
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 8, AUGUST 2000 1153

Scattering from a Large Body with Cracks and
Cavities by the Fast and Accurate Finite-Element

Boundary-Integral Method
Xin-Qing Sheng, Edward Kai-Ning Yung, Chi H. Chan, J. M. Jin, and W. C. Chew

Abstract—A large body with cracks and cavities is a kind of typ-
ical structure widely existing in realistic targets. In this paper, a
newly developed fast and accurate finite-element boundary-inte-
gral (FA-FE-BI) method is applied to compute scattering by this
kind of scatterers. A thorough analysis on this FA-FE-BI numerical
technique is presented, clearly demonstrating that this technique
has computational complexity ( log ) and memory require-
ment ( ) ( is the total number of surface unknowns). An in-
ward-looking approach is employed as a preconditioner to speed
up the rate of convergence of iterative solvers for this structure.
Under these techniques, a powerful code is developed for this kind
of scatterers whose accuracy, efficiency, and capability is well con-
firmed by various numerical results.

Index Terms—Electromagnetic scattering, finite-element
boundary-integral method, multilevel fact multipole algorithm.

I. INTRODUCTION

T HE calculation of scattering by a large body with cracks
and cavities has been of considerable interests because

cracks and cavities widely exist in realistic targets and often
they are dominant contributors to the scattering behavior of tar-
gets. Various empirical analytical methods have been developed
to analyze this kind of problem such as the geometrical theory
of diffraction (GTD) solution for wide cracks [1], the low-fre-
quency approximation solution for narrow cracks [2], and the
solution based on the two types of scattering mechanisms for the
cracks having large contours [3]. However, all of these analyt-
ical methods are designed for specific problems. Furthermore,
good results from these methods often rely on the deep physical
understanding to the problem.

As computers grow faster and faster, more engineering and
scientific problems are solved with numerical techniques. Over
the past, an efficient low-frequency technique, hybrid finite-el-
ement boundary-integral (FE-BI) method, has been developed
to calculate scattering from cavities in an infinite ground plane
[4]–[6], but it cannot include the effect of arbitrarily shaped
large bodies. To include all effects of a large body, small
features, and their interactions, an innovative hybrid scheme of
the shooting-and-bouncing-ray (SBR) and the finite-element
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method (FEM) has been proposed to calculate electromagnetic
scattering by some realistic targets [7], [8]. In this hybrid
scheme, one needs to calculate the scattering of the incident
wave by a large body without small features, which can be effi-
ciently computed with the SBR and the scattering of equivalent
magnetic current by the large body without small features,
which is approximated as scattering of equivalent magnetic
current by an infinite conducting plane. This approximation is
available only for cracks existing on the flat surface and far
away from the reflecting surface, which is not true for some
realistic targets.

Eliminating the restriction of the method in [7] by the fast
and accurate FE-BI method [9] is the goal of this paper. In this
paper, we first employ the efficient and accurate FE-BI method
to formulate the problem of scattering by a large body with
cracks and cavities. Then we apply the multilevel fast multi-
pole algorithm (MLFMA) to the boundary integral equation
(BIE) to significantly reduce the memory requirement and com-
putational time. A thorough analysis of the cost of this tech-
nique clearly demonstrates that it has computational complexity

and memory requirement ( denotes the
number of surface unknowns of the large body). To speed up
the rate of convergence of the conjugate gradient (CG) method,
an inward-looking approach [10] is then employed as a precon-
ditioner to improve the spectral property of the final FE-BI ma-
trix equation. Various numerical results, and the choices of pa-
rameters and interpolation (or anterpolation) technique in the
MLFMA are given in Section IV, demonstrating that the scat-
tering of a large body with cracks and cavities can be generally,
accurately, and efficiently computed by this technique.

II. FORMULATION

Consider the problem of electromagnetic wave scattering by
a large body with cracks and cavities, whose cross section is
illustrated in Fig. 1. The cracks and cavities can be empty or
filled with inhomogeneous materials characterized by relative
permittivity and permeability . Owing to the cracks and
cavities on the curved surface and close to the reflecting sur-
face, there are strong and complex interactions between small
features and the large body and it is difficult to decouple the
original problem into two separate problems as in [7]. There-
fore, we have to consider the small features and the large body
as a whole. To this end, we employ the newly developed effi-
cient and accurate FE-BI formulation [9] to formulate this kind
of specific problem.
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Fig. 1. A large arbitrarily shaped body with a small cavity.

The field in the interior region can be formulated into an
equivalent variational problem with the functional given by [11]

(1)

where
interior volume of the cavity;
outside part of the surface of the cavity
through which the interior field in the
cavity interacts with the exterior field;
outward unit normal to ;
free-space wavenumber;

with free-space intrinsic impedance.
Using the FEM with tetrahedral edge elements, we obtain the
matrix equation

(2)

where is a vector containing the discretized electric field
inside , , and are the vectors containing the dis-
cretized electric and magnetic fields on, respectively. Fur-
thermore, , , , , and are sparse sub-
matrices and, in particular, and are symmetric,
is skew symmetric and , where the superscript

denotes a transpose operation.
Equation (2) cannot be solved unless a relation between

and is established. In [9] such a relation is
directly provided by the boundary integral equation. However,
the surface region in this problem is only the part of the
large body surface, hence, the integral equation cannot be
used in the surface region . To overcome this difficulty, we
introduce another equivalent electric current on the surface

region ( denotes the surface region of the large body
except ), thus, the relation between and can be
obtained with the aid of on the surface region . Applying
the electric-field integral equation (EFIE) to the exterior region
outside and

(3)

is obtained. Applying the magnetic field integral equation
(MFIE) to the exterior region

(4)

is also obtained, where and are the integro-differential
operators [9], , and are related to the fields on by

, and , respectively,
and denote the incident fields.

Similar to [9], we employ the following linear combination
of EFIE, EFIE, and MFIE

(5)

as the exterior equation to obtain good accuracy and efficiency,
and eliminate the problem of interior resonance. Discretizing (5)
yields

(6)

where denotes .
Combining (2) and (6), we obtain the complete system

(7)

which can be solved for the field inside and on .
For large targets having a large number of unknowns in (7), it

becomes more expedient to choose iterative methods to solve (7)
since the computational complexity and memory requirement
of iteratives methods are less than those of direct methods. It is
well known that the dominant CPU time for iterative methods
is the product of two factors: the time for each iteration and the
number of iteration required for a convergent solution. The first
factor can be significantly reduced by the MLFMA, which will
be detailed in the next section. The second factor usually de-
pends on spectral properties of the matrix that ultimately are
controlled by the geometry of the problem. For the specific ge-
ometry structure of a large body with cracks and cavities dis-
cussed in this paper, the small features often distort the spectral
distribution of the matrix in (7) resulting in a slow convergence.
To improve the spectral property of (7), a precondititioner sim-
ilar to the inward-looking approach [10] is employed. The ex-
pression of the interior unknowns in the cracks with the
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surface unknowns of the cracks is first obtained using a
direct method

(8)

Since the number of the interior unknowns in a crack is typi-
cally small, the CPU time for (8) can be omitted compared with
that for solving the whole equation. Furthermore, this step is
computed only once for all excitations. Substituting (8) into (7)
yields the final equation

(9)

which has a more favorable spectral property. Here, submatrix
is given by

(10)

III. A PPLICATION AND ANALYSIS OF THE MLFMA

Since the number of unknowns in is very small com-
pared with that in , the CPU time for the whole matrix-
vector multiplication is mainly governed by the multiplication
of matrix and vector . Also, the memory requirement
is dominated by the dense matrix . The computational com-
plexity and memory requirement in the multiplication of and

can be significantly reduced by the MLFMA.
To detail the implementation and demonstrate the computa-

tional complexity and memory requirement of the MLFMA,
consider a special case without loss of generality of the
MLFMA, where the integral surface is a square plane. The
square is first divided into four smaller squares illustrated in
Fig. 2(a), named as “level 1.” The symbol “” in Fig. 2(a)
denotes the center of each subsquare. Each subsquare is then
recursively subdivided into smaller squares until the edge
length of the finest square is about half of a wavelength. Here,
we just consider a three-level MLFMA. Fig. 2(b) and (c),
respectively, illustrate the situation of level 2 and level 3, where
the symbols “o” and “” stand for the center of each subsquare
in level 2 and level 3, respectively.

In the MLFMA, the matrix–vector multiplication is consid-
ered to be the interaction of radiation sources, which is accom-
plished through three processes: 1) the aggregation process; 2)
the translation process; and 3) the disaggregation process. The
aggregation processgroups the radiation sources of different
centers in the child level into a single center at the parent level
and let the interaction of radiation sources between two far-
away groups to be proceeded through outer multipole expan-
sions [12]. Thetranslation processtranslates the coefficients of
outer multipole expansions between the second nearby centers
(second nearby centers will be explained later) in the same level
to proceed the interaction of radiation sources. Thedisaggre-
gation processdistributes the translated coefficients of multi-
pole expansions of the centers in parent levels to those of the
centers in child levels. To be more specific, in this three-level
case, the aggregation process includes to group sources of the

(a)

(b)

(c)

Fig. 2. A three-level MLFMA. (a) Level 1. (b) Level 2. (c) Level 3.

basis function into the centers “” in level 3 and group sources
of four centers “” in the level 3 into a single center “o” in level
2. The translation process includes the translation of coefficients
of outer multipole expansions from each center “” to the second
nearby center “” in level 3 and from each center “o” to the
second-nearby center “o” in level 2; the disaggregation process
includes to distribute translated coefficients from the center “o”
in level 2 to the center “” in level 3 and from the center “” in
level 3 to original unknowns.

It is easy to understand that either aggregation process or dis-
aggregation process requires only computer operations
in each level. For instance, consider the level–3 aggregation
process. Suppose the number of the unknowns in each square
in this level is , hence, there are subsquares.
Since the number of the computer operation in each subsquare
is equal to the number of the outer multipole expansions [12],
which approximates to , therefore, the computer operation of
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the total level-3 aggregation process is . It should
be noted that the problem of different numbers of outer multiple
expansions in different levels is solved by interpolation and an-
terpolation techniques for the aggregation process and the dis-
aggregation process, respectively [13]. Since interpolation ma-
trices and anterpolation matrices are sparse, the total computer
operation for these process is in each level.

Next, let us consider the translation process, which is the
essential process resulting in the reduction of the computational
complexity of the MLFMA. To understand the translation
process in the MLFMA, we first definesecond nearby centers,
which are not nearby centers in the child level, but is nearby
center in the parent level. For example, in level 3, the centers
in the lightly shaded squares are the second nearby centers of
the center “a,” others are not. Hence, the number of the second
nearby centers is less than a constant C, which can be evaluated
as 27 in this case. In the MLFMA, the translation of coefficients
of outer multipole expansions just proceeds in second nearby
centers because the interaction between further source centers
have been proceeded in the parent level. For example, the
coefficients of the outer multipole expansions need to be trans-
lated to the center “a” in level 3 are those in the lightly shaded
squares, whereas the action from the centers in the darkly
shaded squares to the center “a” is obtained by disaggregation
of the coefficients of the outer multipole expansions in the
center “A,” which is obtained from the parent level translation
process. The crucial point in the MLFMA is that the computer
operation of this translation process in each level is still ,
which is achieved by the diagonal technique through using
plane wave basis, namely, the translation ofcoefficients of
outer multipole expansions from one center to another second
nearby center requires computer operations not .
Consider the level-3 translation process since the number of
the outer multipole expansions for each subsquare, which
approximates to , is the number of the computer operation in
the translation process between two subsquares, the computer
operation of the translation process in this level approximates
to . Because the computer operation of
the aggregation process, translation process and disaggregation
process in each level are all and there are level,
the computer operation of the matrix-vector multiplication is

. Since the interpolation (anterpolation) matrices
are the same for different groups in the same level, the total
memory requirement is, hence, .

IV. RESULTS

A general code (FA-FE-BI) of the fast and accurate FE-BI
technique with the inward-looking preconditioner has been de-
veloped for scattering by a large body with cracks and cavities.
In this code, thebicubic interpolation[17] is employed in the
MLFMA implementation for the problem of different numbers
of outer multiple expansions in different levels. The integral
over a unit sphere in the second elementary identity in the fast
multipole method (FMM) is evaluated with Gaussian quadra-
ture method mentioned in [12].

In this section, we present representative numerical results of
five examples obtained with the FAFEBI code to demonstrate

(a)

(b)

Fig. 3. Monostatic RCS of a conducting cube with a cavity in theE-plane. (a)
Empty cavity. (b) Dielectric cavity.

Fig. 4. Comparison of the rate of convergence between with the preconditioner
and without the preconditioner.

the accuracy, efficiency and capability of this technique. The
aim of the first four experiments is to demonstrate the accu-
racy and validity of this technique. Initially, the method of mo-
ments (MoM) is used to calculate the scattering by a conducting
body without cracks. Then the MoM and FA-FE-BI are used
to calculate the scattering by the same body but with a empty
crack. Hence, the results from these two different techniques
can be compared to demonstrate the accuracy and validity of the
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(a)

(b)

Fig. 5. Monostatic RCS of a conducting sphere with a cavity in theE-plane.
(a) Empty cavity. (b) Dielectric cavity.

FA-FE-BI code and also get some insights of the effect of cracks
and cavities to the scattering behavior. At last, the FA-FE-BI is
used to compute the scattering by the same body with the same
cracks filled with lossy materials, which is not readily available
by the MoM technique. After these four numerical experiments
sufficiently confirming the accuracy and validity of this tech-
nique, a large problem is analyzed to demonstrate the efficiency
and capability of this technique.

The first example is the scattering by a conducting cube with
a cavity illustrated in Fig. 3. Fig. 3(a) presents the comparisons
between the numerical results from the FA-FE-BI and the MoM
for the cube with a cavity and those from the MoM for the same
cube without cavities. We can observe the effect of the cavity to
the radar cross section (RCS) and good numerical agreements
between these two different techniques. Fig. 3(b) demonstrates

(a)

(b)

Fig. 6. Monostatic RCS of a conducting cylinder with a ring-like crack in the
E-plane. (a) Empty cavity. (b) Dielectric cavity.

the effect of lossy materials to the RCS. Comparison of the rate
of convergence between with the preconditioner and without the
preconditioner is given in Fig. 4, demonstrating that the rate of
convergence with the preconditioner is about twice faster than
that without the preconditioner.

The second example is the scattering by a conducting sphere
with a cylindrical cavity. This example differs from the first
one in that the cavity is situated on a curved surface. Fig. 5(a)
presents the comparisons between the numerical results from
FA-FE-BI and MoM for the sphere with a empty cavity and
those from MoM for the same sphere without cavities. As ex-
pected, the cavity in this example has much more effect on
the RCS than that in the first example. Again, good numerical
agreement is obtained between these two techniques, demon-
strating the accuracy and validity of the FA-FE-BI technique.
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(a)

(b)

Fig. 7. Monostatic RCS of a conducting conesphere with a crack in the
E-plane. (a) Empty cavity. (b) Dielectric cavity.

Fig. 5(b) presents the RCS by the same sphere with the same
cavity but filled with lossy materials having
and .

Next, two more complex examples are presented. They are
the scattering by a conducting cylinder with a ring-like crack and
the scattering by a conducting conesphere with a crack. Figs. 6
and 7 present numerical results of the monostatic RCS, showing
that the cracks greatly affect the RCS, especially for conducting
conesphere where the crack completely changes the RCS pat-
tern. This shows that strong and complex interactions exist be-
tween the crack and the conesphere. The FA-FE-BI and MoM
again give a fairly good numerical agreement.

At last, we compute the scattering by a conducting cylinder
having diameter and height, on the side of which
there is a lossy-material-filled crack having long,
deep, and 30subtented angle. Fig. 8 presents the both vertical
(VV) polarization and horizontal (HH) polarization monostatic
RCS. Fig. 9 is the bistatic RCS by a more large conducting
cylinder with height and long crack (other dimen-

Fig. 8. Monostatic RCS of a conducting cylinder with a crack.

Fig. 9. Bistatic RCS of a 24-wavelength conducting cylinder with a crack at
the incident angle� = 30 ; ' = 0 .

are the same as those in Fig. 8) at the incident angle
.

For all of the above calculations, the number of multipoles
for truncating the expansion in the addition theorem is chosen
as ( is the distance between two group
centers). The computation is performed at the DEC alpha work-
station with 50 Mflops and 128M RAM. The memory require-
ment and CPU time for all examples are listed in Table I from
which we can see that the MLFMA with preconditioner signif-
icantly reduce the memory requirement and CPU time.

V. CONCLUSION

In this paper, the fast and accurate FE-BI formulation has
been applied to analyze the problem of scattering by a large
body with cracks and cavities. A thorough analysis on the cost
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TABLE I
THE MEMORY REQUIREMENT AND CPU TIME OF COMPUTATION OFONE MONONSTATICRCSBY VARIOUS SCATTERS WITH A LOSSYMATERIAL FILLED CRACK

of this technique clearly demonstrates that it has computational
complexity and memory requirement . An
inward-looking approach has been successfully employed as a
preconditioner to speed up the rate of convergence of the CG
solver. A variety of numerical examples are presented, demon-
strating that the scattering problem investigated in this paper can
be generally, accurately, efficiently computed by this technique.
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