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Scattering from a Large Body with Cracks and
Cavities by the Fast and Accurate Finite-Element
Boundary-Integral Method

Xin-Qing Sheng, Edward Kai-Ning Yung, Chi H. Chan, J. M. Jin, and W. C. Chew

~ Abstract—A large body with cracks and cavities is a kind of typ- method (FEM) has been proposed to calculate electromagnetic
ical structure widely existing in realistic targets. In this paper, a scattering by some realistic targets [7], [8]. In this hybrid
newly developed fast and accurate finite-element boundary-inte- scheme, one needs to calculate the scattering of the incident

gral (FA-FE-BI) method is applied to compute scattering by this . - .
kind of scatterers. A thorough analysis on this FA-FE-BI numerical Wave by a large body without small features, which can be effi-

technique is presented, clearly demonstrating that this technique Ciently computed with the SBR and the scattering of equivalent
has computational complexityO(N log IN) and memory require- magnetic current by the large body without small features,
ment O(N) (IV is the total number of surface unknowns). Aniin-  which is approximated as scattering of equivalent magnetic
ward-looking approach is employed as a preconditioner t0 speed ¢;ryant by an infinite conducting plane. This approximation is
up the rate of convergence of iterative solvers for this structure. . o

Under these techniques, a powerful code is developed for this kind available only for craf:ks existing on _the_flat surface and far
of scatterers whose accuracy, efficiency, and capability is well con- away from the reflecting surface, which is not true for some
firmed by various numerical results. realistic targets.

Index Terms—Electromagnetic scattering, finite-element Eliminating the restriction of _the method in [_7] by the fast_
boundary-integral method, multilevel fact multipole algorithm. and accurate FE-BI method [9] is the goal of this paper. In this
paper, we first employ the efficient and accurate FE-BI method
to formulate the problem of scattering by a large body with
cracks and cavities. Then we apply the multilevel fast multi-

HE calculation of scattering by a large body with crackgole algorithm (MLFMA) to the boundary integral equation

and cavities has been of considerable interests beca(BH) to significantly reduce the memory requirement and com-
cracks and cavities widely exist in realistic targets and oftgrutational time. A thorough analysis of the cost of this tech-
they are dominant contributors to the scattering behavior of tavique clearly demonstrates that it has computational complexity
gets. Various empirical analytical methods have been develogg@V log V) and memory requiremer@®(/N) (N denotes the
to analyze this kind of problem such as the geometrical thegrymber of surface unknowns of the large body). To speed up
of diffraction (GTD) solution for wide cracks [1], the low-fre- the rate of convergence of the conjugate gradient (CG) method,
guency approximation solution for narrow cracks [2], and th@n inward-looking approach [10] is then employed as a precon-
solution based on the two types of scattering mechanisms for théoner to improve the spectral property of the final FE-BI ma-
cracks having large contours [3]. However, all of these analyitix equation. Various numerical results, and the choices of pa-
ical methods are designed for specific problems. Furthermorameters and interpolation (or anterpolation) technique in the
good results from these methods often rely on the deep physitBlIFMA are given in Section IV, demonstrating that the scat-
understanding to the problem. tering of a large body with cracks and cavities can be generally,

As computers grow faster and faster, more engineering aa¢curately, and efficiently computed by this technique.
scientific problems are solved with numerical techniques. Over
the past, an efficient low-frequency technique, hybrid finite-el- II. FORMULATION

ement boundary-integral (FE-BI) method, has been developedC ider th bl f elect i ttering b
to calculate scattering from cavities in an infinite ground plane onsider the problem ot electromagnetic wave scattering by

[4]-[6], but it cannot include the effect of arbitrarily shape large bOQy With cracks and cavities, V\_/hose cross section is
large bodies. To include all effects of a large body, sm ustrated in Fig. 1. The cracks and cavities can be empty or

Illed with inhomogeneous materials characterized by relative

features, and their interactions, an innovative hybrid scheme ittivity and bilit Owing to th ks and
the shooting-and-bouncing-ray (SBR) and the finite-elemeRg' VIt and permea ilitye,., 11-). Owing to the cracks an
cavities on the curved surface and close to the reflecting sur-

face, there are strong and complex interactions between small
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region Sy (S. denotes the surface region of the large body
excepts,), thus, the relation betwediE's, } and{H s, } can be
obtained with the aid of; on the surface regiof;. Applying

the electric-field integral equation (EFIE) to the exterior region
outsideS; andS,

L, (jl) - Ki;(M;)+ Lo (jQ) =E (3

is obtained. Applying the magnetic field integral equation
(MFIE) to the exterior region

K (jl) =+ Ll(Ml) + K> (jg) = ﬁz (4)

is also obtain_ed,_wherIai andK; are the integro-differential
operators [9]J1, J» andM, are related to the fields ofi by

5 J. =axH;,J, =57 x Hy andM; = E; x 7, respectively,
. o _ _ and(E?, H*) denote the incident fields.
Fig. 1. Alarge arbitrarily shaped body with a small cavity. Similar to [9], we employ the following linear combination

of EFIE, #ix EFIE, andiix MFIE
The field in the interior region can be formulated into an

equivalent variational problem with the functional given by [11] (L + 7 x Ly — 7 x Kyp) (T1)
1 rr1 +(K1+ﬁXK1+ﬁXL1)(M1)
F(E) =3 / {—(v XE)-(VXE)-kic,E-E| dV + (L2 +7 x Ly — 2 x K3) (J2)
v —E 4axE +axH )
—i—jko/ (E x H) - 7 dS o)
5

as the exterior equation to obtain good accuracy and efficiency,
and eliminate the problem of interior resonance. Discretizing (5)

1% interior volume of the cavity; yields
S1 outside part of the surface of the cavity PUE Hl — b 6
through which the interior field in the [PHEs} + [Q]{ S} (b} ©
) cavity intergcts with the exterior field; \where {Hs} denotes{Hs, Hs, }~.
n outward unit normal tc; Combining (2) and (6), we obtain the complete system
ko free-space wavenumber;
H = ZyH with .ZO free-space intrinsic impedance. . K, Kis 0 E; 0
Using the FEM with tetrahedral edge elements, we obtain the E _
tri ti Ksy Kss B St = 0 (7)
matrix equation 0 P Q e b
K;; Kis O EEI 0 which can be solved for the field insidé and onSy, Ss.
Ks; Kss BJ TS = { 0 } For large targets having a large number of unknowns in (7), it
5, becomes more expedient to choose iterative methods to solve (7)

since the computational complexity and memory requirement

where{E;} is a vector containing the discretized electric fieldf iteratives methods are less than those of direct methods. It is
insideV, {Es, }, and{H s, } are the vectors containing the diswell known that the dominant CPU time for iterative methods
cretized electric and magnetic fields h, respectively. Fur- is the product of two factors: the time for each iteration and the
thermore[ K], [K7s], [Ksi], [Kss], and[B;] are sparse sub- number of iteration required for a convergent solution. The first
matrices and, in particuldik;;] and[ K ss] are symmetrid,3;]  factor can be significantly reduced by the MLFMA, which will
is skew symmetric anfi{;s] = [Ks7]*, where the superscript be detailed in the next section. The second factor usually de-
T denotes a transpose operation. pends on spectral properties of the matrix that ultimately are

Equation (2) cannot be solved unless a relation betweeantrolled by the geometry of the problem. For the specific ge-
{Es,} and {Hs,} is established. In [9] such a relation isometry structure of a large body with cracks and cavities dis-
directly provided by the boundary integral equation. Howeverussed in this paper, the small features often distort the spectral
the surface regiory; in this problem is only the part of the distribution of the matrix in (7) resulting in a slow convergence.
large body surface, hence, the integral equation cannot Teimprove the spectral property of (7), a precondititioner sim-
used in the surface regiofy. To overcome this difficulty, we ilar to the inward-looking approach [10] is employed. The ex-
introduce another equivalent electric current on the surfapeession of the interior unknown€; } in the cracks with the
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surface unknowns of the crack&'s, } is first obtained using a
direct method

{Er} = —[K11] '[Kis{Es,}. (8)

Since the number of the interior unknowns in a crack is typi-
cally small, the CPU time for (8) can be omitted compared with
that for solving the whole equation. Furthermore, this step is
computed only once for all excitations. Substituting (8) into (7)
yields the final equation

[KJ%S g} {%SS } - {2} ©) _ @

which has a more favorable spectral property. Here, submatrix
[K%] is given by

[K%s] = [Kss] — [Ksi] (K]~ [Kps). (10)

I1l. A PPLICATION AND ANALYSIS OF THE MLFMA

Since the number of unknowns {IEs, } is very small com-
pared with that in{ Hs}, the CPU time for the whole matrix-
vector multiplication is mainly governed by the multiplication
of matrix [()] and vecto{ Hs }. Also, the memory requirement
is dominated by the dense matf@}]. The computational com-
plexity and memory requirementin the multiplicatior{@f and
{Hs} can be significantly reduced by the MLFMA.

To detail the implementation and demonstrate the computa-
tional complexity and memory requirement of the MLFMA,
consider a special case without loss of generality of the
MLFMA, where the integral surface is a square plane. The
square is first divided into four smaller squares illustrated in
Fig. 2(a), named as “level 1.” The symbok™in Fig. 2(a)
denotes the center of each subsquare. Each subsquare is then
recursively subdivided into smaller squares until the edge
length of the finest square is about half of a wavelength. Here, ©
we JUSt. cons_lder a three__level_ MLFMA. Fig. 2(b) and (C)Fig. 2. Athree-level MLFMA. (a) Level 1. (b) Level 2. (c) Level 3.
respectively, illustrate the situation of level 2 and level 3, where
the symbols “0” and ” stand for the center of each subsquare
in level 2 and level 3, respectively. basis function into the centers’in level 3 and group sources

In the MLFMA, the matrix—vector multiplication is consid-of four centers = in the level 3 into a single center “0” in level
ered to be the interaction of radiation sources, which is acco-The translation process includes the translation of coefficients
plished through three processes: 1) the aggregation proces®f®uter multipole expansions from each centétd the second
the translation process; and 3) the disaggregation process. Maarby center - in level 3 and from each center “0” to the
aggregation procesgroups the radiation sources of differensecond-nearby center “0” in level 2; the disaggregation process
centers in the child level into a single center at the parent leve¢ludes to distribute translated coefficients from the center “0”
and let the interaction of radiation sources between two fdp-level 2 to the center-" in level 3 and from the center-*in
away groups to be proceeded through outer multipole expa@vel 3 to original unknowns.
sions [12]. Thdranslation processranslates the coefficients of  Itis easy to understand that either aggregation process or dis-
outer multipole expansions between the second nearby centggregation process requires odl.N) computer operations
(second nearby centers will be explained later) in the same leireleach level. For instance, consider the level-3 aggregation
to proceed the interaction of radiation sources. @saggre- process. Suppose the number of the unknowns in each square
gation procesdglistributes the translated coefficients of multiin this level is V3, hence, there ar&/ = N/N3 subsquares.
pole expansions of the centers in parent levels to those of tBiace the number of the computer operation in each subsquare
centers in child levels. To be more specific, in this three-levid equal to the number of the outer multipole expansions [12],
case, the aggregation process includes to group sources ofwhéh approximates td&vs , therefore, the computer operation of

(b)
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the total level-3 aggregation processNg x M = N. It should
be noted that the problem of different numbers of outer multiple » S0 v Emey avey: VY-
expansions in different levels is solved by interpolation and an- | etolamede |~ whthow Cavity (MoM)
terpolation techniques for the aggregation process and the dis- R i diri
aggregation process, respectively [13]. Since interpolation ma- ]
trices and anterpolation matrices are sparse, the total computer . *f
operation for these process@§ N) in each level. g
Next, let us consider the translation process, which is the g o
essential process resulting in the reduction of the computational
complexity of the MLFMA. To understand the translation
process in the MLFMA, we first definsecond nearby centers
which are not nearby centers in the child level, but is nearby e
center in the parent level. For example, in level 3, the centers
in the lightly shaded squares are the second nearby centers of
the center “a,” others are not. Hence, the number of the second
nearby centers is less than a constant C, which can be evaluated

Cube with Dietectric Cavity, VV-pol

as 27 in this case. In the MLFMA, the translation of coefficients =
of outer multipole expansions just proceeds in second nearby s} buypivon
centers because the interaction between further source centers k. manra0n -
have been proceeded in the parent level. For example, the ] ) 4
coefficients of the outer multipole expansions need to be trans- i ’
lated to the center “a” in level 3 are those in the lightly shaded g ¢
squares, whereas the action from the centers in the darkly -t
shaded squares to the center “a” is obtained by disaggregation ok
of the coefficients of the outer multipole expansions in the — Empiy Caviy (FAFES)
X . . . -18¢+ | 0 Disleciric Cavity (FAFEBY)
center “A,” which is obtained from the parent level translation

process. The crucial point in the MLFMA is that the computer CHENETR R
operation of this translation process in each level is S{liv ),
which is achieved by the diagonal technique through using (b)

plane Wav,e basis, nam,ew’ the translatlori\bfcoefflments of Fig, 3. Monostatic RCS of a conducting cube with a cavity inkhelane. (a)
outer multipole expansions from one center to another secqgﬁoty cavity. (b) Dielectric cavity.

nearby center requirg3(N;) computer operations nG(N?).
Consider the level-3 translation process since the number c*
the outer multipole expansions for each subsquare, whicl
approximates tdvs, is the number of the computer operation in e
the translation process between two subsquares, the compul
operation of the translation process in this level approximate:
toC x N3 x M = C x N. Because the computer operation of
the aggregation process, translation process and disaggregati
process in each level are @l(V) and there aréog(N) level,

the computer operation of the matrix-vector multiplication is
O(Nlog N). Since the interpolation (anterpolation) matrices
are the same for different groups in the same level, the tota
memory requirement is, hena@( V).

o Seattering from Conducting Cube with Empty Cavity

~=—= Without Preconditioner
~ = Preconditioner

Normallaed Residual Norm
=

o 100 300 400 500 800
Number of erations

IV. RESULTS

A general code (FA-FE-BI) of the fast and accurate FE-Biig-4. Comparison of the rate of convergence between with the preconditioner
technique with the inward-looking preconditioner has been d{d without the preconditioner.
veloped for scattering by a large body with cracks and cavities.
In this code, theéicubic interpolation[17] is employed in the the accuracy, efficiency and capability of this technique. The
MLFMA implementation for the problem of different numbersaim of the first four experiments is to demonstrate the accu-
of outer multiple expansions in different levels. The integrahcy and validity of this technique. Initially, the method of mo-
over a unit sphere in the second elementary identity in the fasents (MoM) is used to calculate the scattering by a conducting
multipole method (FMM) is evaluated with Gaussian quadrdody without cracks. Then the MoM and FA-FE-BI are used
ture method mentioned in [12]. to calculate the scattering by the same body but with a empty
In this section, we present representative numerical resultscofick. Hence, the results from these two different techniques
five examples obtained with the FAFEBI code to demonstratan be compared to demonstrate the accuracy and validity of the
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Fig. 5. Monostatic RCSI of a conducting sphere with a cavity infhlane. g g Monostatic RCS of a conducting cylinder with a ring-like crack in the
(@) Empty cavity. (b) Dielectric cavity. E-plane. (a) Empty cavity. (b) Dielectric cavity.

FA-FE-BI code and also get some insights of the effect of cracktse effect of lossy materials to the RCS. Comparison of the rate
and cavities to the scattering behavior. At last, the FA-FE-BI of convergence between with the preconditioner and without the
used to compute the scattering by the same body with the sgoneconditioner is given in Fig. 4, demonstrating that the rate of
cracks filled with lossy materials, which is not readily availableonvergence with the preconditioner is about twice faster than
by the MoM technique. After these four numerical experimenthat without the preconditioner.
sufficiently confirming the accuracy and validity of this tech- The second example is the scattering by a conducting sphere
nigue, a large problem is analyzed to demonstrate the efficiengith a cylindrical cavity. This example differs from the first
and capability of this technique. one in that the cavity is situated on a curved surface. Fig. 5(a)
The first example is the scattering by a conducting cube wigitesents the comparisons between the numerical results from
a cavity illustrated in Fig. 3. Fig. 3(a) presents the comparisoR8-FE-BI and MoM for the sphere with a empty cavity and
between the numerical results from the FA-FE-BI and the Molthose from MoM for the same sphere without cavities. As ex-
for the cube with a cavity and those from the MoM for the sanyected, the cavity in this example has much more effect on
cube without cavities. We can observe the effect of the cavitytioe RCS than that in the first example. Again, good numerical
the radar cross section (RCS) and good numerical agreemexgseement is obtained between these two techniques, demon-
between these two different techniques. Fig. 3(b) demonstratgsating the accuracy and validity of the FA-FE-BI technique.
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Fig. 5(b) presents the RCS by the same sphere with the same
g- ( ) p- : y : : p_ _ Fig. 9. Bistatic RCS of a 24-wavelength conducting cylinder with a crack at
cavity but filled with lossy materials having = (3.0, —2.0) the incident anglé = 30°, ¢ = 0°
andp, = (2.0, —1.0). ’ '
Next, two more complex examples are presented. They are . . -
the scattering by a conducting cylinder with a ring-like crack angd ~ :t:)(z ;ar_n%c) as those in Fig. 8) at the incident angle
the scattering by a conducting conesphere with a crack. Figs. q;or al’l of?he ébove calculations, the number of multipoles
and 7 present numerical results of the monostatic RCS, showj . L T .
that the cracks greatly affect the RCS, especially for conductigaitrﬂnlngg 1?((2; )—(irp:)n?clloiz ;ﬂeﬂlﬁs?:r?ézogettt/]veeoerr? rtr\]/vlcf gcrr(])(l)Jspen
conesphere where the crack completely changes the RCS pat-, T
tern. This shows that strong and complex interactions exist b eritg:lsaoi:hhgm|g;;agﬁg 'i2p8el\f/lf0sz\e;ld ?%teh(ren Zrigr?)?:c?uvi\:ce)tk_
ZZ;Z?:Q;R/ee gr?;l:ljggézenE(r)r:weer?g;e;gée';?re]elr:}?-FE-BI and I\/Ioment and CPU time for all examples are listed in Table | from
. ) . . hich we can see that the MLFMA with preconditioner signif-
At last, we compute the scattering by a conducting cyhndlgcfantl reduce the memory requirement gnd CPU time 9
having1.5 g diameter and 2 A\, height, on the side of which y y )
there is a lossy-material-filled crack havigghq long, 0.3 A\ V. CONCLUSION

deep, and 30subtented angle. Fig. 8 presents the both vertical
(VV) polarization and horizontal (HH) polarization monostatic In this paper, the fast and accurate FE-BI formulation has

RCS. Fig. 9 is the bistatic RCS by a more large conductirmpen applied to analyze the problem of scattering by a large
cylinder with24 \g height andt Ag long crack (other dimen- body with cracks and cavities. A thorough analysis on the cost
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TABLE |

THE MEMORY REQUIREMENT AND CPU TiME OF COMPUTATION OF ONE MONONSTATIC RCSBY VARIOUS SCATTERS WITH A LOSSYMATERIAL FILLED CRACK

Scatterers MLFMA +Preconditioner Without MLFMA+Preconditioner
Level of MLFMA | Memory (Mb) | CPU (s) | Memory (Mb) CPU (s)
brick ' 2 14.1 43 52.3 650
sphere 3 12.3 94 1174 1206
cylinder in Fig.6 4 23.3 219 | 587.1
conesphere 3 13.8 56 66.8 506
cylinder in Fig.8 6 50.6 571 3109.4
cylinder in Fig.9 7 97.1 1107 | 11578.0

of this technique clearly demonstrates that it has computation@s] A. J. Poggio and E. K. Miller, “Integral equation solutions of three di-
complexity O(N log N) and memory requiremer@(N). An mensional scattering problems,” @omputer Techniques for Electro-

inward-looking approach has been successfully employed asf)

magnetics Oxford, U.K.: Permagon, 1973, ch. 4.
S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering

preconditioner to speed up the rate of convergence of the CG by surfaces of arbitrary shapdEEE Trans. Antennas Propagatiol.
solver. A variety of numerical examples are presented, demon-_ AP-30, pp. 409-418, May 1982.

strating that the scattering problem investigated in this paper cz§r117]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanniity
merical Recipes in Fortran New York: Cambridge Univ. Press, 1992.

be generally, accurately, efficiently computed by this technique.
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