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Inset Microstripline-Fed Circularly Polarized Microstrip
Antennas

Wen-Shyang Chen, Kin-Lu Wong, and Chun-Kun Wu

Abstract—Circular polarization (CP) designs of inset microstripline-fed
microstrip antennas are proposed. Three designs with a single slit, two pairs
of slits, and three pairs of slits are experimentally studied. Good CP perfor-
mances of the proposed antennas are achieved. For the design with three
pairs of slits studied here, the center CP frequency is also seen to be low-
ered by about 33% compared to the case without slits, which suggests that
an antenna size reduction as large as 55% can be obtained if the proposed
design is used in place of a conventional CP design at a fixed frequency.

Index Terms—Circular polarization (CP), inset microstripline-fed, mi-
crostrip antenna.

I. INTRODUCTION

Microstrip antennas directly excited using a 50-
 inset mi-
crostripline have the advantage of no external impedance transformer
required and are very suitable for applications in integration with
associated coplanar microwave circuitry. However, related designs
with an inset microstripline feed are mainly for achieving linear
polarization operations [1] and, to the authors’ knowledge, the designs
of inset microstripline-fed circularly polarized microstrip antennas are
not available in the open literature.

In this paper, we propose new CP designs for exciting a circularly
polarized microstrip antenna using a 50-
 inset microstripline. The
main problem to be solved is the perturbation effects caused by the
inset microstripline on the excited patch surface current, which makes
it difficult for the excitation of two orthogonal near-degenerate resonant
modes for CP radiation. It is found that by inserting a single slit or pairs
of slits at the patch edges (see Fig. 1), the excitation of two orthogonal
near-degenerate modes for CP radiation becomes easy to be achieved.
Details of the proposed designs applied to a corner-truncated square
microstrip antenna are presented.

II. A NTENNA DESIGNS

Three proposed designs are shown in Fig. 1. Fig. 1(a) shows the case
with a narrow slit (denoted as design A here); Fig. 1(b) is for the case
with two pairs of slits (design B); and the design in Fig. 1(c) is with
three pair of inserted slits (design C). The 50-
 inset microstrip line has
a widthwc and an inset length̀t. All the inserted slits are of length̀s
and width 1 mm and the pairs of slits in Fig. 1(b) and (c) are also with
a distanced apart. The square patch has a side lengthL and a pair of
truncated corners of dimensions�L��L. Because of the combined
effects of the inset microstripline and the slits, two orthogonal near-de-
generate modes for CP radiation can easily be excited. Also, the excited
patch surface currents are meandered in the proposed designs, and the
obtained center CP frequency will greatly be lowered, compared to a
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Fig. 1. Geometry of the proposed inset microstripline-fed microstrip antennas
for circular polarization. (a) Design A: the corner-truncated square patch with
a slit. (b) Design B: the corner-truncated square patch with two pairs of slits.
(c) Design C: the corner-truncated square patch with three pairs of slits. The
antennas are all with right-hand CP radiation.

probe-fed truncated-square microstrip antenna [2]. That is, compact CP
radiation [3]–[5] can be achieved for the proposed designs.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A probe-fed circularly polarized truncated-square microstrip
antenna [2] is first constructed as a reference antenna. The dimensions
of truncated corners, the CP bandwidth, and the center CP frequency
(fc; defined here as the frequency with minimum axial ratio in the CP
bandwidth) are shown in Table I. Fig. 2 presents the measured input
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TABLE I
CP PERFORMANCES FOR THEPROPOSEDINSET MICROSTRIPLINE-FED

MICROSTRIPANTENNAS; L = 28 mm," = 4:4, h = 1:6 mm,w = 3:0 mm

(a)

(b)

Fig. 2. Measured (a) input impedance and (b) axial ratio in the broadside
direction of the proposed antenna (design A) in Fig. 1(a);L = 28 mm,�L =

3:3 mm," = 4:4,h = 1:6 mm,` = 9:7 mm,` = 7:4 mm,w = 3:0 mm,
ground-plane size= 60� 60 mm .

impedance and axial ratio of design A, and the corresponding results
along with the design parameters are given in Table I. The design pa-
rameters can be obtained from the simulation software IE3D.1 Two
near-degenerate resonant modes with good impedance matching are
excited [see Fig. 2(a)], and the CP bandwidth [see Fig. 2(b); determined
by 3-dB axial ratio] is 17 MHz or about 0.8% with respect to the center
frequency at 2183 MHz. Note that the center frequency is lowered by
about 12% as compared to that (2480 MHz) of the reference antenna.
This can correspond to an antenna size reduction of about 23% for using
design A in place of the reference antenna at a fixed frequency. Mea-
sured radiation patterns are plotted in Fig. 3 and good right-hand CP
radiation is obtained.

For designs B and C, related parameters can also be obtained from
IE3D and are given in Table I. It is found that the center CP frequencies
of designs B and C occur, respectively, at 1775 and 1653 MHz, lowered

1IE3D is a trademark.

Fig. 3. Measured radiation patterns in two orthogonal planes for the antenna
shown in Fig. 2 withf = 2183 MHz.

by about 28% and 33% compared to that of the reference antenna. That
is, an antenna size reduction about 49% or 55% can be expected at a
fixed frequency by replacing the reference antenna with design B or C.
Also, from measured radiation patterns of designs B and C, good CP
radiation is observed.

IV. CONCLUSION

Novel inset microstripline-fed circularly polarized microstrip
antennas with corner-truncated square patches have been proposed
and implemented. In addition to good CP radiation obtained, a large
antenna size reduction for operating at a fixed frequency can be
obtained by using the proposed antennas in place of the conventional
CP antennas with simple patches [2] and, although only the designs
with corner-truncated square patches are demonstrated, the proposed
designs are expected to be applicable to other promising patches such
as a circular patch with a pair of peripheral cuts [4] or with a tuning
stub [6].
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Acceleration of On-Surface MEI Method by New Metrons
and FMM for 2-D Conducting Scattering

Y. W. Liu, Y. W. Zhao, and K. K. Mei

Abstract—In this paper, a new kind of metron is proposed and rapid
integration provided by fast multipole methods (FMM) is implemented to
dramatically reduce the CPU time of finding the MEI coefficients in the
on-surface measured equation of invariance (OSMEI) method. The numer-
ical example of the scattering of a large conducting elliptical cylinder shows
that the computation speed is at least one order of magnitude faster than
that of the original OSMEI, where sinusoidal metrons are used, and about
25% faster than that of the FMM, where the iteration method is used.

Index Terms—Electromagnetic scattering, fast solvers.

I. INTRODUCTION

The measured equation of invariance (MEI) method [1] has been
developed to on-surface level (OSMEI) [2]–[4] to generate a sparse
matrix with a minimum number of unknowns. Most of the time con-
sumed by the MEI method is to find the matrix elements called MEI
coefficients. Although the interpolation and extrapolation techniques
[2], [5] can be used in reducing this burden for large object scattering,
we still need to seek other possible solutions. Let us look at how many
operations are needed for finding the MEI coefficients. In order to find
the MEI coefficients in the OSMEI method, there are2P integrations
expressed in Section II should be completed, whereP is the number
of assumed surface currents, called metrons. For each integration, the
operation count is of orderO(M2), whereM is the total number of
unknowns. Therefore, the total operation count isO(2PM2). Usu-
ally, a set of sinusoidal functions is chosen as metrons. A few of the
sinusoidal metrons is enough for small objects, but the number of si-
nusoidal metrons linearly increases with object size. This is the reason
why finding the MEI coefficients is a dominant part for time consuming
when the object becomes large. If a new kind of metron can be found
to keep the number increasing slowly with the object size, it will bring
great time saving. Furthermore, if the fast multipole methods (FMM),
which reduces the operation count of the integration fromO(M2) to
O(M1:5) [6], or O(M1:33)[7], or evenO(M logM) [8], are used in
the integration process in the OSMEI method, it would result in an
extra time saving. In this paper, a new kind of metron is proposed and
the FMM is used to accelerate the integration in the OSMEI method.
Since far fewer new metrons are required for large objects and FMM is
used to speed up the integration, the computation speed of the OSMEI
is significantly increased. A numerical example shows that the com-
putation speed is at least one order of magnitude faster than that of
original OSMEI, where sinusoidal metrons are used, and is also about
25% faster than that of the FMM, where iteration is used.

II. REVIEW OF OSMEI METHOD

In order to understand how the metrons affect the integration, it is
necessary to briefly review the OSMEI method. For simplicity, let us
only consider TM scattering by a two-dimensional (2-D) perfectly con-
ducting cylindrical scatterer whose axis is aligned with thez coordinate
axis (Fig. 1). The scatterer has a boundaryC with an arbitrary cross
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Fig. 1. A 2-D perfectly conducting cylinder with its new metron.

section. As described in [2] and [3], the MEI equations for each node
under TM polarization can be written as

N
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l )
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n = 0 p = 1; 2; . . . ; P (1)

whereN is the number of local nodes andan andbn are known as MEI
coefficients to be determined. If the circumference of the scatterer has
a total ofM nodes, there existM MEI equations.(Hs
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p and(Es
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where:
! angular frequency;
�0 permeability of the free-space;
j equal to

p�1;
P number of assumed surface currents,Jp(�), which are

known as metrons.
Usually, sinusoidal functions are chosen as metrons. Since only(2N�
1) coefficients in equation (1) are independent,P is required to be
greater than or equal to(2N � 1). The number of integrations in (2)
and (3) is equal toP . The coefficientsan andbn can be numerically
found by substituting (2) and (3) into (1). Having applied the real metal
boundary conditions of TM on the scatterer boundaryC, we have the
following system of equations:

[A]Hs
l = [B]Ein

z (4)

where[A] and[B] areM �M cyclic band matrices with bandwidth
N , whereM is a large number (total nodes), andN is a small number
(local nodes). VectorEin

z represents incident electric field on the scat-
terer surface. VectorHs

l stands for tangential scattered magnetic field
components to be solved. Finally, the induced current density is a sum-
mation of the tangential scattered magnetic field and tangential incident
magnetic field.

For 2-D scattering problems,N is a small number, say three, and is
much less thanM . What we want is to find a new kind of the metron
that keepsN same and keeps the number of integrations required for
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finding the MEI coefficients in slowly increase withM rapidly in-
creased to reduce the operation count.

III. N EW METRONSPLUS FMM

In general, any orthogonal set of functions along the scatterer
boundaryC can be chosen as metrons. Usually, sinusoidal functions
(or harmonic functions) are chosen as the metrons. As indicated in
[2], the number of sinusoidal metrons is propotional to the electrical
size of the scatterer, i.e.,

P = 2kRmax �+ 1 0 � l0 � L (5)

whereRmax is the radius of the smallest cylinder enclosing the scatterer
and� is a coefficient slightly larger than one. The fast Fourier transfor-
mation (FFT) is used to speed up the integration of (2) and (3) in [2],
but the total number of operations still grows asf2 log2 f [2], where
f is the frequency of the incidence wave. It is still time consuming for
large object scattering. We need to find a new kind of metron to keep
the number of metrons increasing slowly when the size is increased.

It is found that the following new metrons, as shown in Fig. 1, satisfy
this requirement

Jp(l0) = e�jkR =Rp p = 1; 2; . . . ; P

P =5 + 

p
kRmax 0:5 � 
 � 0:7 (6)

where
Rp = j�l � �pj;
l0 source position on the scatterer boundaryC;
�l corresponding position vector;

and

�p = �Cp +R0
 

np (7)

where:
�Cp position vector distributed uniformly along the scatterer

boundaryC;
 

np outward-normal vector to the boundaryC at�Cp;
R0 constant.

Typical values ofR0 range fromRmax=4 toRmax=2. The feature of the
metrons in (6) is that both the phase and amplitude of the metrons are
changed with the source positions. Because of this feature, in compar-
ison with sinusoidal metrons, far fewer metrons are required for calcu-
lating the MEI coefficients. A possible reason for the metrons to greatly
affect the integration is that using different metrons in OSMEI is equiv-
alent to use different test functions in the MoM. Numerical experience
tells us that the better metrons can keep the number of unknowns in
each OSMEI equation almost same as the electrical size of the scat-
terer grows.

To further reduce the computation count of each integration in (2)
and (3), a rapid integral algorithm based on the FMM [6], [7] is imple-
mented as follows.

Assuming that�i and�i are the field point and source point, respec-
tively, we have

�ii = �iii � �i = �iii � �m + �m � �m + �m � �iii

= �mm + (�im � �i m ) (8)

where�m and�m are the centers of themth andm0th groups, which
�i and�i belong to, respectively. Then, using the addition theorem of

Fig. 2. Number of metron required in this paper is compared with that of Rius
et al. [2].

zero-order Hankel function of the second kind [9], (2) and (3) can be
expressed as
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The first term in (9) and (10), which is calculated by the FMM, is the
far interaction with all the nonnearby groups; the second term, which
can be calculated by direct numerical computation similar to the MoM,
is the contribution from the nearby groups. In (9) and (10),

 

n i is the
outward-normal vector to the boundaryC at �i, �� = 2�=Q, and
�q = q��, q = 1; 2; . . . ; Q, in whichQ=2 = koD+5`n(koD+�)
whereD is the diameter of the circle enclosing the group, whereas
kkkq = k(

 

x cos�q +
 

y sin�q),
 

x and
 

y are the direction of thex- and
y-axis, respectively, and
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N
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H(2)
n (k�mm )e�jn(��' +�=2) (11)

V (�) =
C

Jp (�i )e
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where:
'mm angle between vector�mm andx-axis;
H
(2)
n n-order Hankel function of the second kind;

Nt = Q=2.

IV. NUMERICAL RESULTS

Using the new metrons in (6) and the FMM in the OSMEI method,
the computational speed is significantly accelerated for the scattering
of 2-D large conducting objects. Fig. 2 shows the comparison of
the number of metrons required for the new metrons and sinusoidal
metrons. It shows that the number of metrons can be reduced at least
two orders of magnitude for the large object scattering. In Fig. 3, the
comparison of the central processing unit (CPU) time as a function
of the number of unknowns is plotted. It can be seen that the number
of new metrons and the CPU time are dramatically reduced. The
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Fig. 3. CPU time of this paper is compared to Riuset al. [2] and FMM.

Fig. 4. Comparison of the current densities by the current approach and FMM
for an elliptical cylinder illuminated by a 0TM plane wave incidence. The
major and minor semi-axis are45� and22�, respectively.

CPU time for this new approach is about 25% less than that of the
FMM with iteration method and about one order of magnitude less
than that of the sinusoidal metrons with general integral methods. If
an improved FMM version [8] is used, the CPU time can be further
saved. Fig. 4 shows the comparison of the surface current densities by
the current technique and the FMM for a large conducting elliptical
cylinder with45� major semi-axis and22� minor semi-axis under 0�

TM plane wave incidence. The agreement is very good. It should be
emphasized that only the integration part rather than the iteration part
of the FMM is used in the OSMEI method to accelerate the integration
process.

V. CONCLUSION

A novel metron set for on-surface MEI (OSMEI) has been proposed.
Far fewer metrons are required for calculating the MEI coefficients.
The fast multipole procedure has been implemented to speed up the in-
tegration. The numerical examples show that the speed of the current
approach is faster than that of the FMM with the iteration method. We
hope that the new metrons can be extended to three-dimensional scat-
tering problems.
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Efficient Linear System Solution in Moment Methods
Using Wavelet Expansions

L. Tarricone and F. Malucelli

Abstract—An efficient strategy is proposed to solve linear systems
encountered when method of moments (MoM) and wavelet expansions
are used. It exploits a high-performance matrix bandwidth reduction
algorithm so that it can be taken advantage of direct banded solvers,
which have a more favorable computational complexity with respect to the
typically used iterative sparse methods. Speedups of up to seven have been
experienced with respect to standard iterative sparse solvers.

Index Terms—Electromagnetic scattering, method of moments (MoM),
wavelet transform.

I. INTRODUCTION

In the past few years, the use of wavelet expansions in the solu-
tion of electromagnetic problems has become more and more frequent.
Wavelet expansions have been introduced, for instance, in conjunction
with the method of moments (MoM) discretization of integral equa-
tions, in order to solve scattering problems with large-scale scatterers
(thus, containing a variety of length scales with respect to wavelength)
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TABLE I
PERFORMANCE OFSEVERAL BRA ALGORITHMS. MATRIX SIZE (N), INITIAL AND FINAL BANDWIDTH �, AND BANDWIDTH REDUCTION

TIMES IN SECONDS AREREPORTED FORTHREE DIFFERENTAPPROACHES

[1]–[5] or to analyze slot-apertures [6], microstrip floating line struc-
tures [7], as well as to study two-dimensional (2-D) and three-dimen-
sional (3-D) dielectric structures [8], [9]. They have also been intro-
duced in a boundary element method (BEM) to evaluate properties
of multiconductor transmission lines in multilayered media [10] or to
study scattering problems [11].

The above mentioned papers, which represent just a small and partial
overview of the several possible applications, propose different uses
of wavelet functions (as in these papers, both othonormal and semi-
orthonormal spline wavelets are used [4], as well as multiresolution
and compact-support functions [8], [9] or more standard local-support
functions [Daubechies, Coiflets, etc.]).

Anyway, a common key issue for the majority of applications is the
derivation of very sparse and well-conditioned linear systems, repre-
senting the numerical core of MoM approaches [8], [9], [12].

The moment matrix sparsity allows the use of very efficient iterative
sparse solvers and the good condition number guarantees a low number
of iterations to converge, with a consequent dramatic improvement of
performance.

In this letter, we propose a method to make a further step in the
enhancement of numerical performance. In fact, up to now, once the
moment matrix has been sparsified using wavelet expansions, it has
been assumed that iterative solvers are the best way to attack the linear
system solution. We demonstrate here that by means of appropriate ma-
trix transformations, the use of a banded direct solver outperforms the
iterative approach, especially when nonsymmetric moment matrices
are attained after split testing procedures in presence of compact-sup-
port functions [1], [2], [8], [9].

II. PROPOSEDSTRATEGY

The alternative strategy to iterative sparse solvers (ISS) is the use
of a bandwidth reduction algorithm (BRA) in conjunction with a direct
banded solver (DBS). The BRA evaluates a permutation matrixPPP (with
PPPPPPTTT = III) so that if we let

AAA = PPP
TTT
APAPAP (1)

AAA is a banded matrix, with small (hopefully minimum) bandwidth�.
Therefore, ifPPP is known, the original systemAxAxAx = BBB can be trans-
formed into

AxAxAx = BBB (2)

with xxx = PPPTTTxxx, andBBB = PPPTTTBBB. System (2) is banded and can be
solved with very efficient direct banded solvers [13], whose computa-
tional complexity depends quadratically on bandwidth�. This explains
why the quality of the BRA, minimizing the sparse matrix bandwidth,
plays a crucial role.

Several BRA have been proposed till now in the literature [13],
but their performance was not attractive so that their use could have
a substantial impact on the efficient solution of very sparse systems
such those encountered in wavelet/MoM matrices. Moreover, all those
methods were not able to deal with asymmetric matrices, which must
be managed when compact-support wavelets are used [1], [2], [8], [9].

The authors have recently developed a new BRA, specifically de-
voted to handle MoM-like matrices, outperforming previous BRAs,
and also able to solve both symmetric and nonsymmetric problems
[14]. The approach [labeled herein as wonderful (W)BRA] is based
on a matrix representation with anadjacence graph[13] and is an ef-
fective revisitation of an old-fashioned approach by Cuthill and McKee
(CMK) [15]. WBRA has been discussed into details in [16] and the in-
terested reader can also find fragments of code therein, implementing
it. WBRA’s performance are reported in Table I, where some results are
given comparing it with respect to a commercial CMK implementation
available in Matlab and a combinatorial iterative heuristics called tabu
search (TS) [17]. In Table I the initial and final bandwidth (before and
after minimization) is shown, as well as computational times to per-
form bandwidth reduction on an IBM 250T. Matrices are generated by
using a MoM package for the analysis of microstrip circuits described
in [12]. As apparent from Table I, the numerical complexity of WBRA
is substantially lower. In fact, if we letN be the matrix dimension, and
M the number of nonzero entries, WBRA needsN2M(logN) opera-
tions in the worst case, whilst the other approaches need at leastN3M

operations [16].
The efficiency of WBRA, as proved in Table I, reduces substantially

the time needed to evaluatePPP andAAA, with a very small bandwidth
for AAA. This means that the use of WBRA and DBS can now be out-
performing with respect to the ISS strategy and this is proved in the
following section.

III. RESULTS

We refer, for the proposed results, to a MoM discretization of a
mixed-potential integral-equation formulation for the analysis of planar
microstrip circuits, as described in [12]. The MoM matrices are trans-
formed in accordance with the use of Battle–Lemarie multiresolution
expansions as described in [1], [2], [8], [9], thus attaining nonsym-
metric matrices when splitting and truncations are performed to comply
with boundary conditions. A double-layer microstrip waveguide has
been studied, with different basis expansions, and different threshold
valuesvt have been applied onto the moment matrices, so that values
having magnitude less thanvt% of the largest entry are considered as
zeros. Of course, different approximations are attained on varyingvt
and errors have been estimated by comparing approximate results with
the correct result attained without any thresholding. Different thresh-
olds correspond to different matrix sparsities, as indicated in the second
column of Tables II and III, whereS is sparsity. Tables II and III resume
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TABLE II
RESULTS FOR AMATRIX OF DIMENSIONN = 250. COMPUTING TIMES (IN

SECONDS) FOR WBRA+DBS STRATEGY VERSUSISS STRATEGY ARE

SHOWN, FOR DIFFERENTTHRESHOLDVALUES, AND THE CORRESPONDING

MATRIX SPARSITY S AND SOLUTION ERROR DUE TO THRESHOLDING

EFFECTS. FOR ISSTHE NUMBER OF ITERATIONS NEEDED TOCONVERGE IS

SHOWN IN THE BRACKETS

TABLE III
RESULTS FOR AMATRIX OF DIMENSIONN = 478. COMPUTING TIMES (IN

SECONDS) FOR WBRA+DBS STRATEGY VERSUSISS STRATEGY ARE

SHOWN, FOR DIFFERENTTHRESHOLDVALUES, AND THE CORRESPONDING

MATRIX SPARSITY S AND SOLUTION ERROR DUE TO THRESHOLDING

EFFECTS. FOR ISSTHE NUMBER OF ITERATIONS NEEDED TOCONVERGE IS

SHOWN IN THE BRACKETS

the results referred to two different cases of analysis of a double-layer
microstrip, using different numbers of Battle–Lemarie wavelet func-
tions. Different matrix sizes,N = 250 andN = 478, respectively,
have been attained. Times are reported in seconds on an IBM 250 T
using a DBS and an ISS from LAPACK suite, so that the same stan-
dard of performance is guaranteed for both solvers.

As apparent from Tables II and III, an appropriate value for thresh-
olding is 0.5%, so that the approximation error is smaller than 1%. In
this case, forN = 250, a speedup of nearly 2.3 is achieved, when using
WBRA+DBS with respect to ISS, whilst forN = 478 a speedup of
nearly 7.5 is observed.

If nonorthogonal wavelets are used, the condition number of the
system matrix can be smaller than the one observed in the reported
examples. In such cases, the number of iterations for an ISS can grow
up substantially and the potential advantage of the proposed approach
can be further increased.

IV. CONCLUSION

In this letter, it has been proved that the use of iterative sparse solvers
is not the most efficient way to solve typical sparse linear systems en-
countered when multiresolution wavelet expansions are used in con-
junction with the moment method discretization of integral equations.
The use of a high-performance algorithm for sparse matrix bandwidth
reduction, developed by the authors and suitable also for nonsymmetric
cases, in fact, paves the way to the use of very efficient direct banded

solvers, with a consequent dramatic improvement of performance. So-
lution times have been reduced up to a factor 7.5 with respect to the
standard solution via iterative biconjugate gradient sparse solvers.

The strategy is general, and similar conclusions can be achieved
when different wavelet functions are used combined with numerical
approaches similar to MoM.
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A Physical Interpretation of the Equivalence Theorem

A. J. Booysen

Abstract—A physical interpretation of the equivalence theorem is
presented. A simple example is used to show that the external and internal
equivalence cases are analogous to incident, reflected, and transmitted
wave problems in the geometrical optics sense.

Index Terms—Equivalence theorem.

I. INTRODUCTION

The aim of this letter is to present a better understanding of the mech-
anisms of the equivalence theorem [1, pp. 106–110]. This will be done
by means of a simple scattering problem, namely that of an electromag-
netic plane wave normally incident upon a planar dielectric interface.
Consider first the general problem of sourcesJJJ1 andMMM1 in medium
(�1, �1), illuminating an object with constituent parameters (�2, �2),
as depicted in Fig. 1(a). The equivalence theorem states that the equiv-
alent current densities

JJJsss1 = n̂nn1 �HHH1 (1)

MMMsss1 =�n̂nn1 �EEE1 (2)

radiating in medium (�1, �1), together with the sourcesJJJ1 andMMM1,
will produce the true fieldsEEE1, HHH1 external toS, and null fields in-
ternal toS [Fig. 1(b)]. The currents densities�JJJsss1 and�MMMsss1, radi-
ating in medium (�2, �2), will produce the true fieldsEEE2,HHH2 within S
and null fields external toS [Fig. 1(c)]. The true electric field in region
1 can be expressed as

EEE1 = EEE
iii
+EEE n = 1; JJJsss1; MMMsss1 (3)

where for the two-dimensional (2-D) case [1, pp. 98–100, 228–230]

EEE n; JJJsss1; MMMsss1 =�kn�n
4 S

JJJsss1H
(2)
0 (knr)dS

+
jkn
4 S

MMMsss1 � r̂rrH
(2)
1 (knr)dS (4)

andkn = 2�f
p
�n�n, �n = �n=�n. The true electric field in region

2 (internal equivalence) is given by

EEE2 = EEE n = 2; �JJJsss1; �MMMsss1 : (5)

II. A N ILLUSTRATIVE EXAMPLE

Fig. 2 depicts a plane wave normally incident upon a planar dielectric
interface. Following [1, p. 55], the total electric and magnetic fields can
in the geometrical optics sense be expressed as

EEEtottottot =EEE
iii
+EEE

rrr
(6)

HHHtottottot =HHH
iii
+HHH

rrr
(7)

where

EEE
iii
= ejk xẑzz (8)

HHH
iii
=

1

�1
ejk xŷyy (9)
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(a)

(b)

(c)

Fig. 1. Equivalence theorem.

EEE
rrr
=�e�jk xẑzz (10)

HHH
rrr
=� �

�1
e�jk xŷyy (11)

� =
�2 � �1
�2 + �1

: (12)

The transmitted fields are given by

EEE
ttt
=(1 + �)ejk xẑzz (13)

HHH
ttt
=

1

�1
(1� �)ejk x ŷyy =

1

�2
(1 + �)ejk xŷyy: (14)

0018–926X/00$10.00 © 2000 IEEE
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Employing the equivalence theorem, we letS enclose the dielectric
interface by extending the upper and lower boundaries to infinity. On
S we place surface current densities

JJJsss1 = n̂nn1 � HHH1 �HHH2 (15)

MMMsss1 =�n̂nn1 � EEE1 �EEE2 : (16)

In the actual problem the tangential electric and magnetic fields must
be continuous across the interface, resulting inJJJsss1 = 0 andMMMsss1 =
0. If we now forceEEE2 andHHH2 to be zero in accordance with Fig.
1(b), these current densities reduce to (1) and (2), respectively. For an
observation point (x, y = 0) as shown in Fig. 2,S = (x0 = 0; y0),
dS = dy0, and

r̂rr =
x� x0

(x� x0)2 + (y � y0)2
x̂xx+

y � y0

(x� x0)2 + (y � y0)2
ŷyy

=
x

x2 + (�y0)2
x̂xx� y0

x2 + (�y0)2
ŷyy = rxx̂xx+ ryŷyy: (17)

Since the total fields at the interface are known, (1), (7), (9), and (11)
yield

JJJsss1 =
1

�1
(1� �) ẑzz =

1

�2
(1 + �) ẑzz: (18)

Equations (2), (6), (8), and (10) similarly yield

MMMsss1 = (1 + �) ŷyy: (19)

For external equivalence, these currents are substituted into (3),
which must yield the true electric field in region 1. Note that sinceEEE

iii

is a plane wave normally incident upon a planar surface,JJJsss1 andMMMsss1

are constant onS and can thus be removed from under the integrals in
(4). If we select the observation pointx large enough so thatk1r � 1,
we can employ the large argument (asymptotic) forms of the Hankel
functions [1, p. 463]

H
(2)
0 (kr) � 2j

k�

e�jkr

p
r

(20)

H
(2)
0 (kr) � j

2j

k�

e�jkr

p
r
: (21)

Substitution of (20), (21), (18), and (19) into (4) yields

EEE n = 1; JJJsss1; MMMsss1 =� jk1
8�

(1� �)ẑzz
S

e�jk r

p
r

dS

+
jk1
8�

(1 + �)ẑzz
S

rx
e�jk r

p
r

dS:

(22)

The integrals in (22) have the stationary phase (asymptotic) solutions
[2]

S

e�jkr

p
r

dS � 2�

k
e�j(�=4)e�jkr (23)

S

rx
e�jkr

p
r

dS � x

jxj
2�

k
e�j(�=4)e�jkr: (24)

In region 1 of the external equivalence casex > 0, r = x and
x=jxj = 1. If (23) and (24) are substituted into (22), equation (10)
results, i.e.,

EEE n = 1; JJJsss1; MMMsss1 = �e�jk xẑzz = EEE
rrr
: (25)

Fig. 2. Plane wave incident upon a planar dielectric interface

In other words, in the external case the radiated field represents the
reflected field. The total field is given by the sum of the incident field
and the reflected field. If we evaluate the integrals on the left-hand
side (region 2) of the external equivalence case,x < 0, r = �x, and
x=jxj = �1. Substitution of (23) and (24) into (22) now yields

EEE n = 1; JJJsss1; MMMsss1 = �ejk xẑzz = �EEEiii
(26)

whereEEE
iii

is given by (8). This result is to be expected, since the radiated
field has to cancel the incident field in the null field region.

For the internal equivalence case, the total electric field in region 2
of Fig. 2 is given by (5). If we substitute equations (18) to (21) into (5),
the result is

EEE n = 2; �JJJsss1; �MMMsss1 =
jk2
8�

(1 + �)ẑzz
S

e�jk r

p
r

dS

� jk2
8�

(1 + �)ẑzz
S

rx
e�jk r

p
r

dS:

(27)

The true fieldEEE(n = 2; �JJJsss1; �MMMsss1) is evaluated on the
left-hand side of the dielectric/air interface in Fig. 2, so that
x=jxj = �1, r = �x in (27). Substitution of (23) and (24) into (27)
results in

EEE n = 2; �JJJsss1; �MMMsss1 = (1 + �)ejk xẑzz = EEE
ttt

(28)

whereEEE
ttt

is given by (13). The radiated field thus represents the trans-
mitted field in the case of an electromagnetically transparent object. In
region 1 we havex=jxj = 1, which when substituted into (27) results
in a null field, as expected.

III. CONCLUSION

By means of a very simple scattering example, it was shown that
the mechanisms of the equivalence theorem can be directly related to
more “physical” quantities in the form of the incident, reflected and
transmitted fields. In the external equivalence case, the total field is
given by the impressed (incident) field plus the scattered (reflected)
field. The medium is that of region 1 in the original problem and by
forcing the field in region 2 to be zero, we have conveniently created
surface current densities which relate to the “external” problem only.
In the internal case, there are no impressed fields and the radiated fields
correspond to the transmitted fields. The medium is that of region 2 in
the original problem. In this case the convenient selection of the fields
in region 1 to be zero has allowed us to express the surface current
densities in terms of the internal fields only.
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Single-Feed Dual-Band Planar Inverted- Antenna with
U-Shaped Slot

Pekka Salonen, Mikko Keskilammi, and Markku Kivikoski

Abstract—The development of small integrated antennas plays a signifi-
cant role in the progress of rapidly expanding wireless communication ap-
plications. This paper describes a novel dual-band planar inverted- an-
tenna (PIFA) for wireless local area network applications. The proposed
PIFA uses single feed only. A novel top-plate geometry, a U-shaped slot, is
discussed. An example is given for this novel slot shape for frequency bands
of 2.4 and 5.2 GHz. Simulation based upon method of moments (MoM) is
used to model the performance of the antenna. Comparisons with results
measured on fabricated antenna structures are provided for simulations
validation.

Index Terms—Antennas, dual-band antennas, handset antennas, printed
antennas, slot antennas, wireless communications.

I. INTRODUCTION

The rapid progress in wireless communications promises to make
interactive voice, data, and video services available anytime and any-
place. Wireless communication systems come in a variety of different
sizes ranging from small hand-held devices to wireless local area net-
works. The integration of different radio modules into the same piece
of equipment has created a need for dual-band antennas.

Good results for dual-band operation have been achieved with planar
inverted-F antennas (PIFA) for portable handsets, reported in [1]–[4].
In [1] a capacitively coupled load and feed method was studied in order
to reduce the size of the PIFA. The dual-band operation was a major
concern in [2]–[4]. Dual-band operation was achieved with parasitic
inverted-L elements in [2] and with etched slots in the radiating element
in [3] and [4]. The slot in the radiating element gives a more compact
design for the antenna and, thus, space–volume is saved.

In this paper, we describe a new dual-band internal antenna for wire-
less communication systems. The basic idea is to combine the geome-
tries used in [2]–[4] with single feed only. A design example of a
dual-band PIFA which has a new U-shaped slot is given for frequen-
cies of 2.4 and 5.2 GHz. This antenna is fabricated and the measured
results are compared to simulations.

II. A NTENNA GEOMETRY

A new configuration of dual-band PIFA, having a U-shaped slot on
the radiating patch is presented. The geometry is shown in Fig. 1 for
the U-shaped slot. The lengthl and widthw of the PIFA determines the

Manuscript received July 7, 1999; revised February 9, 2000.
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Fig. 1. Top-plate geometry configuration of single feed U-shaped slot
dual-band PIFA.

TABLE I
TRENDS OFRESONANTFREQUENCY ANDINPUT IMPEDANCE AS AFUNCTION OF

THE GEOMETRICAL PARAMETERS OF THEU-SHAPED SLOT DUAL-BAND PIFA

lower resonant frequency, which can be approximated by the formula
[4]

fl0 =
c

4(w+ l)
(1)

where
c velocity of light;
l andw length and width of the radiating element;
fl0 lower operating frequency.

The upper resonant frequency for a U-shaped slot PIFA can be deter-
mined approximately from (1) in which lengthl and widthw are re-
placed byl2 andw2, respectively, as shown in Fig. 1. For the upper
frequency band (1) gives a slightly lower frequency value compared to
simulations and experiment.

This dual-band antenna has almost the same size as a single-band
planar inverted-F antenna operating at the lower frequency band. The
radiating element was grounded by a shorting strip at its corner and fed
near the shorting strip using coaxial cable. The antenna impedance can
be easily matched to 50
 by controlling the feed position from the
shorting strip.

III. PARAMETER STUDY

The sensitivity of resonant frequencies and input impedance to the
geometry was studied for four parameters that were found to have
the most critical influence. The values for the input impedance were
specified as the frequency bandwidth in which the voltage standing
wave ratio (VSWR) is less than 2 : 1. In this paper, the method of mo-
ments (MoM) has been used to allow modeling and simulation of the
dual-band antenna.

0018–926X/00$10.00 © 2000 IEEE
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Fig. 2. Return loss of the U-shaped slot PIFA as a function of gap width in whichG1 andG2 are equal length. Increase inG1 andG2 lowers the upper resonant
frequency and null depth of the return loss. All other dimensions are fixed.

Fig. 3. Measured and simulated return loss.

The most critical parameters controlling the resonant frequencies of
a dual-band U-shaped slot PIFA are summarized in Table I.

1) W—width of radiating element.
2) L—length of radiating element.
3) W2—width of inner radiating element.
4) L2—length of inner radiating element.
To understand the operation of our design we begin with a conven-

tional PIFA (with the slot is removed) using air dielectric with dimen-
sions(l; w) = (40; 25) mm, heighth = 10 mm in which a shorting
strip of widthwshort = 9 mm is located at one end of the plate as
shown in Fig. 1. The coax feed is connected directly to the top plate at
the same edge as the shorting strip. The distance of the feed location in
the middle of the top plate is also shown in Fig. 1. The resultant reso-
nant frequency from the method of moments (MoM) simulations is 1.2
GHz, which agrees quite well with equation (1). To this conventional
PIFA a U-shaped slot is added to determine its effects on the resonant
frequencies and the bandwidth.

The dimensions of the slot areL2 = 27 mm,W2 = 11 mm,L3 = 8
mm andG = 2 mm. The addition of the U-shaped slot had no effect on

the lower resonant frequency and it remained at 1.2 GHz. The matching
of the upper frequency can be controlled by the slot widthsG1 and
G2. The gap widthG2 is a compromise of input impedance because
increase inG2 tunes the lower frequency input impedance and mistunes
the upper frequency input impedance, which as in Fig. 2. However, the
best results in terms of input impedance matching are obtained when
the gap widthsG1 andG2 are equal.

This parameter study shows that for dual-band PIFA with U-shaped
slot both frequencies can be determined independently. This makes
the design procedure much simpler compared to dual-band PIFA with
L-shaped slot.

IV. EXPERIMENTAL VALIDATION

A dual-band antenna prototype was designed using U-shaped slot
topology with the results in Section III for frequency bands 2.4 and
5.2 GHz. In order to characterize the antenna an HP8722D network
analyzer was used to measure the input return loss of the antenna as a
function of frequency.
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The antenna was fabricated by etching the slot figure on a top plate,
of 0.2-mm-thick copper and soldering it on a copper groundplane with
a length of 180 mm and a width of 95 mm. The shorting strip dimen-
sions were height 9 mm and width 3 mm. It should be emphasized here
that the etching process was not accurate, which caused errors to the di-
mensions of the antenna. Thus, the 0.2-mm change in dimensions had
the effect of altering the resonant frequencies. Also, the bandwidths of
the antenna depend on the size and the shape of the groundplane, which
is not optimized for these frequencies.

The dimensions for the U-shaped slot dual-band PIFA wereL = 15
mm,W = 12:5 mm,L2 = 10:85 mm,W2 = 4:2 mm,G1; G2 = 1:4
mm andL3 = 1:25 mm. The measured and simulated return loss of
the U-shaped slot PIFA is shown in Fig. 3. The bandwidth of the lower
resonant frequency is 230 MHz (9.6%), which agrees well with the
simulations. However, the null depth is only half of that in the sim-
ulations because of the fabrication inaccuracies. The upper resonant
frequency is slightly shifted up for the same reason. The null depth and
the bandwidth 130 MHz (4%) agrees well with the simulations. This
slot configuration is versatile for most wireless communication appli-
cations as for bandwidths. The lower frequency bandwidth is enough,
e.g., for GSM or DCS, and the upper band is enough, e.g., for Blue-
tooth, which is not possible withL-shaped slot PIFA.

V. CONCLUSION

This letter focuses on the development of a dual-band planar in-
verted-F antenna using a novel top plate geometry. Series of simula-
tions were used to investigate how different physical parts of the new
U-shaped slot PIFA affect the input impedance, bandwidth, and reso-
nant frequencies of the antenna. For the U-shaped slot PIFA both the
lower and upper resonant frequency can be determined independently,
which makes the design procedure simpler compared toL-shaped slot
PIFA. The bandwidth of this antenna for the lower resonant frequency
was 9.6% and for the upper resonant frequency bandwidth 4%. The
wider bandwidth on the lower band of the U-shaped slot PIFA together
with the easier design procedure makes it more versatile in wireless
applications compared toL-shaped slot PIFA.

The results and design details on the antenna presented here can be
used as starting points for engineers interested in utilizing low-profile
dual-band planar inverted-F antennas in new wireless communications
systems.
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Design of a Minimum-Loss Series-Fed Foldable Microstrip

C. G. Christodoulou, P. F. Wahid, M. Riad Mahbub, and M. C. Bailey

Abstract—The design and analysis of a series- fed, low-loss, inverted mi-
crostrip array antenna, operating at 1.413 GHz is presented. The array an-
tenna is composed of two subarrays consisting of an equal number of mi-
crostrip patches connected together through a series microstrip line. The
subarrays are coaxially fed 180 out of phase. This approach ensures a sym-
metric radiation pattern. The design approach for obtaining a low sidelobe
ratio and a low loss microstrip array is accomplished using the IE3D code.
Experimental and simulated data are presented and discussed.

Index Terms—Microstrip arrays, spacecraft antennas.

I. INTRODUCTION

One of the basic requirements of a radiometer antenna is to have
very low radiation losses in order to maintain a desired radiometric
resolution. In space applications, portability of the antenna is another
requirement that must be satisfied. In this letter, these requirements are
addressed through the design of a series-fed, foldable and inverted mi-
crostrip antenna array. This design minimizes the path length between
the elements and, thus, minimizes ohmic losses [1], [2]. This reduction
of losses makes the series configuration very attractive for radiometer
applications. The inverted microstrip configuration is chosen because
it provides less dispersion and dielectric losses than the conventional
microstrip [3]. For the same characteristic impedance, substrate thick-
ness, and for a comparable air gap, the attenuation due to conductor
loss (usually the dominant loss mechanism) is improved by a factor
of typically two to three [4]. The microstrip patches are supported by
“Rohacell” foam material to reduce possible dielectric losses. The total
antenna is composed of two subarray antennas, each consisting of an
equal number of rectangular microstrip patch elements in series. The
subarrays are fed 180� out of phase and an inverted ground plane is
used to reduce radiation losses. This design yields low radiation losses
and a radiation pattern with a narrow beamwidth and low sidelobes. A
comparison between the measured and simulated data is presented and
discussed.

II. DESIGN PROCEDURE

The first step is the determination of the dimensions of a single in-
verted microstrip patch. Next, additional patches are added to the array,
one patch at a time to achieve the certain desired radiation pattern and
input impedance. The inverted microstrip patch is the microstrip patch
covered with dielectric layer and having the “Rohacell” foam as its di-
electric substrate.

1) Calculation of the Patch Resonant Length:The resonant length
of a single-patch microstrip antenna can be calculated from the empir-
ical formula [5]

L = c� (1� 2VR)� (2 � FR �
p
"eo)

�1 � 2 ��l (1)
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Fig. 1. The antenna with the two subarrays having three patches in each array.

Fig. 2. Geometry of one foldable antenna (one half of the array). The ground
plane is shown in its folding position.

where,�l =capacitive cutback factor given by

�l =0:412H � ("e + 0:3)(W=H � 0:2674)

� ("e � 0:258)�1(W=H + 0:8)�1 (2)

with c = speed of light,FR = patch resonant frequency,"eo = effec-
tive dielectric constant of the patch without dielectric cover,"e = ef-
fective dielectric constant of the patch with dielectric cover,L = patch
length,W = patch width,H = substrate thickness, andVR =variation
in resonant frequency. The optimum width of the microstrip antenna is
given by

W = c� (2 � FR)
�1

� [("r + 1)=2]1=2: (3)

2) Calculation of the Effective Dielectric Constant:The effective
dielectric constant of a dielectric covered patch antenna is given by [6]

"e = Cd=Co (4)

whereCo =capacitance/unit length without dielectric layer andCd =
capacitance/unit length with dielectric layer.

The capacitance per unit length of the dielectric-covered microstrip
lines is

1

C
=

1

4�"o

1

0

1:6
sin(�W=2H)

(�W=2H)
+ 2:4(�W=2H)�2

� cos(�W=2H)�
2 sin(�W=2H)

(�W=2H)

+ sin2(�W=4H)� (�W=4H)�2
�2

� "r1
"r1 � tanh(�d=H) + 1

"r1 + tanh(�d=H)
+"r2 coth(�)

�1

d�

(5)

where
� Fourier transform variable;
"o permittivity of free space;
d height of the superstrate.

The integration in the last equation is performed twice—once to find
Cd, the capacitance per unit length of dielectric covered antenna, and
once to calculateCo, the capacitance per unit length with no dielectric
layer present.

3) Optimization of the Array Dimensions:Once the parameters of
the single patch have been determined the array is assembled and opti-
mized for best match in input impedance (for a uniform array design).
The patches can be connected with straight, curved, or zigzagged in-
verted microstrip lines depending on the cross-polarization and side-
lobe requirements. This particular array, designed for uniform excita-
tion, yielded undesirable grating lobes when straight transmission lines
were used. To reduce the size of grating lobes a curved microstrip line
was used to make the connections between the patches. Thus, the phys-
ical distance between the patches was less than�g=2, but the actual
electrical length was still�g=2 as shown in Fig. 1. This configuration
yields a very small cross-polarized component (of the order of�30 dB)
[5]. In this particular antenna, the substrate thickness of the inverted
dielectric was 5 mil with a dielectric constant of 3.0. The “rohacell”
thickness was 12.7 mm with a dielectric constant of 1.08. The patch
dimensions wereL = 92 mm,W = 80:10mm, (first patch),L = 103
mm,W = 87:10 mm (second patch), andL = 128 mm,W = 104:1
mm (third patch). The distance of separation between patches was 58.7
mm with the first patch being fed by coaxial line.

4) Foldable Array Design:For convenient portability of this an-
tenna it was designed to allow it to be folded at several locations along
the array. The folds had to be designed without introducing any dis-
continuity in the inverted patch. The geometry of the foldable array is
shown in Fig. 2. The ground plane was bent at specific locations by
using thin metallic tape at those locations. The discontinuities in the
ground plane were simulated as tiny perforations along the lines where
the metallic tape was introduced.

III. RESULTS

Using the IE3D simulator [6] both the unfolded and folded array con-
figurations were simulated and compared to measured data. The input
impedance of each of the foldable subarrays was 75.6
 and that of
the unfolded subarrays was 66.0
 at a frequency of 1.413 GHz. The
measured values of the input impedance were 59.12
 for the foldable
arrays and 54.6
 for the unfolded arrays. The simulated return loss
was calculated as�17 dB and the measured loss was�23.69 dB for
the unfolded antenna. For the foldable antenna, the simulated and the
measured return loss were�12.6 dB and�21.0 dB, respectively. The
simulated and measured radiation patterns are shown in Figs. 3 and 4.
Fig. 3 shows a comparison between the simulated and the measured
patterns of the unfolded antenna shown in Fig. 2. Fig. 4 shows the ef-
fects of the frequency change on the radiation patterns of the foldable
antenna.

IV. CONCLUSION

The design of a series fed microstrip array antenna using the IE3D
simulator is presented and discussed. The optimization starts with the
determination of the correct dimensions for one patch and then the
building up of the array so that the input impedance is matched to a
desired value. The patches dimensions are varied so as to obtain a cer-
tain sidelobe ratio and bandwidth. Care was taken in designing the dis-
tance of separation between adjacent patches in order to reduce any
grating lobes. In the present design, curved microstrip lines are used to
feed each adjacent element instead of a straight microstrip. The level of
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Fig. 3. Comparison of simulated and measured radiation pattern for the unfolded array at 1.413 GHz (E-plane cut).

Fig. 4. Measured radiation pattern for the foldable array at different frequencies. (E-plane cut).

grating lobes diminishes significantly, without producing any signifi-
cant level of cross polarization. The width of the connecting microstrip

lines was also carefully chosen to limit the ohmic losses along the an-
tenna and, thus, the total radiation losses.
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General Solution of a Monopole Loaded by a Dielectric
Hemisphere for Efficient Computation

K. W. Leung

Abstract—A simple result for the general solution of a monopole loaded
by a dielectric hemisphere is presented. The result can be calculated
without the need for any numerical integration and, thus, it is computa-
tionally very efficient. In addition, the result is very easy to implement and
should be useful to the design engineer.

Index Terms—Dielectric antennas, monopole antennas.

I. INTRODUCTION

In antenna designs, a dielectric loading can be added to change the
antenna characteristics, such as the impedance, bandwidth, and radi-
ation patterns [1]. It can also be used to provide insulation with the
external medium [2]. There are many shapes of dielectric, but only the
spherical one is convenient for an exact analysis [1], [2]. A rigorous
solution of a monopole loaded by a dielectric hemisphere can be found
in [3], where the exact Greens function was found analytically using
the mode- matching method. In using the method of moments (MoM)
to find the probe (or monopole) current [3], it is required to evaluate
the quadruple integrals for the impedance matrix elements. Although
the quadruple integrals can be reduced to double integrals by using the
thin-wire approximation, considerable computation time and program-
ming effort are still required to calculate the integrals numerically. In
practice, the design engineer should prefer a simpler result that can be
implemented easily and calculated quickly. Leunget al. [4] employed
the single-mode theory to obtain a simple result for a probe along the
axis of a dielectric hemisphere. The result, however, is not general and
is only limited to frequencies around the TM101 mode of the dielectric
hemisphere. In this letter, the general solution of a monopole along the
axis of a dielectric hemisphere is presented. The result does not involve
any numerical integration, and, thus, the computation is extremely fast.
Furthermore, the expression is rather simple and can be implemented
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Fig. 1. Geometry of the monopole loaded by a dielectric hemisphere.

very easily. It is worth mentioning that for this particular configuration,
all TE modes of the dielectric hemisphere vanish and only TM modes
can be excited.

II. THEORY

The configuration is shown in Fig. 1. A monopole of lengthl and
radiusr1 is located at the center of a dielectric hemisphere of radiusa
and dielectric constant"r . In the following formulation,z andz0 refer
to the field and source coordinates, respectively. To begin with, image
theory is used to obtain the equivalent problem of a dipole embedded
inside a dielectric sphere. DenoteG(z; z0) as the Green’s function for
thez-directedE-field due to a point current along thez-axis. Using the
result of [3], we have, for a thin monopole (r1 � l andkr1 � 1)

G(z; z0) =
�j
!"

@2

@z2
+ k2

e�jkR

4�R
� 1

4�!"k

� 1

z2z02

1

n=1

n(n+ 1)(2n+ 1)�TMn Ĵn(kz
0)Ĵn(kz)

(1)

where

�TMn =
�bĤ(2)

n
0(ka)Ĥ

(2)
n (k0a)�p

"rĤ
(2)
n (ka)Ĥ

(2)
n

0(k0a)c
Ĵn0(ka)Ĥ

(2)
n (k0a)�p

"rĴn(ka)Ĥ
(2)
n

0(k0a)
(2)

is the reflection coefficient at the DR boundary,
R = r21 + (z � z0)2, andk =

p
"rk0. In (1) and (2),Ĵn(x) and

Ĥ
(2)
n (x) are the Schelkunoff-type [3] spherical Bessel function of

the first kind and Hankel function of the second kind, respectively,
both of them of ordern. By enforcing the boundary condition
that the totalE-field vanishes on the (equivalent) dipole surface,
an integral equation for the dipole current is obtained. The
MoM with the Galerkin’s procedure is used to solve the dipole
current. The current is first expanded asI(z) = N

q=1 Iqfq(z),
where fq(z) is a piecewise sinusoidal (PWS) function given by
fq(z) = [sin k(d � jz � zqj)]= sin kd for jz � zqj < d and
fq(z) = 0 otherwise, withzq = �l + qd andd = 2l=(N + 1).
The unknown expansion coefficientsIq ’s are solved via the matrix
equation[ZP

pq + ZH
pq][Iq] = [fp(0)], whereZP

pq andZHpq are the
impedance integrals associated with the first term (particular solution)
and second term (homogeneous solution) of (1), respectively. The
efficient evaluation of the impedance integralsZPpq was discussed in
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Fig. 2. Comparison of the present, rigorous, and previous simplified theories:
a = 12:5 mm," = 9:5, l = 5:0 mm,r = 0:63 mm, andN = 5.

[5] and is not duplicated here. Instead, we will concentrate on theZH
pq

integral, which can be written as

ZH
pq =

1

4�!"k

1

n=1

n(n+ 1)(2n+ 1)�TMn �n(p)�n(q) (3)

where, fori = p; q

�n(i) =
z

z

Ĵn(kz)

z2
�
sin k(d� jz � zij)

sin kd
dz: (4)

To evaluate�n(i) analytically, the absolute sign of the PWS func-
tion is first removed by breaking (4) into two integrals. Next we
apply the identitysin k[(d � zi) � z] = sin k(d � zi) coskz �
cos k(d � zi) sin kz to the integrals. Then the crucial step is to
integrate [Ĵn(kz)=z

2] cos kz and [Ĵn(kz)=z
2] sin kz. To do this,

we first note thatcos kz andsin kz can be alternatively written as
�Ŷ0(kz) andĴ0(kz), respectively. Then based on an integral formula
for a product of two cylindrical Bessel functionsA�(t); B�(t) [6],
the following integral was derived:

z Ân(t)B̂m(t)

t2
dt

=
1

(n+m+ 1)(n�m)

�
n�m

z
Ân(z)B̂m(z)

� Ân+1(z)B̂m(z)� Ân(z)B̂m+1(z) (5)

where Ân(t) = �t=2An+(1=2)(t) and B̂m(t) = �t=2
Bm+(1=2)(t) denote any two Schelkunoff-type spherical
Bessel/Hankel functions andn 6= m. Since the order of̂Jn(kz) in
G(z; z0) starts fromn = 1, it is always unequal to those of̂Y0(kz)
andĴ0(kz). Therefore, the condition thatn 6= m in (5) is satisfied in
the present problem. After tedious manipulation, the result ofZH

pq is
found to be surprisingly simple

ZH
pq =

k

4�!"
�

1

sin2 kd

1

n=1

2n+ 1

n(n+ 1)
�TMn Ln(p)Ln(q) (6)

where, fori = p; q

Ln(i) =

1

j=�1

A(j)Ĵn(kuij) (7)

with uij = �l+(i+ j)d,A(�1) = 1, andA(0) = �2 cos kd. It can
be proved that the result of [4] is only then = 1 term of (6). Note that
ZH
pq now does not involve any integration and, thus, the calculation is

extremely fast. Moreover, implementation of (6) is very easy. The only
care that has to be exercised is thatuij may be zero for somei; j, at
whichĴn(kuij) = 0. Therefore,uij should be checked in the program,
as the (backward) recurrence formula forĴn(x) cannot be used when
x = 0. Now the overall solution is computationally very efficient, as
the other impedance integral,ZP

pq , can also be calculated without the
need for any numerical integration [5]. AfterIq ’s are found, the input
impedance can be obtained by simply usingZin = � N

n=1 Infn(0),
where� = 1 for the equivalent dipole configuration and 1/2 for the
original (monopole) configuration.

III. RESULTS

In this letter, five current expansion modes(N = 5)were used in the
calculations. Fig. 2 compares the present theory with the rigorous solu-
tion [3] and the previous simplified theory [4]. It is seen that excellent
agreement between the present and rigorous solutions is obtained over
the whole frequency band. In contrast, the previous simplified theory
is valid only in the low-frequency portion, as expected. The programs
were run on a SunSPARC 20 Model 612 workstation. It was found that
for the present theory the average computation time for a frequency
point was only 1 ms, whereas it took a few seconds for the rigorous
theory. Other values ofl, "r , anda were used and, in all cases, the
present theory was in excellent agreement with the rigorous theory. The
results, however, are omitted here for brevity.
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Building Material Characterization from Complex
Transmissivity Measurements at 5.8 GHz

Iñigo Cuiñas and Manuel García Sánchez

Abstract—In this letter, an improvement of the well-known internal mul-
tireflection model of transmission coefficients is proposed in order to ob-
tain better agreement with complex measured data. The reason for the
introduced changes is explained. To obtain the data, measurements were
performed at 5.8 GHz using a vector network analyzer, which provided
information on the amplitude and phase of the transmission coefficient.
By comparing the model and measurements, both the real and imaginary
parts of the material complex permittivity were estimated for four different
building materials.

Index Terms—Dielectric materials, electromagnetic scattering, permit-
tivity measurement, urban propagation.

I. INTRODUCTION

Wireless local area networks are expanding rapidly as a result of the
increasing demand on computer communications and the advances on
digital radio systems. Several frequency bands have been proposed for
use by these systems, including the 160-MHz band centered at a fre-
quency of 5.8 GHz [1], which is considered in this paper. Radio plan-
ning tools are usually employed to plan the deployment of these net-
works. The accuracy of these tools depends on the availability of good
electromagnetic models of the obstacles in the environment at the fre-
quency of operation. The validation of the models requires measure-
ment data on radiowave propagation through building materials. The
internal multireflection model [2] has been widely used for this pur-
pose during recent years, but it has been only compared to amplitude
measurements.

The measurement system used to obtain the results presented in this
paper is based on the “free-space” technique [3]–[5] that provides in-
formation on amplitude and phase of the transmission coefficient.

A correction of the internal multireflection model is proposed in
order to deal with the phase of the transmission coefficients. The mod-
ified model is then compared with the results of measurements at 5.8
GHz.

II. M EASUREMENTSETUP

As described in [3]–[5], the measurement system consists of a vector
network analyzer (VNA), an HP-8510-C, which can performS-param-
eter measurements of a quadripole connected between its two ports,
from 45 MHz up to 50 GHz. This capability is used by the system to
obtain the frequency response of the radio channel by connecting two
identical standard 20-dBi pyramidal horns to ports 1 and 2 through flex-
ible microwave coaxial cables (Fig. 1). Measuring theS21 parameter
of such quadripole the frequency response of radio channel is obtained
over a 160-MHz bandwidth at 5.8 GHz. To reduce the effect of the
thermal noise on the measurement, the averaging factor of the VNA is
set to ten.

A calibration was first performed without any obstacle between the
antennas, to measure the effect of cables, amplifier, antennas and free-
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Fig. 1. Measurement system setup.

space propagation. Then, the material slab to be measured was placed
vertically between both antennas and the measurement was repeated.
The attenuation due to the obstacle as a function of frequency is ob-
tained by comparing both measurements.

In order to ensure that the incident and transmitted waves could
be approximated as plane waves the antennas were placed 5 m apart,
which is larger than twice the far field distance. The directivity of the
antennas was enough to guarantee that just the direct signal through
the material was being measured and any multipath due to any other
scatterer present in the environment was filtered out. This was verified
by obtaining the impulse response of each measurement through an
inverse fast Fourier transform (FFT) and checking that just the direct
component was present [6].

Following a similar process to that described in [3], the error in the
measurement was estimated to be between�0.035 dB for the ampli-
tude and�0.7� for the phase of the transmission coefficient.

Four different types of materials were measured. Three of them, a
2.5-m� 1.4-m� 5-mm crystal glass, a 2.5-m� 1-m� 10-mm slab
of chipwood, and a 2.6-m� 1.2-m� 10-mm plasterboard panel, were
made of a single layer and did not exhibit any oriented structure. How-
ever, the brick wall, sized 7 m� 3 m� 105 mm was made of 25-cm
� 10-cm� 7-cm bricks that had an oriented internal structure of air
holes and were laid horizontally. The sample sizes were large enough
to ensure that the 3-dB illuminated area, an ellipse with a major axis of
80 cm, falls within the limits of the slabs, thus reducing any diffraction
effects on the edges of the samples.

III. EXTENDED MULTIREFLECTION MODEL

Since the transmission coefficient value is related to the electromag-
netic characteristics of the obstacle, the fit of a transmission model to
measured data leads to a good estimation of the electromagnetic char-
acteristics of the obstacle in the frequency band of interest.

The classical multireflection model for the transmission coefficients
takes into account both the incident field that crosses the obstacle di-
rectly, and other components that reach the opposite side of it, after
being internally reflected between both interfaces [7]. The resulting

0018–926X/00$10.00 © 2000 IEEE
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(a)

(b)

Fig. 2. Frequency and polarization dependence of the dielectric constant. (a) Brick wall. (b) Chipwood slab.

transmission coefficient for normal incidence (or, as it is known, trans-
missivity), is classically enunciated, as in (1)

Ts =
(1� �2)e�j�k �d

e
���d

(1� �2e�j�2�k �d e�2���d )
(1)

where
kS propagation constant across the obstacle;

� attenuation constant of the obstacle;
dS thickness of the obstacle;
� Fresnel reflection coefficient at the interface of free-space

and the material under test.
The numerator in (1) contains the information on the transmission of
the electric field across the obstacle, while the denominator is devoted
to the sum of the field components originating from the multireflection
inside the slab. This is depicted in Fig. 1.
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TABLE I
ELECTROMAGNETICCHARACTERIZATION. (a) HORIZONTAL POLARIZATION. (b)

VERTICAL POLARIZATION

According to the measurement procedure, first the frequency re-
sponse for the free-space situation is obtained and then the obstacle
is placed perpendicularly between both antennas and the measurement
repeated [8]. When measuring the free-space reference, the traveling
electromagnetic wave covers the distance between both antennas, but
when measuring the obstacle, the free-space distance is not the same,
because the obstacle occupies part of the space. As the thickness of the
obstacle is small compared to the total free-space distance, this hardly
affects the fit of the model to amplitude measurements. However, as
it is comparable to the wavelength, it has to be taken into account for
phase calculations. When amplitude and phase transmissivity measure-
ments are used, the model needs to be corrected, and the transmission
coefficient with normal incidence should be written as in

T =
(1� �2)e�j�k �d

e
���d

e
j�k�d

(1� �2e�j�2�k �d e�2���d ej�2�k�d )
(2)

wherek is the propagation constant across the free-space and the other
parameters are the same as for (1). The model, including this correction,
gives better agreement with the measured complex data.

IV. RESULTS

A Newton–Raphson algorithm was used to find the electromagnetic
parameters that yield the best fit of measured data to the transmission
coefficient model [9]. The complex permittivity of the materials were
calculated as a function of frequency, for horizontal and vertical polar-
ization. The real (solid line) and imaginary (dash-dotted line) compo-
nents for the brick wall and the chipwood slab are plotted in Fig. 2. As
can be seen these parameters exhibit some frequency dependence.

The mean values of the relative dielectric constant("r), losses tan-
gent(tan �) and conductivity(�) for all the materials are summarized
in Table I. Based on the calibration accuracy, the error for the dielec-
tric constant is below 0.5% and, for the loss tangent below,�10�4. For

the brick wall, which has an oriented internal structure, a polarization
dependence in the dielectric constant can be observed.

V. CONCLUSION

An improvement on the commonly used internal multireflection
model for transmission coefficients has been proposed and is used.
The modification includes the effect of the slab thickness on the
phase delay of the traveling wave. Using the proposed formulation,
it is possible to reach a complete electromagnetic characterization
from the amplitude and phase of the transmission coefficients. The
computed relative dielectric constants depend on frequency and on the
material. In the case of anisotropic materials, the dielectric constant
also depends on the polarization.
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Impedance and Polarization Characteristics of and
Slot Antennas

Bradley G. Porter and Steven S. Gearhart

Abstract—Slot antennas can be end loaded to tune input impedance for
use with active devices and to decrease overall slot length at a given res-
onant frequency. Cross polarization and impedance of end-loaded slots in
an configuration are analyzed in this letter. For an antenna of ap-
proximately equal height and width, -plane cross polarization was found
to be 20 dB, and the resonant frequency decreased by 34% over a slot
with a length equal to the width of the . The cross polarization can be re-
duced with our new configuration, which is introduced in this letter.
Impedance at the second resonance can be tuned over a range of 26–82
.

Index Terms—Impedance matching, loaded antennas, polarization, slot
antennas, spectral domain analysis.

I. INTRODUCTION

End-loaded slot antennas can be used to reduce the length of a slot
antenna without changing its resonant frequency [1]. Loading sections
can be used to impedance tune slot antennas to the match the feedline
or to match an active semiconductor device placed at the feed [2]. For
slot-coupled patch applications, end-loaded slots result in less back ra-
diation [3]. End-loaded slots are also suitable for large scanning angle
phased arrays in which interelement spacing must be smaller than is
permissible with conventional slot antennas [4].

If the end loading is symmetric, there is no cross polarization in the
E-plane orH-plane. Hence, they have been considered for dual-polar-
ized operation [3]. However, it is important to recognize that there will
be some cross polarization in theD-plane (� = 45

�) of end-loaded
slot antennas due to the perpendicular loading sections. In applications
where high-polarization isolation is required (>20 dB) cross polariza-
tion due to the end-loaded sections cannot be ignored. This letter ana-
lyzes the cross polarization and impedance of the so-calledH antenna
for various end-load slot lengths (H heights) and introduces the new
IHI antenna which reduces the cross polarization and allows further
impedance tuning. Theoretical and experimental data are shown.

II. THEORY

Adding conducting plates to the ends of a wire dipole antennacapac-
itively loads the dipole and alters its resonant frequency and resonant
resistance [5]. Similarly, perpendicular slots connected to each end of a
slot dipole antenna,inductivelyload it, and lower its resonant frequency
and change its resistance. In this letter, the case of inductive loading of
slot antennas in a ground plane with free-space on both sides of the
ground plane is considered.

We use Galerkin’s method in the spectral domain with electric field
basis functions in the slot region, which are piecewise sinusoidal in
one dimension and square in the other in a manner similar to [6]. A
free-space Green’s function is employed. Bothx andy electric fields
are considered for each slot region of theH andIHI slots. Anx-di-
rected electric field basis function is sinusoidal in they-direction and a
y-directed electric field basis function is sinusoidal in thex-direction.
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(a)

(b)

(c)

Fig. 1. Slot antenna geometries cut in a ground plane. (a) Slot. (b)H . (c)IHI .

III. RESULTS

In this section, we will compare calculated input impedance and
cross-polarization levels of a regular slot antenna, anH slot antenna,
and the newIHI slot antenna. In addition, theoretical and measured
resonant frequencies and resonant impedance are compared for all ge-
ometries considered.

A 48-mm-long 4-mm-wide magnetic dipole slot antenna [Fig. 1(a)]
was constructed on a 0.25-mm woven glass substrate. End-loading slots
were cut, as shown in Fig. 1(b). The woven glass dielectric was re-
moved from the slot region to reduce dielectric loading for better agree-
ment with the calculations which assume free space. The effect of the
thin dielectric was small anyway since its thickness was less than 0.4%
of a free-space wavelength. Coaxial cable delivered power to the center
of the slot for impedance measurements, which were taken with an HP
8722C Network Analyzer. Figs. 2 and 3 show excellent agreement be-
tween the network analyzer impedance measurements and the moment
method calculations. It is not surprising that the measured impedances
have lower peaks since there are losses in the conducting ground plane
that are not accounted for in the theory. Also, the network analyzer
calibration did not take into account the losses of the 13-cm-long feed
coax. Similar losses accounted for lower measured peaks in the recent
literature [7]

0018–926X/00$10.00 © 2000 IEEE
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Fig. 2. Real (Z ),H antenna, (L = 48 mm,d = 18 mm,w = t = 4 mm).

Fig. 3. Imag(Z ).H antenna, (L = 48 mm,d = 18 mm,w = t = 4 mm).

Table I summarizes calculated and measured resonant frequencies
and impedances along with calculatedD-plane cross-polarization
levels for various end-loading lengths. As shown in Table I, the induc-
tive loading decreases both the resonant frequency and the resonant
impedance. In each case, the width of the loading arms was equal to
the width of the slot (t = w = 4 mm). There are a number of probable
reasons for the slight discrepencies between impedance calculations
and measurements. First, conductor losses are not accounted for in the
theory; second, while a coaxial feed is a good approximation for the
delta function feed in the theory, it is not exact; and third, insufficient
computer resources to use enough basis functions to more accurately
model the currents (basis functions in the main slot were 4 mm square;
basis functions in the arms were no smaller than 1� 1.33 mm).

Far-field radiation patterns are obtained from the Fourier transform
of the electric field in the slot [8]. For the copolarized and cross-polar-
ized field references, we use a slightly modified Ludwig’s definition
2 [9]. We use anx-directed magnetic dipole as the reference field for
copolar calculations and anx-directed electric dipole for cross-polar
calculations when the source is in thex-directed slot.

There is no cross polarization in theE andH-planes because the
currents in the parasitics are equal in opposite directions and the para-
sitic elements are placed symmetrically about thex andy axes, there-
fore, field contributions from them cancel in symmetry planes (E and
H-planes). Fig. 4 shows that theD-plane cross-polarization level is not
very high (�37 dB) ford = 6 mm; however, it increases to as much as
�20 dB whend = 18 mm.

Polarimetric applications that require no less than�20 dB isolation
between the two polarizations are limited tod = 18 for theH antenna.
In any case, the antenna is now almost as wide as it is long and making
the arms longer is not of any advantage when closely spaced printed
circuits are required. However, we can simultaneously achieve more
tuning and decrease theD-plane cross-polarization level by folding
the the ends of theH back around to its center as shown in Fig. 1(c),
which we denote as theIHI antenna. When this is done the resonant
resistance, resonant frequency, and the cross-polarization decrease. For

TABLE I
CALCULATED AND MEASURED RESONANT RESISTANCE AND SECOND

RESONANCE. CALCULATED PEAK D-PLANE CROSS-POLARIZATION LEVEL

(L = 48 mm,w = t = 4 mm,a = 1 mm)

Fig. 4. CalculatedH antennaD-plane cross-polarization patterns at second
resonance forL = 48 mm,w = t = 4 mm.

d = 18 mm anda = 1 mm, the cross-polarization is reduced by 4
dB. Results for theIHI antenna are summarized in Table I along with
those of theH antenna and the simple slot. For theIHI measurements,
a thin dielectric strip supported the strip conductor in the end-loaded
slots.

Table I shows that the resonant resistance decreases as the loading
lengthd increases. It also shows that theH antenna withd = 18 mm
and theIHI antenna withd = 10 mm have the same resonant fre-
quency, but that theIHI has a resonant resistance closer to 50
 and
has lower cross-polarization than thed = 18 mmH antenna.

IV. CONCLUSION

We have demonstrated a reduction in resonant resistance of slot an-
tennas by the addition of perpendicular end-loading sections in anH

configuration, and we have demonstrated that the length of the loading
sections can be adjusted to tune the resonant resistance. In the case of
theH antenna, polarization cannot be neglected when cross-polariza-
tion levels of less than�20 dB are desired and that cross polarization in
theD-plane increases as the length of the tuning arms increase. More
tuning can be achieved without increasing theD-plane cross-polariza-
tion level by folding the ends of theH into theIHI configuration,
which is introduced in this letter.
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PO Near-Field Expression of a Penetrable Planar Structure
in Terms of a Line Integral

Giuseppe Pelosi, Giovanni Toso, and Enrica Martini

Abstract—An exact line-integral representation of the physical optics
(PO) field scattered in near zone by a penetrable planar structure illumi-
nated by a plane wave is discussed.

Index Terms—Dielectric bodies, electromagnetic diffraction, physical op-
tics, planar objects.

I. INTRODUCTION

The physical optics (PO) technique has been widely used for an-
tennas and scattering problems involving structures, which are large in
terms of a wavelength. The applications of the PO have been devoted
essentially to perfectly conducting structures, but this technique is also
applied for penetrable structures [1], [2]. The main drawback in the
application of PO is the evaluation of a surface integral; the time re-
quired for this numerical integration is proportional to the surface of
the structure under examination. Hence, for its implementation, con-
verting surface integration into a line integration extended over the rim
of the illuminated region is a really attractive solution.

The problem of reduction of a surface radiation integral to a line in-
tegral has been tackled by several authors. Different formulations have
been proposed essentially depending on the scalar or vectorial nature of
the involved fields; the light source (plane wave, dipole, etc.); the po-
sition of the observation point with respect to the illuminating source,
the structure, and the geometrical optics (GO) shadow boundaries. So
far, all the contributions (see, for instance, [3] and [4]) have been de-
voted to perfectly conducting structures. In this letter, we present an
extension of the formulation proposed in [4] to the case of a penetrable
planar structure illuminated by a plane wave.

II. DERIVATION OF THE FIELD-INTEGRAL REPRESENTATION

The PO field scattered by a dielectric plate of arbitrary shape and
negligible thickness in terms of wavelengths, illuminated by a plane
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wave, is given by the superimposition of the fields due to the free-space
radiation of the PO equivalent currents distributed on the two faces.
Despite the hypothesis of negligible thickness, made only to neglect
the contributions due to the lateral surfaces, the procedure is not based
on any sheet condition.

The contribution to the scattered field of each face can be expressed
in the near zone using Kottler’s representation [5], which involves sur-
face integrals extended over the surface of the face and line integrals
on its boundaryC. Referring to Fig. 1, where a Cartesian system of
coordinates with the origin located in the observation pointOOO has been
introduced, the PO field due to each face takes the following form [the
time factorexp(j!t) is suppressed]:

EEE
PO(OOO) = �

A

[G(rrr)n̂̂n̂n � rFFFE(rrr)� n̂̂n̂n � rG(rrr)FFFE(rrr)] dA

+
C

G(rrr)t̂̂t̂t� FFFE(rrr)dC

+
j�

k C

t̂̂t̂tFFFH(rrr)rG(rrr) dC (1)

where� andk are the free-space intrinsic impedance and wave number,
respectively,̂ttt represents the unit tangent vector onC, positively ori-
ented with respect to the unit normaln̂nn on A (n̂nn = ẑzz on the upper
face,n̂nn = �ẑzz on the lower face). Operatorr works on the coordinates
of the observation point,rrr represents the vector from the observation
pointO to the integration point,G(rrr) is the free-space scalar Green’s
function evaluated atrrr. Vector operatorsFFFE andFFFH are defined in
such a way that when we evaluate the contribution due to the upper face
FFFE(rrr) = EEEi(rrr) +EEEr(rrr),FFFH(rrr) = HHHi(rrr) +HHHr(rrr); when, instead,
we evaluate the contribution due to the lower faceFFFE(rrr) = EEEt(rrr),
FFFH(rrr) = HHHt(rrr), with EEEi, EEEr, EEEt (HHHi; HHHr; HHHt) representing, re-
spectively, the incident, the reflected and the transmitted electric (mag-
netic) field through the infinite dielectric slab with the same thickness
and electromagnetic properties as those of the analyzed plate.

By applying the mathematical procedure illustrated in the Ap-
pendix based on the application of the dyadic divergence theorem
to the volumeV defined in Fig. 1, after tedious but straightforward
calculations, one can demonstrate that (1) is exactly equivalent to the
following expression:

EEE
PO(OOO) =

FFFE(O)

4� C

t̂̂t̂t(q̂̂q̂q � r̂̂r̂r)

r(1� q̂̂q̂q � r̂̂r̂r)
dC

+
1

4� C

t̂̂t̂tr̂̂r̂r �
1

0

rFFFE(�rrr)e
�jk�r

d�dC

+
C

G(rrr)t̂̂t̂t� FFFE(rrr)dC

+
j�

k C

t̂̂t̂tFFFH(rrr)rG(rrr)dC (2)

wherêqqq, as in [3], is any fixed unit vector with the property thatq̂qq�n̂nn � 0

andq̂qq � r̂rr 6= 1 for eachrrr 2 A (A = A[C is the closure ofA). Due to
the fact that the inner integral inside the double integral comparing in
(2) reduces to a closed form, (2) involves only line integrals. Equation
(2) represents the extension of [4, eq. (24)] to the case of penetrable
plates illuminated by a plane wave.

III. N UMERICAL RESULTS

In order to illustrate the accuracy of the proposed formulation, the
numerical results obtained by applying line integration have been com-
pared with those obtained from the traditional surface integration. In
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Fig. 1. Geometry for the problem.

Fig. 2. Amplitudes of the�- and R-components of the electric PO field
scattered by a square dielectric plate (sidel = 2�, dielectric constant" = 3,
thicknessd = 0:05�). Continuous line: line integral technique; line with
markers: surface integral technique.

particular, the amplitudes of the�- andR-components of the PO elec-
tric field scattered by a square dielectric plate (sidel = 2�, dielectric
constant"r = 3, thicknessd = 0:05�) are shown in Fig. 2. The in-
cident plane wave is�-polarized (with a unit amplitude electric field)
and impinges on�0 = 45�, �0 = 60�. The observation point is located
in the� = 190� plane at a distanceR = 4� from the center of the
plate. As expected, a perfect agreement is observed between the con-
tinuous line (line integral) and the line with markers (surface integral).
A similar agreement is found for the magnitude of the�-component of
the scattered electric field as well as for the phases.

To estimate the decrease in computation time with respect to sur-
face integration, central processing unit (CPU) times required on a
medium-power workstation to evaluate the PO scattered fields with the
line and the surface integration were measured. These are reported in
Fig. 3 as a function of the dimensions of the dielectric plate. The con-
figuration under consideration is the same as that depicted in Fig. 2 and
the observation distance with respect to the center of the plate is two
times its side. It is important to note that the CPU times compared are
relative to solutions with the same precision (a reference “exact” PO
solution is obtained by using 40 sampling points per wavelength). The

Fig. 3. CPU time required to evaluate the PO fields scattered by a square
dielectric plate (dielectric constant" = 3, thicknessd = 0:05�).

approach with line integration yields a significant decrease in compu-
tation time and time saving grows rapidly with the plate side.

APPENDIX

The surface integral in (1) can be considered as the flux through the
surfaceA of the matrix function

VVV (rrr) = G(rrr)rFFFE(rrr)�rG(rrr)FFFE(rrr): (A.1)

Consequently, it can be elaborated by using the dyadic theorem of di-
vergence. We introduce a coneV with vertex at the observation point,
basisA, and lateral surfaceB with outer normal̂n̂n̂nBBB (see Fig. 1). By
applying the divergence theorem toV we obtain

B

n̂̂n̂nBBB �VVV (rrr)dB�

A

n̂̂n̂n �VVV (rrr)dA =

V

r�VVV (rrr) dV (A.2)

where the negative sign before the second integral is due to the fact that
n̂̂n̂n is the inner normal. Consequently, we can replace the surface integral
in (1) with the summation of a volume integral and a surface integral,
extended to the lateral surfaceB of the cone. For what concerns the
volume integral, by using the properties of the Green function and the
fact that the GO field satisfies the Helmholtz equation inV , we can
easily verify, with a procedure similar to that adopted in [4], that

V

r � VVV (rrr)dV =

V

�(r)FFFE(rrr) dV: (A.3)

Due to the presence of the Dirac function, we have to consider only
the value ofFFFE(rrr) at the observation point, so that the phase term
disappears

V

�(r)FFFE(rrr)dV =

V

FFFE(OOO)�(r)dV: (A.4)

The integral of the Dirac function is then evaluated starting from the
results published in [3] and [4] and we have

V

r � VVV (rrr) dV =
FFFE(OOO)

4�
C

t̂̂t̂t(q̂̂q̂q � r̂̂r̂r)

r(1� q̂̂q̂q � r̂̂r̂r)
dC: (A.5)

In order to reduce also the other surface integral of (A.2), i.e., the flux
IIIB of VVV (rrr) through the lateral surfaceB, to a line integral, it is suffi-
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cient to consider that this flux can be written as a double integral, with
the inner integral evaluated along the cone directrices, and the outer in-
tegral along the boundary of the plate. In particular, ifrrr is the vector
joining the observation point with a generic point of the boundaryC,
�rrr describes a generatrix for� 2 [0; 1] so that

IIIB = �
1

4� C

t̂̂t̂t � r̂̂r̂r �
1

0

rFFFE(�rrr)e
�jk�r

d�dC: (A.6)

In our case (plane wave excitation), the inner integral involves only
exponential functions and can be easily evaluated in a closed form. In
fact, for the incident, reflected and transmitted field we have to evaluate
integrals of this kind

III =
1

0

e
�jkkk�rrr�

e
�jk�r

d� =
1� e�j(kkk�rrr+kr)

jkkk � rrr + kr
(A.7)

wherekkk is the corresponding propagation vector.
The last consideration is true for all kinds of dielectric or magnetic

slabs. In fact, the material characteristics affect only the reflection and

transmission coefficients, which are constant with respect to the inte-
gration variables, so that the integrals can be evaluated in closed form
without any restriction.
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