi-
tional surface integrals [25].

In this paper, another attitude is presented having similar to
Viola’s solution efficiency factors (reducing the number of un-
knowns). The main features of this solution can be summarized
as follows:

1) differentiation operators acting on fields are left in equa-
tions;

2) piecewise constant permittivity profile is assumed;
3) basis functions with linear capabilities are used in expan-

sion scheme; this allows to avoid convergence problems
mentioned in [26];

4) basis functions for nonzeroth modes are divergenceless,
which is achieved by applying Gauss’ law and calculating
azimuthal field components from transverse ones [23];

5) zeroth mode equations for azimuthal and transverse com-
ponents are decoupled and solved separately;

6) solution procedure remains within convenient mixed po-
tential integral equation (MPIE) scheme;
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7) Galerkin testing is used, which allows to integrate by
parts and efficiently calculate matrix components re-
sulting from scalar potential term [15].

In the solution scheme, we generally follow the procedure
given in [15] for arbitrary 3-D bodies.

II. PROBLEM FORMULATION

A. Volume Integral Equation

Let us assume, that a lossy, inhomogeneous, dielectric body
with the volume and complex dielectric constant

, where and are the medium permittivity
and conductivity at position, is illuminated by an incident field

, defined as the field in the absence of the body.
In the presence of the body, the total electric field consists of

“incident” and “scattered” field

(1)

the scattered field being excited by the polarization current

(2)

is related to the polarization currentthrough the following
formulas:

(3)

(4)

(5)

where

(6)

(7)

The charge density is related to the polarization current in
(2) by the continuity equation

(8)

Equation (1) is, in fact, the integro-differential equation for the
polarization current . However, following [15], it is convenient
to take as the unknown quantity the electric flux density

(9)

which has a continuous normal component at media interfaces
and is divergenceless. This second feature will be extensively
used in the construction of basis and testing functions.

We can now express in terms of

(10)

where we define thecontrast ratio[15]

(11)

which accounts for discontinuities in the normal component of
at media interfaces.

B. Expansion of VIE Into Modes

Up to this point we have made no use of the fact the body
of interest has a rotational symmetry. Taking advantage of this
feature, we can expand all currents, fields, and scalar Green’s
functions in Fourier series in [8]. Thus, we have

(12)

(13)

(14)

(15)

(16)

Expansion (15) follows from the fact that is periodic
in the variable .

Substituting the expansions into formulas (1)–(10) and in-
voking the ortogonality of azimuthal harmonics, we get

(17)

(18)

(19)

where

(20)

(21)

In the above formulas vector components are taken in the
order. The integration in (20) is on the transverse

surface of the BOR (see Fig. 1).
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Fig. 1. Body of revolution and coordinate system.

The scalar potential is defined as

(22)

where the electric charge density is related to the current
through

(23)

In (23) we introduce the harmonic divergence. Additionally, we
define the harmonic gradient operator

(24)

C. Basis Functions Development

As mentioned before, the electric flux density has been
chosen as the unknown quantity in the moment method solu-
tion. Thus, we have

(25)

or, for the th mode

(26)

where is the total number of basis functions.
The main purpose in the process of basis functions develop-

ment is to impose on the basis set the condition thatis diver-
genceless. Satisfying this condition allows to reduce the total
number of unknowns.

Thus, we have

(27)

(a)

(b)

Fig. 2. Discretization of the transverse plane of the body. (a) Rectangular basis
functions. (b) Rectangular and triangular basis functions.

It is easy to find, that for all modes except we can derive
the component of taking

(28)

It means that in the process of solution of (17) we can deal
only with “transverse” components. It is the desired feature
of number of unknowns reduction. The zeroth mode has to
be treated separately and the solution for this case will be
discussed later on.

We can note that in the divergence relation (27) the-directed
field component is multiplied by, while the -directed compo-
nent appears alone, i.e., without themultiplier. Thus, as will be
seen in the subsequent paragraph, it is useful to use different ex-
pansions for both components of. When the “rooftop” func-
tion [8] are used to represent the transverse fields, it is then ap-
propriate to expand using “radial” rooftop functions, while
it is appropriate to expand directly in -directed rooftop
functions. The consequence of this is the fact that a constant
variation in is assured for both field components in the imme-
diate neighborhood of the-axis.

D. Basis Functions on Rectangular Domains

Assuming that the transverse surface of the BOR is divided
into small rectangles [see Fig. 2(a)] with piecewise constant di-
electric parameters, we define two sets of basis functions (see
Fig. 3 for notations) as follows:
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Fig. 3. Rectangle pairs and geometrical parameters associated with
rectangular basis functions. (a) Type�. (b) Typez.

1) type functions defined as

otherwise
(29)

2) type functions defined as

otherwise
(30)

If the internal edge of the basis function is on the body contour,
the basis function is defined only on rectangle interior to. No
basis functions are associated with the edges lying on theaxis.

It can be easily checked using (27) that functions (29) and
(30) are divergenceless. It should be remembered that “modal”
basis functions should be understood in global expansion
scheme as multiplied by factor.

Thus, (26) now takes the form

(31)

where and are the numbers of functions defined by (29)
and (30), respectively. Of course, .

The corresponding currents associated with basis functions
can be calculated from (10). The total modal current at given
point can be expressed as

(32)

By substituting (8) with (32) the charge density is found to be
represented by

(33)

The first and third summations in (33) represent volume charge
densities, which, in the case of divergenceless functions, (29)
and (30) are simply equal to zero. The second and fourth sum-
mations, assuming piecewise constant profile of the contrast
ratio , represent surface charge densities associated with basis
functions

otherwise
(34)

otherwise
(35)

where in (34) and (35) is associated with-type and -type
basis functions, respectively.

From above equations it is easy to find that calculations of the
scalar potential do not require calculating the surface integrals,
because the integral in (22) now becomes a contour integral.

E. Basis Functions on Triangular Domains

For triangular domains, basis functions similar to
Rao–Wilton–Glisson (RWG) functions [27] can be easily
applied. Again we define basis functions associated with
the edges rather than with triangles, which span over two
triangles (like classical rooftop functions over two rectangles).
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Fig. 4. Triangle pair and geometrical parameters associated with triangular
basis function.

Expanding into RWG functions and calculating
from (28), we get the basis function definition

otherwise
(36)

where the vectors responsible for the transverse fields are
defined in Fig. 4.

Formulas similar to (32)–(35) for representing currents and
charges can be easily obtained.

It should be noted that functions (36) are not able to repre-
sent correctly fields in subdomains in the immediate vicinity
of -axis. It is first because of piecewise constant character of
the RWG function in the direction perpendicular to current flow
which results, after multiplying by , with incorrect repre-
sentation of component near the-axis. Second, because
of similar reasons, no basis function can be defined on triangle
edges lying on the-axis. Taking into account that in order to
represent field in any direction all three basis functions associ-
ated with each triangle must be used, we find that fields in the
vicinity of -axis cannot be correctly represented by functions
defined in (36). On the other hand, omitting term in the
definition results in much complication of divergence formulas
which obviously cancels one of main advantages of using RWG
functions.

One solution is to combine functions defined on rectangles for
representation of fields near the-axis with functions defined on
triangles for the rest of the body. This would, however, require
defining additional “mixed” basis functions for edges separating
rectangles and triangles [see Fig. 2(b)].

In the examples in the next section only simple “rooftop”
basis functions defined on rectangles have been applied, because
authors main interest was to show the idea of basis function de-
velopment rather than to look for the most optimal representa-
tions of bodies curvatures.

F. Testing Procedure

In order to get unknown coefficients of the electric flux den-
sity expansion equation (17) must be tested to reduce it to the
set of simultaneous linear equations. In this work, the Galerkin

procedure has been applied, together with the scalar product de-
fined as

(37)

For the mode we get

(38)

which after performing the integration results in

(39)

where is the “transverse” area of the body shown in Fig. 1.
Equation (17) tested with the function , either or type,

takes the form

(40)

which, taking into account expansion (31), represents the de-
sired matrix equation with the vector of unknown coefficients

, . The integrations that must be performed to
calculate elements of the moment matrix are on thesurface,
except for the scalar potential term. The surface integrations are
performed numerically, assuming that each triangle function in
(29) and (30) is approximated with pulse functions [29]. This
results in four points per rectangle integration scheme.

It is well known [28], [29] that the modal Green’s function
has an integrable singularity. Thus, while calculating “self

terms” in (40), the integrations in the immediate vicinity of sin-
gular points must be performed analytically.

Some attention should be given to the scalar potential term
in (40). The direct form of this term has an undesirable feature
of acting with gradient operation on . This, however, can be
eliminated by the use of formula [15]

(41)

which, considering that the weighting functions are divergence-
less, after putting into “modal” form gives

(42)

where is the contour of .
In (41) and (42), is the unit vector normal to the surface

or contour , respectively.
Thus, only testing functions associated with the contour of

the body give the nonzero contribution into moment matrix ele-
ments. This fact has reduced considerably amount of computa-
tions associated with the scalar potential term.

Again, care must be taken while calculating “self-term”
elements of the matrix because of Green’s function singularity,
which requires some analytical integration. It is worth pointing
out that the singularity problem in this case can be avoided by
surrounding the body with the layer of “empty” basis functions
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(which means subdomains with dielectric permitivity equal
to that of surrounding space). In this case, there is no surface
charge density on the surface, which results in the fact that
all “self-term” elements are explicitly equal to zero. Both cases
has been tried in practice giving coinciding results.

G. Zeroth Mode

The technique of basis function construction presented above
cannot be used in the case of . In this case, however, it
can be noted that

1) there is no charge associated with the azimuthal field
component;

2) modal gradient operator has no azimuthal component;
3) , so the and components of matrix

(21) are zero.
Thus, for zeroth mode, (17) decouples into two independent

equations concerning transverse and azimuthal field compo-
nents. These equations can then be solved separately.

Solving the equation for transverse field components, the au-
thor has used the same transverse field representation as in the
previous subsection. However, one must remember, that basis
functions constructed in this manner are no longer divergence-
less. It means that we must take into account volume charges,
which appear in (33) while computing the scalar potential. Next,
also the second integral in (41) has to be considered when cal-
culating the scalar potential contribution to impedance matrix
elements. The mentioned steps cause in fact enforcing the zero
divergence condition numerically.

The equation for the azimuthal mode has very simple form,
because it does not have the scalar potential term. In present
work, it has been solved numerically using pulse basis functions
and the Galerkin testing scheme.

Note that because of the equations decoupling, we never have
to solve system of linear equation with more unknowns than in
the case of nonzero modes. It means that the main advantage of
the method is, in this case, preserved.

III. N UMERICAL RESULTS

In order to check the method described in the previous sec-
tion, it has been applied to some problems for which solutions,
either analytical or numerical, obtained by other authors are
available. Most of those solutions concern homogeneous or par-
tially homogeneous bodies. In all calculations basis functions
defined on rectangular domains have been used.

As a first example, homogeneous dielectric sphere has been
considered. Next, a layered sphere has been modeled and, fi-
nally, the radar cross sections of bodies with simple shapes have
been calculated and compared to results of methods developed
by other authors.

In all examples, the incident field has been assumed to be
a plane wave. This requires applying formulas for plane wave
expansion into modes. Similarly, when calculating radar cross
sections, the far field from individual modes has to be computed.
Formulas for these expansions can be easily obtained from those
presented for example in [28] or [29] and will be not repeated
here.

Fig. 5. Field along axis of incidence inside dielectric sphere;" = 36; k a =

0:408.

A. Dielectric Sphere

A simple sphere model, with discretization similar to that of
Fig. 2(a), has been used to calculate the electric field inside a
dielectric sphere. In the model eight squares per the sphere ra-
dius have been used, which corresponds to 216 unknowns. First,
axial incidence of the incident field has been assumed, which re-
quires performing computations only for the1 and 1 modes.
Field calculations for low frequencies have shown that the elec-
tric field is within 5% of times the incident field,
which is the theoretical value.

At higher frequencies, the typical standing wave behavior has
been observed. In Fig. 5 the comparison of results with analyt-
ical solution [15] is presented for the sphere with .
One can see that the agreement is good. In order to verify pro-
cedures for the zeroth mode and more sophisticated modal ex-
pansions, the same calculations for different angles of incidence
and polarizations has been performed. The small picture in the
corner of Fig. 5 relates symbols used in the plot to the different
scattering situations. The simplest case with the incidence along
-axis is denoted with the diamond symbols. Again, very good

agreement has been obtained which validates all procedures de-
scribed in the previous section. The reader can notice that calcu-
lated solutions slightly differ from each other and from analyt-
ical solution near the ends of the plot. It is caused by rather crude
approximation of the sphere surface within applied model.

Field distributions for the layered sphere are presented in
Fig. 6. The calculations have been done for two grids. The so-
lutions 1 and 2 denote 8 and 16 squares per outer radius of
the sphere, respectively. The solution 1 gives some error in the
vicinity of the boundary of materials. It is because of nonprecise
model of the inner sphere. Solution 2 gives a very good field
prediction. It proves improvement of accuracy when the inves-
tigated body is modeled using smaller volume elements. Note,
that the jump in component calculated along-axis is per-
fectly predicted. It is because correct behavior at media inter-
faces is built-in into the basis functions in the way similar to
[15]. It is also worth mentioning that even in the case of the so-
lution 1 the resolution of the model is about twice that of the
tetrahedron (full 3-D) model [15]. However, thanks to the rota-
tional symmetry the number of unknowns is only 216 in com-
parison to 1088 in the tetrahedron model. In solution 2, with the
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Fig. 6. Fields inside inhomogeneous sphere:" = 36; k a = 0:3738; " = 9; k a = 0:8168. (a) Relative magnitude ofE alongz axis. (b) Relative
magnitude ofE alongx axis. (c) Relative magnitude ofE alongx axis.

resolution doubled in comparison to the solution 1, we have 828
unknowns, which is still less than in the 3-D case.

B. Scattering Calculations

Both because of difficulties to measure field inside dielectric
bodies and because of practical importance, the main parameter
calculated and published in the literature is the radar cross sec-
tion. In this work, the radar cross section of a thin dielectric rod
has been computed and compared to the results of Richmond
[30], Wang and Papanicolopulos [31] and Shaubertet al. [15].
The BOR model consists of a single column of rectangular cells
(in the transverse plane). The results are presented in Fig. 7,
where the agreement again is found to be excellent.

Next, the bistatic radar cross section of a dielectric cylinder
has been calculated and compared to data given by Mautz and
Harrington [7]. The comparison is done in Fig. 8.

Finally, some calculations of resonant frequencies of dielec-
tric spheres and cylinders have been performed and compared to

Fig. 7. Radar cross section of a thin dielectric rod:a = 0:16 cm =

0:05� ; " = 2:54.

analytical and numerical results given by Barberet al.[32]. In all
cases, resonant frequencies predicted with the present method
were within 0.5% from those of Barberet al.
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Fig. 8. Plane wave scattering patterns for dielectric cylinder of radiusa and
height2a. a = 0:25� ; " = 4. (a)�� polarization. (b)�� polarization.

IV. SUMMARY

An efficient method of calculating the electromagnetic fields
scattered from and penetrating into inhomogeneous dielectric
bodies of revolution has been presented. The method uses spe-
cial, divergenceless basis functions defined on rectangular or
triangular domains in which the azimuthal component is calcu-
lated from transverse ones by the use of Gauss’ law. This allows
one to considerably reduce the total number of unknowns used
in the solution procedure. Following [15] the basis functions au-
tomatically incorporate the boundary conditions of the normal
component of electric flux density.

The testing procedure used for the method of moments solu-
tion is a Galerkin scheme with the typical for bodies-of-revolu-
tion procedure of decoupling of the solving process into modes.

Numerical results show that the method gives excellent re-
sults both while predicting internal fields distributions and scat-
tered fields.

Finally, it is important that the solution remains within the
convenient mixed potential EFIE scheme. Therefore, it is ex-
pected that the generalization to the case of multilayered media
should not present much theoretical difficulties [33], [34].
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