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Abstract—An efficient calculational approach using the scat-
tering-radiation conversion is developed in this paper to evaluate
the microwave attenuation by arbitrarily distorted raindrops.
For this modified first-order approach, the perturbation tech-
nique and the spherical vector eigenfunction expansion method
are employed. A method of obtaining the volumetric current
distribution of the assumed source that generates the plane
waves is developed in the paper and the current distribution of
such a source is derived. The electromagnetic fields outside the
distorted raindrop scatterers are formulated in terms of integrals
consisting of a volumetric current distribution located at infinity
and the dyadic Green’s functions. To illustrate the validity of
this approach, the spheroidal raindrop and the Pruppacher and
Pitter (P–P) raindrop model of varying shapes are specifically
investigated. Numerical results of the extinction cross sections and
the specific attenuation due to the two models are obtained. While
the former agrees well with the published results, the latter is in
good agreement with the experimental specific attenuation data
collected at 21.225 GHz in Singapore.

Index Terms—Microwave propagation effects, rain.

I. INTRODUCTION

T O investigate the scattering of plane electromagnetic
waves by distorted raindrop scatterers, many methods

have been developed since the 1970s. The methods that received
most attention over the past 30 years are:Rayleigh–Debye
(R–D) approximation (or the Born approximation) [1], [2], the
perturbation theory proposed by Oguchi [3], [4] and utilized by
Li et al. [5], [6], the least squares fitting technique developed
by Morrison and Cross [7], [8], the-matrix method originated
by Waterman [9], [10], the extended boundary condition
method described by Barber and Yeh [11] and by Warner and
Hizal [12], the unimoment method given by Mei and Chang
[13], [14], and some others introduced in Oguchi’s reviews
[15], [16]. Although each of them has its own shortcomings,
nevertheless, they have made significant contributions to the
problem of microwave attenuation due to rainfall.

In order to investigate the attenuation of plane electromag-
netic waves due to rainfall, one first assumes certain physical
models for the raindrop shapes and then obtains the total or ex-
tinction cross sections (TCSs) of the raindrop scatterers. The
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simplest and the most typical raindrop model used in the evalu-
ation of the microwave rainfall attenuation is the sphere [17] and
the simplest technique is the Mie’s scattering theory. However,
the spherical model of raindrop shapes is only valid for very
small raindrops [16], as shown in the photographic measure-
ments of raindrop shapes [18], [19]. As the raindrop becomes
larger, the oblate spheroidal model can be used to describe the
shapes of the raindrops well. To improve the evaluation of the at-
tenuation by raindrops, modification of the raindrop model from
sphere to spheroid was made to investigate the effects of distor-
tions of the raindrop shapes. However, as the raindrop becomes
fairly large, the shapes of the raindrops are greatly distorted, and
no longer spheroids [16], [20]. Their shapes look like a Ham-
burger and are nonaxisymmetric. Theoretically, Pruppacher and
Pitter (P–P) [21] established an equation to describe the shapes
of water drops falling at their terminal velocity in terms of the
balance of the internal and external pressures on the surfaces of
the drops. This model of varying shapes has been well accepted
by researchers in the calculation of microwave specific atten-
uation [16], [12], [15]. According to the P–P raindrop model,
the raindrop looks like a sphere, as its size is very small, then
a spheroid or ellipsoid as the size increases, and finally a Ham-
burger-shaped scatterer as the size becomes fairly large.

To show these effects, Oguchi solved the P–P equation nu-
merically and evaluated 13 raindrop shapes [16] for the different
drop sizes used first by Laws and Parsons in their drop-size dis-
tribution [22]. However, the P–P equation is almost impossible
to be solved analytically so that further approximation is needed
to simplify the scattering problem for practical engineering ap-
plications. In order to include the effects of large-scale distortion
of raindrops on the microwave attenuation Oguchi [16] utilized
the cosine series to simulate the varying shapes of the raindrops.
However, the cosine series in turn introduces further complica-
tion to the mathematical expressions of the scattered fields and
the TCS so that a numerical technique has to be employed at the
beginning of the evaluation [23]. Hence, considerable amount
of computer time is needed for the computation. The amount of
computer time may be reduced using a simple expression of the
raindrop shapes by Liet al. [20].

This paper aims at solving for the scattered field due to
an arbitrarily shaped raindrops by means of an efficient and
simple integral equation approximation developed based on the
scattering-radiation conversion. It is well known that the key
problem in making use of integral equation method to derive
the scattered electromagnetic fields outside the scatterers is the
representation of the transmitted electromagnetic fields inside
the scatterers. Rayleigh approximation, as a representative
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Fig. 1. Scattering of the plane waves polarized horizontally (II) and vertically
(I) by an arbitrarily shaped scatterer.

example, replaces the transmitted wave inside the scatterers by
the incident plane wave to enable the scattered fields outside
the scatterers to be integrated and expressed analytically. To
improve the calculation, the Rytov approximation [24] is devel-
oped. The Rytov approximation shares some similarity with the
WKB approximation [24] and is, therefore, a weak scattering
approximation even if it works better at higher frequencies
than the Rayleigh–Debye (R–D) approximation. The Fredholm
integral equation method and the-matrix method use the
integral operators to expand the scattered electromagnetic fields
into an infinite series, with each term in the series representing
an integral corresponding to the different-order approximation.
It is, however, almost impossible to integrate analytically each
of the infinite series in practical engineering problems, so that
a further approximation has to be made.

II. STATEMENT OF THE PROBLEM

Consider the geometry shown in Fig. 1 where an incident
plane electromagnetic wave is scattered by a homogeneous but
arbitrarily shaped raindrop. The incident waves have vertical (
corresponding to the-directed magnetic field) and horizontal
( corresponding to the-directed electric field) polarizations,
as illustrated in Fig. 1. A source generating the plane waves is
assumed to be located at infinity.

The total electric field of an electromagnetic wave every-
where is governed by the Maxwell’s equations. The wave equa-
tions can be expressed as follows [25] if suppressing the time
factor :

(1)

where , and , and are the perme-
ability, the permittivity, and the conductivity, respectively. In
free-space, we have .

The solution to (1) may be represented in terms of the inte-
gral including the electric type of dyadic Green’s function as
follows:

(2)

where the Green’s dyadic is given in Appendix A and
the electric volumetric current distribution is formulated

in Appendix B using the eigenfunction expansion of the incident
field and the unbounded Green’s dyadic.

Comparing with the scattering coefficients of the plane wave
obtained from the Mie theory for a spherical scatterer, we find
that and of the dyadics derived in Appendix A
are similar to those scattering coefficients of the Mie theory.
In the above consideration, the arbitrarily shaped scatterer was
treated as an equivalent sphere so as to simplify our derivation.

Thus, the electric field outside an equivalent sphere shown in
(2) for different polarizations and can be rewritten as

(3)

where the subscript of the integral denotes the volume of
the raindrop scatterer. The first term of (3) represents the di-
rect waves due to the source . In this problem shown in
Fig. 1, it is just the incident waves of respective polarizations.
The second term, on the other hand, is the scattered field.

The incident fields have been given by Morrison and Cross
in [8]. Using the orthogonal properties of and

, the incident fields can be expanded in a series of
vector wave functions [3], [8]. The expanded forms of the
electromagnetic incident fields are given by

(4a)

and

(4b)

where the coefficients, and are given as follows:

(5a)

and

(5b)

The total electromagnetic field outside the raindrop should be
the sum of the incident (direct-wave) field and the scattered field
due to the existence of the raindrops. The first term in (3) rep-
resents the contribution due to the direct waves in unbounded
space and, therefore, is independent of the raindrop shape. The
second term in (3) represents the contribution due to waves scat-
tered by the raindrop surface. Once the current distribution of
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the source that generates the plane waves has been evaluated,
the scattered field due to the raindrop surface can, therefore, be
obtained from the second term integral of (3) with the dyadic
Green’s function for the spheroid as the kernel of integration.

III. FORMULATION OF SCATTERED FIELDS

Among the existing methods in deriving the scattered
fields, the most well-known are: 1) Rayleigh–Debye (R–D),
Rayleigh–Gans, or Born approximations that simply replace
the transmitted wave inside the scatterers by the incident plane
wave [26] and 2) the modified Rayleigh–Debye approximation
which uses a method similar to that of R–D approximation,
except it replaces the propagation constant of the incident plane
wave outside the scatterer by that inside the scatterer [27], [28].

In this paper, the knowledge of transmitted field inside such
an arbitrarily shaped scatterer is not required. The approxima-
tion is made to modify the reflection coefficients and vector
wave functions. The zeroth-order scattering from the spheroid
is, of course, the Mie scattering from a sphere. The first-order
scattering approximation can be made by either 1) modifying
the reflection coefficients and using an effective
radius for the spheroid or 2) modifying the spherical vector wave
functions to the spheroidal functions. Obviously, to modify the
reflection coefficients is easier.

A. Scattered Fields from Arbitrarily Shaped Scatterers

Consider an arbitrarily distorted scatterer of which the surface
is expressed by the following equation:

(6)

where and denote the zenith angle and the azimuth angle
of the incident waves at which the reflection occurs. If the pa-
rameter in (6) is small enough, the second term is only a dis-
tortion based on a sphere with a radius. Thus, we can con-
sider as the effective radius of the arbitrarily
shaped scatterer.

Using the relation instead of the effective
radius , the scattered field in the analogous expansions can
be obtained and represented in terms of the spherical Bessel
functions as follows:

(7a)

and

(7b)

where the coefficients of the electromagnetic fields are given by

(8a)

and

(8b)

To integrate (8a) and (8b), (B.5) together with Eq. (B.9)
should be used here. To compare our results obtained here with
those published elsewhere [3], [8], the Taylor expansion with
respect to the perturbation should be made in (8a)
and (8b). However, it is found that a closed form of the above
integral can be derived, without any expansion.

The scattering coefficients derived from the integration may
be written as

(9a)

(9b)

where is the relative refractive index given numerically
by Ray [31] in his Fortran program and the intermediate is
defined by

(10)

with the effective radius provided later in Table I.
From (9) and (10), we can see that the scattering coefficients

and can be derived very easily, provided that the
shape of the scatterer given by (6) is known.

B. Scattered Fields from Spheroidal Raindrops

As an application of the method developed here, a case
where the coefficients of scattered electromagnetic fields are
due to spheroidal raindrops is formulated. The applicability of
the method presented here will be numerically examined later.

As the raindrop scatterers are spheroidal, the surface of the
raindrops may be described as [3], [4], [8], [29], [30]:

(11)

where , and and (all in centimeters) are
the oblate spheroidal minor and major semiaxes. They can be
determined from the mean raindrop radiusby two methods
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developed for the specific microwave attenuation due to rainfall.
One was used by Oguchi [3] by assuming that

while the other was given by Morrison and Cross [8] by as-
suming that

provided that (in centimeters) is known. In this paper, for sphe-
roidal raindrops, the set of parameters given by Morrison and
Cross are adopted to compute the effective raindrop radii.

Following the similar procedure given previously, we find
that the scattering coefficients of the electromagnetic fields due
to the existence of the spheroidal raindrops are expressed ex-
actly in the same form of (9) except that the intermediatein
(10) needs to be rewritten as

(12)

The solution that we have obtained, as can be seen, is of a
closed form. To compare the results derived here with those pub-
lished elsewhere, we may expand the formula in (9). Under the
first-order approximation, using (12) we derive the scattering
coefficients given by

(13)

Comparing with the scattering coefficients derived by Oguchi
[3], Morrison and Cross [8], and Liet al. [5], the scattering
coefficients presented above in (13) are consistent. The first
term given in (13) represents the Mie scattering coefficients due
to an equivolumetric sphere of the effective radius, while
the second term represents the first-order perturbation coeffi-
cients due to the distortion based on the sphere. It should be
pointed out that the expanded form of the scattering coefficients
is used only for thecomparison. In our formulas of the scat-
tering coefficients, such an expansion isunnecessarysince it is
an extra mathematical approximation and therefore introduces
errors due to the negligence of the higher order terms in the
Taylor expansion.

C. –Scattered Fields from P–P Model Raindrops

The P–P model raindrops was modified and represented in
[20]. This model has been successfully utilized by Liet al. [5],
[6] in the computation of the specific microwave attenuation
using the extended boundary condition and point fitting tech-
nique. Under the spherical coordinates system, the model is ex-

pressed for by

(14)

where

(15a)

(15b)

(15c)

(15d)

(15e)

while denotes the raindrop mean radius introduced by Laws
and Parsons [22] and Oguchi [23], and represents the step
function.

With this P–P model, the shape of the raindrop is a function of
its size. Fig. 2 shows the normalized shapes of the raindrops ob-
tained from the cosine series of the simplified distorted model.
The raindrop radius ranges from 0.25 mm in Fig. 2(a) to 3.0 mm
in Fig. 2(l) with a step increment of 0.25 mm. It can be seen from
the comparison that the shape of the raindrop looks like a sphere
for a very small size raindrop, an oblate spheroid for a medium
size raindrop, and a hamburger for a fairly large size raindrop.

In our computation, the intermediate effective radius can be
expressed by

(16)

IV. TOTAL (EXTINCTION) CROSSSECTIONS

To gain an insight into the characteristics of spheroidal and
P–P model raindrops, the TCSs are calculate in this section and
compared with those numerical results previously published [3],
[5], [8].

The total (or extinction) cross section (TCS) is defined [3],
[8] by the ratio of the extinction energy (including absorbed and
scattered energies) to the mean energy flow of the incident wave
per unit area. For the case under consideration here, the TCS can
be expressed as

(17)

where the scattering coefficients and have been given by
(9) together with (12).
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Fig. 2. Normalized raindrop shapes obtained using the cosine series of the simplified P–P model for different sizes.

TABLE I
RAINDROP PARAMETERS AGAINST DROPSIZE FORDIFFERENTMODELS

Since only the forward scattering is needed for comparison
with the measured results, we will consider the polar angle of
90 in this section. To compute the TCS numerically, appro-
priate raindrop parameters should be chosen. In Table I, the
mean raindrop radius of the equivolumetric spherical rain-
drops are listed. Based on the equivolumetric spheres, two sets
of raindrop parameters are obtained by Oguchi [3], and Mor-
rison and Cross [8], respectively. The formulas used to acquire
the data listed have been given in the previous section. Since the

set of parameters given by Morrison and Cross [8] can be used
to obtain reasonably consistent results for the larger drop sizes,
it is used in this paper to calculate the effective radii.

A. Spheroidal Raindrops

Numerically, the TCSs of spheroidal raindrops at oper-
ating frequencies of 4, 11, 18.1, and 30 GHz are calculated.
The relative refractive indexes at the temperature of 20C
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corresponding to the above four frequencies are calcu-
lated from Ray’s Fortran code [31], which gives (8.7800,

0.9777), (7.8835, 2.1848), (6.8576, 2.7169), and
(5.5793, 2.8481), respectively. The numerical results of the
TCSs computed here are compared in Fig. 3 with Morrison
and Cross’s data at frequencies of 4, 11, 18.1, and 30 GHz. In
Fig. 3, “simple” denotes the TCSs of spheroidal raindrops ob-
tained in this paper using the “simple” method developed, and
“ fitting” represents the TCSs for horizontal polarization of the
spheroidal raindrops published by Morrison and Cross using
the least squares process of the boundary conditions. The TCSs
obtained here at each frequency, as can be seen from Fig. 3, are
quite close to those TCSs for horizontal polarization given by
Morrison and Cross [8], demonstrating the applicability of the
simple method.

B. P–P Model Raindrops

Numerical results of the TCSs of the P–P model raindrops
versus the mean raindrop radius () at a frequency of 21.225
GHz have been obtained and shown in Fig. 4. The refractive
index of water computed at this frequency and at a tempera-
ture of 20 using Ray’s Fortran program [31] is given by

. The TCSs of the P–P model raindrops ob-
tained at this frequency by Liet al. [5], [6] using the boundary-
perturbation and point-matchingtechniques are compared with
those calculated in this paper using thesimplemethod. Compar-
ison shows only slight differences. It is found that an intersec-
tion exists between the two curves. Careful checking shows that
the intersection comes from the computed effective radii of the
P–P raindrop model (see Table I). When the raindrop size be-
comes very large, in fact, the small perturbation approximation
used in [5] is no longer so accurate that a slight over-estimation
of TCSs is encountered. This technique based on the effective
radii of the scatterers achieves better accuracy than that in [5].

V. SPECIFICATTENUATION: PREDICTION AND EXPERIMENT

To further examine the applicability of the method developed
and the results obtained, the predicted specific microwave atten-
uation is compared with those measured data collected in Sin-
gapore at a frequency of 21.225 GHz over a line-of-sight dis-
tance of 1.1 km with a slant angle of about 5(see [32] for the
regressed or best fit curves). The system setup for data collec-
tion and the techniques for data integration have been detailed in
[33] where both specific rainfall attenuation and rainrates were
obtained. Additional information about the specific attenuation
can be found from the literature [34].

The specific attenuation (in dB/km) of microwaves due to
rainfall can be computed numerically using the following inte-
gration:

[in dB/km] (18)

where denotes the TCS’ (17), and represents the
distribution of raindrop sizes. To numerically integrate the spe-
cific attenuation, a continuous variation of the TCS argument

may increase the computational speed. A least

Fig. 3. TCSs (in centimeters) of spheroidal raindrops numerically computed
at frequencies of 4, 11, 18.1, and 30 GHz and at temperature of 20C.

squares fit curve has been obtained and expressed by the fol-
lowing formula:

–
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Fig. 4. TCSs of the P–P model raindrops versus the mean radius at a frequency
of 21.225 GHz.

The raindrop size distribution for the Singapore’s tropical en-
vironment was obtained earlier by Yeoet al. [33] and revised
later by Liet al. [35]. The new raindrop size distribution can be
expressed as follows:

cm (19)

where is the diameter of a raindrop in millimeters.
Using (18) and (19), we have numerically calculated the spe-

cific rainfall attenuation at 21.225 GHz in Fig. 5 wherecom-
putationdenotes the predicted results numerically calculated in
this paper,experimentrepresents the measured data experimen-
tally collected in Singapore, andbest fitstands for the best fit
curve of the experimental data using the least squares fitting.
From Fig. 5, reasonably good agreement between the predicted
specific rainfall attenuation and the measured data (or the best
fit curve) is obtained at 21.225 GHz.

VI. CONCLUSION AND DISCUSSION

Based on the dyadic Green’s function technique and the
scattering-radiation conversion, an efficient and simple method
is developed in this paper to investigate the plane wave scat-
tering due to raindrops. Instead of solving the boundary-value
problem or integrating the approximate transmitted field inside
the scatterers, the scattered electromagnetic fields are obtained
by means of integrating the volumetric current distribution of a
source at infinity and the scattering dyadic Green’s function.

Using the existing scattering Green’s function [25], [36] and
the Mie scattered fields expanded in terms of a series of spher-
ical vector wave functions, we have derived the current distribu-
tion of an assumed source located at infinity. This source gener-
ates the plane waves with horizontal and vertical polarizations.
Consequently, the scattered field due the scatterer’s surface have
been integrated straightforwardly from the current density ob-
tained and the scattering dyadic Green’s function derived. The
TCSs and the specific attenuation due to the spheroidal rain-
drops and the P–P model raindrops are numerically computed.
To examine the applicability of the method developed and re-
sults obtained, the numerical TCSs of the spheroidal raindrops
are compared with Morrison and Cross’s results [8], those of
the P–P model raindrops with Liet al. [6], and the specific mi-
crowave attenuation due to spheroidal raindrops with the exper-

Fig. 5. Comparison of specific rainfall attenuation of horizontally polarized
microwaves at 21.225 GHz.

imental rainfall microwave attenuation collected in Singapore at
21.225 GHz.

The merit of the approximation developed in this paper can
be seen from the following aspects. First, this method provides
a technique to convert the scattering problem to a specific
radiation problem so that the existing theory for the radiation
problems can be directly used to the scattering problem. Such
a technique successfully employed here can also be used in
some other scattering problems. Second, this method that
uses spherical vector wave functional expansion together with
the dyadic Green’s technique, makes the derivation of the
approximate scattered field much compact and straightforward.
As can be seen from (17), the TCSs can be represented in a very
simple form. Third, with the small perturbation expansion and
the equivalent radius of the scatterer, this method is simple and
efficient for analyzing raindrop scatterers of slightly distorted
shapes.

The applicability of this technique has been demonstrated in
Figs. 3–5, respectively, where close agreements are obtained
between the TCSs of spheroidal raindrops computed using the
method presented in this paper and by Morrison and Cross [8]
using the least squares process of the boundary conditions, be-
tween the TCSs of the P–P model raindrops so obtained and by
Li et al.[5] using the boundary-perturbation and point-matching
techniques and between the specific rainfall attenuation pre-
dicted using spheroidal raindrops and data collected in Singa-
pore.

While the Mie scattering theory together with the existing
local distribution of raindrop sizes [35] can predict the spe-
cific rainfall attenuation for vertical polarization well [6], the
simple approach given in this paper may, as a supplement, ef-
ficiently predict the specific rainfall attenuation for horizontal
polarization. The local distribution of raindrop sizes of [35] was
generated applying the Mie scattering theory and utilizing the
least squares process of the experimental data at 21.225 GHz
for vertical polarization. While the specific attenuation for ver-
tical polarization can be predicted using spherical model and the
local distribution of raindrop sizes (DSD), modification from
the spherical to spheroidal raindrops must be made when the at-
tenuation under horizontal polarization is to be accurately pre-
dicted.
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APPENDIX I
UNBOUNDED AND SCATTERING DYADIC GREEN’S FUNCTIONS

The dyadic Green’s function involved in the integration (2)
was sometimes assumed to be the one in -space for mathe-
matical simplicity. In fact, it is not true. It should be the electric
type of dyadic Green’s function the arbitrarily shaped
scatterer, . According to the principle of scattering su-
perposition, this dyadic function used in integral (2) consists
of the unboundeddyadic Green’s function and thescattering
dyadic Green’s function, i.e.,

(A.1)

The unbounded Green dyadic for is given [25] by

(A.2a)

while the scattering Green dyadic outside an effective
sphere is given [36] by

(A.2b)

where the spherical vector wave functions and in
the spherical coordinates system can be expressed by

(A.3a)

and

(A.3b)

The symbol represents the spherical Bessel functions
of -order; stands for the associated Legendre func-
tion; the prime denotes those functions associated with the co-
ordinates system ( ); the symbol denotes that the
spherical Bessel function included in the vector wave functions
takes the spherical Hankel functions of the second kind [i.e.,
the spherical Bessel functions of the fourth kind (

)]; and ( for ; and zero for ) de-
notes the Kronecker symbol.

The scattering coefficients and of the dyadics
in (A.2b) can be solved from the equation system (11)–(14)
given in the old edition of Tai’s book [25, p. 183, 1st ed.]. They
can be also found directly from the reduced form of the gener-
alized formulation of the scattering Green dyadic’s coefficients
presented recently by Liet al. [36]. The expressions are

(A.4a)

(A.4b)

where is the relative refractive index given numeri-
cally by Ray [31] in his Fortran program, andis the interme-
diate defined by the product of the propagation constant and the
effective radius of the scatterer, i.e., .

APPENDIX II
VOLUMETRIC CURRENT DISTRIBUTION

In electromagnetic wave theory, there are two well-known
areas: 1) the radiation due to an antenna located in an environ-
ment where scatterers of different geometries are present and 2)
the scattering of a plane wave by scatterers of different geome-
tries. The radiation due to an antenna in a structure is regarded
as an active problem while the scattering of the plane wave by
such a structure may be considered as a passive problem. Usu-
ally, the methods utilized in the two areas for calculating the
fields in the regions separated by the scatterers are not exactly
the same.

This section aims at relating the scattering problem to the ra-
diation problem and deriving the volumetric current distribution
of an electric source that is located at infinity and generates the
plane wave. Thus, the scattering problems can be considered
as the specific radiation problems where the radiated source is
located at infinity. Furthermore, the electromagnetic fields in
the regions separated by the scatterers can be easily formulated
using the methods already developed for the radiation problems.

To derive such a distribution, the coordinate translation
shown in Fig. 6 should be employed here. In this figure, the
fields are observed in the coordinates system and the
point source at the infinity is located in the coordinates system

; denotes the position of the point source with
the distance , at the polar angle , and the
azimuth angle (the raindrop is symmetrical with respect
to the -axis so that a simple azimuth angle can be chosen);

represents the position of the differential element in the
source region. It can be seen from this figure that the position
of the point-source in the field coordinates, the position of a
differential element in the field coordinates, and the position
of the differential element in the source coordinates are
related by

(B.1)
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Fig. 6. Coordinate translation.

The source at infinity can be regarded as a point source, there-
fore a delta function can be used to describe the source. For dif-
ferent polarizations, the source can be expressed by

(B.2a)

(B.2b)

where to be determined is a function of the distance of
the point source. The plane waves can be considered as the one
excited by the point source that is located at infinity ( ).
Since is a constant vector, the vectorsand and their
derivatives in the two coordinates systems are related by

(B.3a)

(B.3b)

so that (B.2) can be rewritten as

(B.4a)

(B.4b)

Furthermore, we have

(B.5)

Substituting (B.5) into the first integral of (3), we may determine
the function . Either the dyadic or can be used
in the derivation. For simplicity, we choose the dyadic
and define the following intermediates

(B.6)

Substitution of (B.5) into (B.6) leads to , ,
and in the integral containing the vector eigenfunction

. Thus, we finally obtain the following expressions:

(B.7)
(B.7) may be further reduced using the asymptotic form of
Hankel function for large argument given as follows:

(B.8a)

(B.8b)

Since the first term of (3) can be expressed by (4a) together
with (5), substituting (B.7) together with (B.8a) into (3), we have

(B.9)

Thus, the unknown function is determined and given by

(B.10)

Substituting (B.10) back to the definition of the current distri-
bution in (B.2) and then substituting (B.2) into (3), we find the
coefficient to be the same as that given by (5b). Thus,
the current distribution obtained is verified.

If the volumetric current distribution is not a delta function,
the simple analysis made here should be modified and the
translational addition theorems derived for spherical waves by
Stratton [37] and Friedman and Russek [38] and for spherical
vector wave functions by Stein [39] and Cruzan [40] must be
applied in the rigorous formulation.
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