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Ultimate Thickness to Bandwidth Ratio of Radar
Absorbers
Konstantin N. Rozanov

Abstract—Analytic properties of the reflection coefficient of a
multilayer metal-backed slab are considered. The result is a new
form of the dispersion relationship, which characterizes the inte-
gral of the reflectance over wavelength in terms of the total thick-
ness and averaged static permeability of the slab. The relation may
be transformed to an inequality, which produces the least thickness
to bandwidth ratio achievable for a physically realizable radar ab-
sorber. The particular cases of broad-band and narrow-band ab-
sorbers are discussed. The least thickness of a 10-dB broad-band
dielectric radar absorber is shown to be 1/17 of the largest oper-
ating wavelength. The discussion also involves the results of nu-
merical study.

Index Terms—Microwave absorbers.

I. INTRODUCTION

M ETHODS of radar absorbers design have provoked great
interest since the invention of the radar (see [1]–[3] and

references therein). This paper deals with the absorbers intended
to reduce the reflection when a plane monochromatic electro-
magnetic wave is normally incident to an infinite plane metal
surface coated with the absorber. These materials are conven-
tionally characterized by the thicknessand by the largest value
of the module of the voltage reflection coefficientwithin the
operating waveband .

The standard objective for the radar absorber design is to
obtain the absorber of the least thickness having the lowest
possible reflectance within the widest operating waveband.
These requirements are contradictory to each other: actual radar
absorbers are known to have good performance only within a
limited waveband [4], [5]. A single-layer dielectric absorber
made of a material with frequency dependent permittivity
is a simple example illustrating this fact. Ifvaries with the
wavelength as Re , Im , the reflectance
is independent of frequency [4]. With proper selection of the
coefficients of proportionality, any reflectance at any thickness
of the absorber within any prescribed band can be provided.
However, these coefficients cannot be selected arbitrarily
because the frequency dependencies of the real and imaginary
parts of the permittivity of any actual material are correlated
to each other by means of the Kramers–Kronig relations. The
agreement of these dependencies with the Kramers–Kronig
relations at all wavelengths yields . Otherwise, the
operating waveband of the radar absorber is limited.
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For some particular occasions, analytical equations are
known that produce the relation between , and the op-
erating bandwidth . For example, for a
single-layer radar absorber (Dallenbach screen) with ,
the largest possible bandwidth is [1]

(1)

where is the middle of the operating waveband and are
the relative permittivity and permeability of the layer, which
are assumed to be independent of frequency. Equation (1) can
be simplified if the layer is thin and the waveband is narrow
( ). Assuming and taking into
account that , (1) readily transforms to

Re (2)

Equation (2) validates the well-known fact that the perfor-
mance of a single-layer absorber can be greatly improved by
increasing the permeability of the layer. However, microwave
permeability of known magnetic materials do not exceed several
units and other approaches to broaden the bandwidth of radar
absorbers attract great attention.

Conventional methods of creating broad-band nonmagnetic
absorbers employ multilayer absorbing structures or dielectrics
with frequency dispersion of the permittivity, though no analyt-
ical expressions relating bandwidth, thickness, and reflectance
of the absorbers are known for these cases. The usual approach
to the design of such absorbers is the numerical optimization of
performance with the use of some parameterized frequency de-
pendence of the constitutive parameters that does not contradict
the Kramers–Kronig relations [5]–[7]. For example, numerical
optimization of the multilayer broad-band absorber (

) with the permittivity given by a sum of resonance de-
pendencies produced for the 10-dB reflectance
level [6].

The principal drawback of the numerical approach is that
it does not produce any data on whether the found solution is
the best. The optimization of complicated absorbing schemes
is a multi-extremum problem, whereas known optimization
methods produce only local minimums but not a global one.
Besides, there always is an opportunity that some other scheme
of the absorber (or some other kind of parameterization) would
be able to yield better results. Therefore, the numerical methods
provide the upper bound for the thickness to bandwidth ratio
of absorbers.

Since the idea of the perfect radar absorber contradicts the
Kramers–Kronig relations, which represent analytic properties
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of the frequency dependence of constitutive parameters, it seems
to be helpful to exploit the theory of analytic functions to estab-
lish the fundamental limitation for the ratio. This paper
presents the results of this approach discussing, therefore, the
lower bound for the thickness to bandwidth ratio. In other words,
the range of the bandwidths is determined that can be never at-
tained at a specified thickness and reflectance of the absorber.

II. I NTEGRAL RELATION FOR THE REFLECTION COEFFICIENT

OF A METAL-BACKED SLAB

We consider a slab of thickness, permittivity ,
and permeability , overlying a perfectly reflecting
plane and illuminated at normal incidence by a monochromatic
plane wave. Let the complex reflection coefficient be ana-
lytically extended into the plane of complex frequencies, where

is the circular frequency. If electromagnetic fields are assumed
to have the time dependence, is analytic in the
lower half-plane of complex [8].

If is treated as a function of the free-space wavelength
, where is the speed of light, it has no poles in the

upper half-plane of complex wavelengths, but may have nulls
there. If the nulls of located in the upper half-plane are

, then the ancillary function

(3)

where sign stands for the complex conjugation, has neither
nulls nor poles at Im . Hence, the logarithm of is
an analytic function in the upper half-plane of complex wave-
lengths and the Cauchy theorem is valid for it: the integration
over any closed contour yields zero if the contour is located
within the upper half-plane of. Let the contour consist of the
whole axis of real wavelengths and the closing semicircle,
which belongs to the upper half-plane and has infinite radius as
shown in Fig. 1. Note that at real wavelengths
and the real part of is an even function of . Therefore, the
real part of the Cauchy integral transforms to

Re

Re

Re (4)

As at the contour , the reflection coefficient of a
metal-backed slab given by the Fresnel law [9] is approximately
equal to . Only the first-order term in
is retained here, because other terms do not contribute to the
second integral in (4). Inserting this to (4) yields

Im (5)

where is the static permeability of the slab. Since
all are in the upper half-plane, Im for any , and two
terms in the right part of (5) have opposite signs. The module of
the reflection coefficient is not larger than unity, hence, the left

Fig. 1. The contour for the integration in (4)

part of (5) is not larger than zero. Therefore,

(6)

which is held for the reflection coefficient of any metal-backed
magnetodielectric layer.

The treatment can be readily extended to the case of a multi-
layer slab. With the wavelengths tending to infinity, any thick-
ness of the material is small compared to. Therefore, a multi-
layer slab can be treated as a stratified medium and be character-
ized by the effective permeability [9]. This immediately yields

(7)

instead of (6), where , are the thickness and the static
permeability of th layer of the multilayer slab.

The above derivation is similar to that yielding the Bode–Fano
theorem [10] with the only difference that (6) involves the reflec-
tion coefficient treated as a function ofrather than of .

III. A PPLICATION TO RADAR ABSORBERS

If the module of the reflection coefficient of a radar absorber
is less than within the operating waveband ,
then

(8)

Taking this into account, we finally arrive at

(9)

Inequality (9) can be useful for estimating the ultimate perfor-
mance of radar absorbers. It gives the largest bandwidth that is
possible with a prescribed thickness and reflectance of the ab-
sorber.

As an example, we treat broad-band absorbers, where
and the latter value may be neglected. Then (9)

can be rewritten as

(10)

where the decibel scale of the reflectance is introduced:
. For nonmagnetic broad-band absorbers ( ),

it follows from (10) that the application of any multilayer slab
made of dielectrics with any physically realizable frequency de-
pendence of the permittivity cannot provide 10-dB reflectance
level, if the thickness of the absorber is less than .
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Inequality (9) specifies the lower bound for the ratio.
An important problem is whether a real radar absorber can exist
in which this bound is achieved. This depends on whether the
limiting value of the integral of ln over the wavelength can
be obtained in an actual material producing the equality in (6)
and whether all absorption of the electromagnetic energy can be
localized within prescribed finite waveband to
produce the equality in (9).

It follows from (5) that the equality in (6) is attained when
has no nulls in the upper half-plane of complex. Such

functions correspond to the minimum phase-shift frequency de-
pendence [10] for which the variation of the phase of the re-
flection coefficient with changing from zero to does not
exceed . A single-layer absorber can possess the minimum
phase shift dependence if, for example, it is made of a dielectric
exhibiting the Debye law of the frequency dispersion of the per-
mittivity. As to the equality in (9), it is impossible to obtain be-
cause this would require designing the wavelength dependence
of the reflection coefficient as a piecewise-linear function. In
some cases, this function can be approximated rather well by
physically realizable dependencies and the thickness to
bandwidth ratio is close to the limiting value predicted by (9).
An illustration for this is given by the data [6] on broad-band
dielectric radar absorbers, which produces the ratio very
close to that yielded by (10). However, there are some occa-
sions when the lower bound given by (9) may be improved to
give more precise results.

In particular, if the absorber possesses magnetic proper-
ties, inequality (9) can produce extremely wide operating
waveband. Indeed, there is a number of materials, the static
permeability of which ranges up to hundreds and thousands. To
obtain more accurate estimate notice that in this instance the
low-frequency dispersion of the permeability is not negligible
and contributes essentially to the right part of (8). Since this
contribution corresponds to the low-frequency absorption, it
is useless for increasing the absorption within the operating
waveband, which lies in the region of higher frequencies. For
simplicity, we consider a single-layer absorber and assume that
the magnetic losses in the low-frequency region are associated
with an isolated absorption band so that the imaginary part
of the permeability is negligibly small at the low-frequency
boundary of the operating band . Then the integral
involved in (6) can be separated into two parts, one associated
with the low-frequency magnetic absorption and another
related to the absorption within the operating waveband. The
former part may be treated in assumption that yields
ln . After that, making use of the well-known
summation law [11]

(11)

which relates integral loss within an absorption band to the dif-
ference of the real parts of the permeability at its boundaries and
performing a simple manipulation, we arrive at

(12)

instead of (9). Inequality (12), which can be readily extended
to multilayer absorbers, means that the operating bandwidth
depends on the real part of the permeability at the low-frequency
boundary of the operating waveband rather than on the static
permeability. Note that (12) is valid only if the imaginary part
of the permeability is negligibly small at . In this case,

, and the right part of (12) is less than that of (9).
Another case when estimate (9) can be improved relates to

narrow-band absorbers. Here, it is unavoidable high-frequency
energy absorption that cannot be utilized. Let the operating band
be located near the first interference minimum of reflection co-
efficient, i.e., the absorber is a quarter-wavelength one. If the ab-
sorber is thin enough, higher interference minima are well sepa-
rated from the operating band and have a negligible effect on the
performance. Note that it is of no importance whether the higher
interference minima introduce into the left or right part of (5),
because this does not affect the integral of the reflection coeffi-
cient over the wavelength. Therefore, we can neglect the losses
and the frequency dispersion of the constitutive parameters be-
yond the operating waveband and replace the high-frequency
permittivity and permeability by some real constants
without affecting the absorption within the operating waveband.

Then the problem can be solved with the help of the result
given in the Appendix, which concerns the location of reflec-
tion nulls at the plane of complex in the case when the slab
has no dielectric and magnetic losses. As it follows from the
foregoing treatment, the integral of ln over the first interfer-
ence minimum is equal to the difference of and sum
(A.4), in which the first term ( ) is excluded and
is assumed. For simplicity, let the treatment be limited to the
case of a thin absorber with . Then, Artanh ,
(A3) produces 16 for the first term of (A.4), which corre-
sponds to the first interference minimum, and we arrive at

(13)

If the frequency dispersion of permeability is negligible (
), (16) can be simplified as

(14)

IV. NUMERICAL RESULTS

To find whether the estimates obtained above can be at-
tained in practicable radar absorbers we employ the numerical
methods. We treat the case of narrow-band ( ,
where is the middle of the operating waveband) single-layer
nonmagnetic absorbers and search numerically for the dielectric
dispersion curve that allows the layer to be of the least thickness
providing that its reflectance is less than the prescribed value

within a specified waveband. The frequency dependence of
the permittivity is assumed to be a sum ofresonance terms

i
(15)

where is the frequency and other parameters determine reso-
nance features and are varied without restrictions provided that
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their values are positive, with the exception of, which must
not be less than unity. These limitations follow from funda-
mental properties of constitutive parameters and cannot be over-
come in realizable materials. Law (15) is valid, for example, for
composites filled with conducting fibers [12]. The details of the
numerical method are given elsewhere [13].

The results obtained are shown in Figs. 2 and 3. Points in
Fig. 2 are the largest values given as a function of and
obtained at and two in (15). Dotted curve a) corresponds
to the limit (14) and curve b) —to the dependence

(16)

which determines the ultimate bandwidth for a single-layer ab-
sorber made of dielectrics with frequency independent permit-
tivity [14] and is a generalization of (2) to the case of arbitrary

.
The solid lines in Fig. 2 show the dependence

(17)

where at and 2. The figure reveals ex-
cellent agreement of the numerical data with (17). Fig. 3 shows
the values of obtained from the calculation results for

and ( dB) in assumption that the depen-
dence is given by (17). The agreement is very good
again. Thus, (17) provides a good estimate for the least values of
the ratio, which are achievable in narrow-band dielectric
absorbers exhibiting resonance dispersion law (15).

Note that any physically realizable dispersion law can
be fitted by (15) with any prescribed accuracy at .
Therefore, corresponding limit of the right part of (17) yields
the least thickness of a single-layer absorber that may be made
of a dielectric possessing physically realizable types of the
frequency dispersion of the permittivity. Tending the right part
of (17) to infinity with the account for it is easy
to obtain , which differs from (14)
less than by 5%. This indicates that (14) is accurate enough in
producing the ultimate value of the thickness to bandwidth ratio
for narrow-band dielectric absorbers, i.e., it can be improved
only on the base of some additional assumptions.

For example, in actual dielectrics it is difficult to attain high
values of the permittivity, or high quality factor of the resonance
[12]. For this reason, the thickness of real absorbers employing
the dielectric resonance may be less than that predicted by (17)
in some occasions depending on the values, , and
specified for the absorber.

It is interesting to express in figures the characteristics of
the absorbers discussed above. For the 10-dB reflectance level,
the ultimate value of a nonmagnetic Dallenbach screen
is 1/3.2 as it can be seen from (2). Inequality (14) produces
1/13.9 for this value, and the largest possible bandwidth of a
narrow-band dielectric absorber is about 4.4 times larger than
that of the Dallenbach screen of the same thickness. For a single-
layer dielectric absorber with the resonance dielectric disper-
sion, the ultimate value given by (17) is 1/8.4 that is 2.6
times larger than in the Dallenbach screen. For two dielectric

Fig. 2. The value of��=d as a function of� for single-layer dielectric radar
absorbers with frequency dielectric dispersion of the resonance type. Boxes are
the numerical results. Solid lines correspond to (17) atn = 1 andn = 2; dotted
line (a) corresponds to (14); line (b) to (16).

Fig. 3. The values of1=C obtained numerically atn = 1 . . . 5 (points). The
line corresponds to the dependence1=C = (n+ 2)=3.

resonances involved, may be as low as 1/9.7. For the
20-dB narrow-band dielectric absorbers, the ultimate value of

is 1 for the Dallenbach screen, 1/3.6 for the case of single
dielectric resonance, 1/4.5 for two resonances, and 1/6.95 for a
multilayer dielectric absorber with any physically realizable fre-
quency dependence of the permittivity.

V. CONCLUSION

We discuss the analytic properties of the reflection coefficient
of a multilayer slab backed by a perfectly conducting plane. The
result is a new form of the dispersion relationship indicating that
the logarithm of the reflection coefficient of the slab integrated
over the wavelength from zero to infinity is limited by the quan-
tity, which is proportional to the thickness of the structure and
to its averaged static permeability. The analysis of this relation
produces a useful information concerning the ultimate charac-
teristics of radar absorbers.

The results related to the performance of the radar absorbers
can be summarized as following. Simple analytical estimate
(9) is obtained of the ultimate bandwidth of radar absorbers.
It follows from (9) that in broad-band nonmagnetic radar ab-
sorbers (including multilayer ones) the thickness to bandwidth
ratio cannot be less than 1/17.2 at the 10-dB reflectance level.
For narrow-band and magnetic absorbers, the estimate can be
improved as given by inequalities (14) and (12), respectively.
The numerical study yields (17) for the ultimate bandwidth of
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an absorber made of a dielectric with generalized resonance dis-
persion law of the permittivity. In narrow-band dielectric ab-
sorbers, the optimal selection of the frequency dispersion of
permittivity cannot provide more than 4.4-fold broadening of
the 10-dB bandwidth in comparison with Dallenbach screen of
the same thickness, while the resonance dielectric dispersion
can produce not more than 2.6-fold broadening of the operating
bandwidth.

APPENDIX

We consider the location of nulls of the reflection coefficient at
the plane of complex wavelengths for the case when the magne-
todielectric layer under treatment has no dielectric and magnetic
losses. Hence, its permittivity and permeability have real positive
values and do not depend on frequency. The input impedance of
the layer backed by a metal substrate is given by [9]

(A.1)

where is the characteristic impedance of the layer
and and stand for the real and imaginary parts of the argu-
ment of the hyperbolic tangent.

The complex wavelengths at which the reflection coeffi-
cient is zero are the solutions of the equation . In
general, there are two solutions: ,
and , . As ; only one of
these is feasible in practice, depending on whether the module
of is larger than unity or not. In the majority of the practical
cases , and we need in the second solution. By denoting

i , this solution transforms to a pair of equations
governing the real and imaginary parts of

Artanh (A.2)

The solution of (A.2) for is

Artanh

Artanh

(A.3)

Therefore, the sum incorporated in the right part of (7) has a
form of series

(A.4)

where Artanh , Artanh . The
summation in (A.4) produces [15].
Putting the above values forand we arrive at

(A.5)

in agreement with (7). The result in case of is the same.
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