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Abstract—The problem of electromagnetic wave scattering
by heterogeneous dielectric bodies is formulated in a recursive
manner by organizing their homogeneous subregions into hi-
erarchical multiply-nested structures. The inner details of each
multiply-nested body are completely accounted for by an equiva-
lent surface representation that yields the electric and magnetic
fields tangent to the body only in terms of a single unknown
electric surface current density distributed on its outer surface.
In this manner, the problem of wave scattering by heterogeneous
dielectric bodies is reduced to a scattering problem over their
outermost surfaces in terms of only a single unknown current
density. For a large number of different homogeneous dielec-
tric subregions within such a heterogeneous body, the proposed
method has a computational complexity of ( 1 5) and storage
requirements that increase in proportion to ( ). Furthermore,
the equivalent surface representation derived for a particular
subregion is invariant under rotation and translation and may,
therefore, be applied to identical subregions without repeating the
computation. The fields at any interior points are calculated by a
fast backward recursion.

Index Terms—Heterogeneous dielectrics, integral equations, re-
cursive methods, wave scattering.

I. INTRODUCTION

T HE numerical solution of electromagnetic wave scattering
problems involving complex heterogeneous dielectric

bodies can become intractable if the associated algorithm
requires the direct simultaneous solution of all unknown
quantities. Recently, iterative and also recursive solutions using
the volume integral equation formulations have received much
attention [1]–[7]. These so-called fast algorithms typically
enjoy computational complexities in the order of or
even , where is the number of unknowns
distributed throughout the cross section of a two-dimensional
(2-D) structure. An exhaustive review of such algorithms can
be found in [3]. Coupled surface integral equation formula-
tions—such as the electric fields integral equation (EFIE),
magnetic field integral equation, and the combined field
integral equation—replace the volume distribution of the
unknown equivalent sources within a homogeneous subregion
with coupled electric and magnetic surface currents distributed
on the enclosing surface and, thus, greatly reduce the number
of unknowns (and the necessary amount of computation) for
problems where the regions can be partitioned into a small
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number of homogeneous subregions [8]–[10]. However, as
the concentration of these homogeneous subregions increases,
the number of unknowns attributed to the coupled surface
integral equation formulation approaches that of the volume
integral equation methods and the computational advantage
is lost. A recent region-by-region solution of the coupled
surface integral equations succeeded in reducing the associated
computation time and storage requirements, yet still required
the simultaneous solution of a linear system involving nearly
all the interfaces [10].

An alternative to the typical coupled surface integral equa-
tion formulations is to model the fields in terms of single source
surface integral equations satisfied by only a single unknown
current density. This can be done in different ways, but always
such that the fields in a particular homogeneous region are rep-
resented in terms of a single unknown surface current density,
in agreement with the Kirchhoff integral representation of the
fields in an adjacent homogeneous region [11]–[32]. Recursive
formulations of these single-source surface integral equations
have been derived for the problems of wave scattering by lay-
ered periodic gratings [12], [13], by layered dielectric cylin-
ders [28], and by systems of multiply-nested dielectric cylinders
[29], [30]. The term “multiply-nested” describes a body com-
posed of a set of inhomogeneous inclusions embedded within
a homogeneous medium, each of these inclusions consisting it-
self, in general, of a homogeneous dielectric body enclosing its
own set of inhomogeneous inclusions. These previous recursive
formulations retained a common necessity: that each inclusion
be completely surrounded by a homogeneous medium in which
the fields are to be modeled. This requirement has limited their
application to a narrow class of layered or multiply-nested struc-
ture problems in which the inclusions touch neither each other
nor the enclosing surface.

In this paper, we treat the general problem of wave scattering
by structures where different enveloping surfaces and inclusion
surfaces have sections in common such that the recursive mul-
tiply-nested algorithm previously developed by the authors [29],
[30] is extended to the problem of electromagnetic wave scat-
tering by a system of general heterogeneous bodies. The internal
structure of each inclusion is completely accounted for by a pair
of surface integral operators, which we refer to as theexclusive
operators, that yield the components of the electric and mag-
netic fields tangent to the scattering surface only in terms of a
single unknown current density distributed on that same surface.
Progressing outwardly, in a recursive manner, we derive similar
exclusive operators for the successive enveloping surfaces, until,
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finally, the wave scattering problem is solved in terms of a single
unknown electric current density distributed only on the out-
ermost surfaces. Furthermore, the exclusive operators derived
for a particular scattering feature enjoy the property to be in-
variant under rotation and translation and, therefore, provide an
equivalent surface representation that may be reused without re-
peating the associated computation for identical features located
elsewhere, while permitting the calculation of fields at interior
points by way of a fast backward recursion. The associated algo-
rithm has a computational complexity that grows asymptotically
as , where is the number of different homogeneous
subregions within the heterogeneous structure. While the reduc-
tion procedure is generally valid, in this paper, we only illustrate
the formulation and computational aspects for the wave scat-
tering by systems of 2-D heterogeneous dielectric structures.

II. FORMULATION

A. Physical Problem and Objective

Consider the TM illumination of a system of het-
erogeneous dielectric cylinders, , arranged
parallel to the -axis, as shown in a cross section in Fig. 1. The
electric field has only a-directed component that satisfies
the homogeneous Helmholtz equation

(1)

with the continuity conditions of the tangential components of
the electric and magnetic field intensities across each interface,
i.e.,

any interface (2)

any interface (3)

where:
relevant wave number that varies from re-
gion to region;
magnetic field component tangent to the
interface;
derivative in the direction of the normal
unit vector ;
step discontinuity in the direction of.

A time dependence of has been assumed and suppressed
throughout. The actual field in the free-space region is
decomposed into the sum of the incident field and a scat-
tered field .

A necessary feature of our formulation is the organization of
the homogeneous subregions into a nested hierarchical struc-
ture. We first examine the heterogeneous bodythat con-
tains a collection of different heterogeneous inclusions,

, within an enveloping surface , which may con-
form to portions of the included surfaces. The inclusions
may be either in contact or separated within a linear and homo-
geneous region of permittivity and permeability . Each
inclusion may itself be comprised of a linear and homoge-
neous region enclosing its own set of inclusions.

The objective of our formulation is to completely account for
the internal structure of the heterogeneous bodyby deriving
a pair of exclusive operators and that yield the field

Fig. 1. TM illumination of a system of heterogeneous dielectric cylinders
whose cross sections are organized in a hierarchical multiply-nested structure.

components tangent to the surfaceexclusively in terms of a
single electric current density distributed on that same sur-
face

(4)

(5)

These exclusive operators are to be derived in a manner that is
independent of external material and illumination so as to be
invariant under rotation and translation.

B. The Local Scattering Problem

The framework of alocal scattering problemis prescribed
in order to provide an insightful physical interpretation of the
recursive single integral equation formalism. Consider the het-
erogeneous body described above and let us assume for the
moment that the inclusions touch neither each other nor the
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Fig. 2. The local scattering problem. All material is replaced with that of
the homogeneous multiply-connected dielectric; the fields are made to vanish
within the included surfaces by means of equivalent electric and magnetic
surface currents; the incident field is generated by a single layer of electric
surface current distributed on the enveloping surface.

enveloping surface . This restriction will soon be lifted but,
for the present, it aids in developing the field model. We formu-
late the field problem within as a local scattering problem in
the following manner (see Fig. 2). All material internal and ex-
ternal to is replaced with that of ; the actual electric field

in is decomposed into the sum of a local incident field
and a local scattered field ; the local incident field is

assumed to be generated by a single layer of electric current
distributed on the closed surface, where is the unit vector in
the positive -axis direction, while the local scattered field is as-
sumed to be generated by equivalent single layers of electric and
magnetic current and , respectively, distributed over
the surfaces of the inclusions , , where

such that the sum of the local incident field and the
local scattered field vanishes within each inclusion. Imposing
only one current density (i.e., ) on implies that the sum of
the local incident and the local scattered fields is unconstrained
beyond . Thus, an integral representation of the actual field

in the linear homogeneous subregionis obtained in terms
of the local incident and the local scattered fields

for
for
for

(6)

with

(7)

(8)

where:
wave number in the homogeneous subre-
gion ;
Hankel function of the second kind and
order zero;

, with and the position vec-
tors of the field point and the source point,
respectively;
derivative in the direction of the unit vector
normal to the surface at .

The equivalent surface densities and at any interface
point are expressed in terms of the actual magnetic and electric
fields tangent to the scattering surfaces

(9)

(10)

where:
;

;
and functions of .

With (9) and (10), (8) becomes

(11)

where and are the tangential components of the actual
electric and magnetic fields on the included surfaces. Thus, the
local scattering model allows us to derive [via (6)] a relationship
between the single unknown current densityand the two un-
known field components and on the surface of each in-
clusion. This relationship provides the ground work for the fol-
lowing recursive reduction algorithm.

C. The Recursive Reduction Algorithm

Let the actual fields and tangent to each included sur-
face be expressed in terms of a single unknown electric cur-
rent density distributed on that same surface by means of the
pair of exclusive operators and in the same manner as
in (4) and (5)

(12)

(13)

By this assertion, the equivalent electric and magnetic surface
current densities and [see (9) and (10)] are replaced, in
the local scattering problem, in favor of the single electric cur-
rent density . Substituting (12) and (13) in (11), and imposing
the null-field boundary condition in (6) just inside each inclu-
sion yields a system of integral equations in terms of
unknowns, namely the unknown electric current densities
and the unknown source of the local incident field, i.e., the elec-
tric current density . By isolating from the s and moving
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it to the right-hand side of each integral equation, we can write
the integral equations in the form

(14)

where:
Kronecker delta;
identity operator;

and surface integral operators derived as follows:

(15)

(16)

The notation adopted for these operators is the following: the
left-hand side superscript and subscript indicate the field surface
and the source surface, respectively; the right-hand side sub-
script shows the corresponding material constants, for instance

and for ; the right-hand side superscriptsand indi-
cate the nature of the source current involved (i.e.,: electric, :
magnetic) and (16) contains the principal value of the integral.
Solution of the system of equations (14) in terms of the current
density yields a linear mapping from to the single-source
current density on each included surface

(17)

The components of the actual fields tangent to the outer surface
can now be expressed exclusively in terms of the unknown

electric current density as in (4) and (5), i.e.,
and , , where the exclusive operators

and for the surface are obtained from (6) to (11) by
expressing the electric and magnetic field intensities tangent to
the scattering surfaces in (12) and (13), respectively, in terms of

via the source mapping (17). This finally gives

(18)

(19)

where and are the integral operators that provide the
contributions to on due to the electric and magnetic cur-
rent densities on the surface, respectively, in the form

(20)

(21)

with the integral in (20) taken in principal value. The body
is now said to be reduced from the point of view of the

wave scattering analysis by single-source surface integral equa-
tions. The exclusive operators (18) and (19) together with the

source mapping (17) constitute an equivalent surface represen-
tation of the multiply-nested body , which is derived indepen-
dently of external material and illumination and is, therefore, in-
variant under rotation and translation. This means that the equiv-
alent surface representation derived for a particular body can be
simply copied to identical bodies that appear elsewhere in the
wave scattering problem without repeating the relevant calcula-
tions and without transformation.

Obviously, the reduction algorithm derived for the body
may be applied to any multiply-nested body in which each in-
clusion has been described by a pair of exclusive operators in the
manner of (12) and (13). Since these inclusions are themselves
multiply-nested bodies, the reduction algorithm is clearly recur-
sive. Consider a set of inclusions nested within an arbitrary host
body. Solving (14) over the surface of these inclusions yields
the linear mapping (17), which permits the calculation via (18)
and (19), of the exclusive operators for the enveloping surface
in terms of those previously determined for each inclusion sur-
face. The body thus reduced may now be treated as an inclu-
sion within a greater host body; in this manner, the algorithm
progresses recursively until the exclusive operators have been
determined over the outermost surface of the composite scat-
tering body. This recursive procedure begins at the innermost
level of nesting where the exclusive operators for the homoge-
neous inclusions are generated only in terms of the respective
local incident fields, i.e., in (18) and (19).

D. Coincident Surfaces

From the perspective of the local scattering problem, it was
convenient to visualize the inclusions (i.e., the local scatterers)
as being completely surrounded by the homogeneous region
in which we had defined the local incident and scattered fields.
However, for practical heterogeneous problems it is necessary
to place the inclusions in contact with each other and/or with the
enveloping surface (as shown in Fig. 1). Such practical ar-
rangements can be accommodated by allowing the portion of
that separates the respective surfaces to become infinitesimally
thin such that in the limit the contact is obtained. We refer to
these surfaces that touch in the limit ascoincident surfaces.

Successful application of (14)–(21) to problems involving
such coincident surfaces requires a proper accounting of the step
discontinuities of and [see (9) and (10)] when crossing
the corresponding surface distributions of magnetic and electric
current, respectively. In the analysis in the preceding sections,
these step discontinuities had been extracted from the Cauchy
principal valued integrals of (16) and (20) and represented in
(14) and (19) by an appropriately weighted identity operator. In
order to accommodate coincident surfaces, we must broaden the
interpretation of the Cauchy principal valued integral to allow
not only for the extraction of the self-patch integral, but also for
the extraction of the coincident-patch integral. In order to in-
corporate both the extracted self- and coincident-patch integrals
into the integral equation formulation, we derive a specialized
coincidence operator to take the place of the weighted identity
operator used in (14) and (19).

As portions of the enveloping surface are made coincident
with the included surface [see Fig. 3(a)], the electric and
magnetic fields at points immediately inside are equivalent
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Fig. 3. Treatment of coincident surfaces in the limit ash ! 0. (a) The
included surface is made coincident with the enveloping surface. (b) Two
included surfaces are brought into contact.

to those immediately outside . Thus, the electric field
intensity tangent to in will receive a contribution of

from integration over the coincident-patch, while
the magnetic field intensity tangent to in will receive
contributions of and from the coincident-
and from the self-patch integrations, respectively. Similarly,
as the neighboring inclusions and are brought together
in the limit, the electric field tangent to in will receive
a contribution of from the self-patch integration
over and from the coincident-patch integration
over [see Fig. 3(b)]. These contributions, which are omitted
correspondingly from the principal value integrals of (16) and
(20), are accounted for by thecoincidence operator which
is defined in terms of the Dirac delta function as

if
if

(22)

such that the exclusive operators in (18) and (19) become now

(23)

(24)

and the null condition of the local scattering problem in (14) is
obtained now in the form

(25)

which yields the source mapping , .
Thus, the recursive single-source surface integral equation
formulation can be applied to general heterogeneous dielectric
bodies, once the homogeneous subregions have been organized
into hierarchical multiply-nested structures. As a special case,
if no surfaces are in contact, then (23)–(25) revert to (18), (19),
and (14), respectively, via the coincidence operator in (22).

E. Solving for the Free-Space Scattered Field

Consider again the system of composite scattering cylinders
shown in a cross section in Fig. 1. Having re-

duced, independently, each of these heterogeneous bodies to an
equivalent surface representation, we proceed to solve only for
the single unknown electric current density on the surface of
each of them, i.e., , , in terms of the known
incident electric field . The free-space scattering problem
is treated in the same manner as each local scattering problem
except that the enveloping surface now recedes to infinity and
the null field condition yields the linear system

(26)

Once the surface current densities, are de-
termined, the free-space scattered field can be expressed by
using the Kirchhoff integral representation in terms of the fields
tangent to each of the outermost scattering surfaces

, , , as

(27)

where the left-hand side superscripts have been omitted in the
corresponding equations (15) and (16) in order to indicate that
the field is expressed at an arbitrary point in. For computing
this free-space field only the current distributions on the outer
surfaces of the heterogeneous bodies need be de-
termined.

F. Internal Fields by Backward Recursion

In the formulation presented, the field within any homoge-
neous region is expressed exclusively in terms of the source of
the local incident field in that region, i.e., the unknown electric
current density distributed on the respective enveloping surface.
For example the electric field in region of Fig. 1 is expressed
in terms of as

(28)
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An exceptional feature of the method developed consists in the
fact that it is not necessary to determine this single-source den-
sity on all interfaces simultaneously. The exclusive operators
and the mapping operators generated and archived during the
course of the reduction can be used, in a backward recursion pro-
cedure, to obtain the single electric current density and, hence,
the components of the electric and magnetic field intensities tan-
gent to any internal surface. The single-source density on any
internal surface is readily obtainable by following a chain of hi-
erarchical mappings from the enveloping surface to a particular
included surface. For example, in Fig. 1 can be obtained as

, such that
and , . To formalize this backward recur-
sion, it is necessary to renumber the inclusions along the chosen
path of the mapping. The subregion within which we require
the electric and magnetic fields is renumbered, having an
outer surface on which the unknown current density is
distributed. Our interior subregion is embedded within the
overall scattering system as ,
where is a subregion on whose surface the single-source cur-
rent density is known. This makes the target subregionto
be uniquely identified even when it appears as an inclusion that
is defined only as a translated or a translated and rotated copy of
another inclusion. The distribution of on the surface of the
target body is determined recursively as

(29)

where the mapping operators , , have
been determined and saved during the course of the reduction
algorithm. The field components tangent to are obtained
directly from and , .

III. N UMERICAL RESULTS

A. Moment Method Implementation

A simple pulse-expansion and point-matching mo-
ment-method implementation is used to transform the integral
operators defined above into matrices whose number of rows
and columns are given by the number of patches on the dis-
cretized field surface and source surface, respectively. Regular
patch contributions are calculated by Gaussian quadrature. A
nonvanishing self-patch contribution to the Cauchy principal
valued integral due to the curvature and the finite length of
the patch is accounted for in the manner of [22]. A self-patch
formula for the integration of the weakly singular kernel of
(15) can be found in [33].

The hypersingularity of the kernel of (21) can be relatively
easily treated in the case of a pulse expansion implementation.
Indeed, the magnetic field contribution due to magnetic current
sources on a given surfacecan be expressed as

(30)

where is the surface density of magnetic charge and is de-
termined from the continuity equation for the magnetic current

(31)

as

(32)

with the derivative taken along the cross-sectional contour in the
counter-clockwise direction. Substituting (32) into (30) and in-
tegrating by parts returns (21). If the magnetic current density is
assumed uniform over each patch (as it is for a pulse-expansion
implementation), then (32) represents only the charge densities
corresponding to the step discontinuity of the magnetic current
density between adjacent patches (i.e., a train of weighted Dirac
delta functions). Therefore, the magnetic current sources on an
isolated patch are modeled as a uniform magnetic current orig-
inating from and terminating on equal but opposite magnetic
charges such that the magnetic continuity equation is satisfied
for each patch individually. A simple self-patch formula is thus
obtained as

(33)

where is the Hankel function of the second kind and order
one and

(34)

is the distance from the end of the patchto its center and is
expressed in terms of the patch curvatureand patch length .
This accurate self-patch formula does not require integration
over the entire closed surface as in the method presented in [22].

B. Computed Examples

The validity of the recursion, the invariance of the exclusive
operators under rotation and translation, and the treatment of co-
incident surfaces are each demonstrated by way of a simple nu-
merical example. Consider a heterogeneous dielectric cylinder
interacting with a TM plane wave propagating in the negative

-axis direction, as shown in Fig. 4. We organize the four homo-
geneous quadrants of this heterogeneous cross section by two
methods: first, as four separate quadrants each illuminated di-
rectly by the incident wave [see Fig. 4(a)], and second, as a
thrice-nested body formed by gathering the quadrants, one by
one, in an ever increasing enveloping surface [see Fig. 4(b)].

Initially, we set the permittivity of each quadrant to and
compare the numerical solution of the bistatic radar cross sec-
tion (RCS) to that obtained analytically through series expan-
sion (see Fig. 5). All surfaces are discretized to roughly ten
patches per local wavelength which entails 20 patches on the
radial surfaces and 32 patches on the arc of each quadrant. The
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Fig. 4. Circular nonmagnetic(� = � ) heterogeneous dielectric cylinder of radius� (i.e., the wavelength in free-space). The heterogeneous cross section is
structured in two ways: (a) as four sectors and (b) as a thrice-nested body.

Fig. 5. Bistatic RCS of the cylinder shown in Fig. 4 with uniform permittivity" = " = " = " = 4" : analytical solution —, “four-sector” formulation - -
-, and “thrice-nested” formulation+++.

solutions obtained by the “four-sector” and “thrice-nested” for-
mulations are identical to each other and are in excellent agree-
ment with both the analytical solution for the homogeneous cir-
cular cylinder and the numerical solution obtained by the EFIE
assuming an identical surface discretization.

The invariance of the exclusive operators under rotation and
translation is demonstrated by the “four-sector” formulation.
Exclusive operators calculated for region are copied to re-
gions , , and without further calculation since these re-
gions are simply rotated and translated copies of. The wave
scattering problem is solved, for the “four-sector” formulation,
in terms of a single unknown electric current density distributed
on the surface of each of the four regions.

The validity of the recursive construction of the exclusive op-
erators is demonstrated by the “thrice-nested” formulation [see
Fig. 4(b)]. The region is embedded as an inclusion in the
semicircular region , which is an inclusion of the notched
cylinder , which itself is an inclusion of the circular cylinder

, that is, (the subregions , and
correspond to the homogeneous subregionin Fig. 1). By

the proposed recursion, the exclusive operators obtained for the
homogeneous region are used to generate the exclusive op-
erators on the surface , which in turn contribute to the exclu-
sive operators on and, finally, to those on . Thus, the wave
scattering problem is solved only in terms of the single unknown
electric current density on .
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Fig. 6. Bistatic RCS of the cylinder shown in Fig. 4 with" = 4" , " = 2" , " = 6" , and" = 8" : “four-sector” formulation —, “thrice-nested”
formulation+++, and EFIE method - - -.

As a second test, we create a genuine heterogeneous cylinder
by setting the permittivities of the quadrants to ,

, , and . Surface discretization is set to
30 patches on the radial segments and 45 patches on the quad-
rant arcs in order to provide roughly ten patches per local wave-
length in . We note that the bistatic RCS calculated by way
of the “four-sector” and “thrice-nested” models are both in ex-
cellent agreement with that calculated by way of the coupled
EFIE (see Fig. 6). The same is true for the electric and magnetic
fields tangent to the coincident surfaces along the positive-axis
(see Fig. 7). Having solved for the single electric current density
on the surface of each homogeneous quadrant, the “four-sector”
formulation yields these tangential components directly in terms
of the single electric current surface densityon the surface
as and . The “thrice-nested” formula-
tion only requires a backward recursion in order to reconstruct
these same fields since, having reduced the scattering obstacle
to the equivalent circular cylinder , we had only solved for the
single electric current density on the surface . The fields
tangent to are constructed as and ,
where we have applied the source mapping . As a
further confirmation of our backward recursion and our treat-
ment of coincident surfaces, we continue this source mapping
to obtain and and, thus, express the
electric and magnetic fields at the same points along the posi-
tive -axis in the form and , as well
as and . Recovery of and on

by backward recursion requires only 4.8% of the total exe-
cution time.

The question of accuracy and residual error is further investi-
gated by considering the bistatic RCS of a “phantom” cylinder

that is formed by setting the permittivity of each quadrant of the
circular dielectric cylinder shown in Fig. 4 to that of free-space,
i.e., . We first note that the residual error does not increase
with increasing levels of nesting, moreover the RCS generated
by the “thrice-nested” model is generally less than that of the
“four-sector” model. Furthermore, the residual error of both for-
mulations decreases with increasing discretization, thus indi-
cating the convergence of both formulations.

C. Computational Complexity

We begin by studying the number of operations required in
order to form the equivalent surface representation of a single
multiply-nested body that contains the inclusions ,

. The total number of operations consists of four
components: the two matrix–matrix multiplications required to
form the left-hand side of (14), the LU decomposition of the
same, the back substitutions required to generate the source
mapping operators , and the six matrix–matrix multiplica-
tions per inclusion required to generate the two exclusive opera-
tors and . It should be noted that prior to equivalencing

, the operations listed above must be carried out for each
included body , with the exception of those bodies that are
simply copies of previously equivalenced bodies (whose gener-
ated exclusive operators can be reused without repeating these
operations). If is a part of a larger system of scatterers in
free-space, with , , as in Fig. 1, then the wave
scattering problem is solved in terms of the known incident field
through an additional two matrix–matrix multiplication needed
to form the left-hand side of (26) and the LU decomposition of
the same. The fields on any interior surface are generated inex-
pensively by a small number of matrix–vector multiplications.
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Fig. 7. Intensity of (a) electric and (b) magnetic fields tangent to coincident surfaces along thex-axis of Fig. 4, with" = 4" , " = 2" , " = 6" , and
" = 8" : onS - - -, onS – – –, and onS — by the “thrice-nested” formulation; onS by the “four-sector” formulation� � �; and by the EFIE+++.

The actual computational complexity depends greatly upon
the hierarchical organization of the heterogeneous body. We
consider two special cases for a heterogeneous body consisting
of equally sized homogeneous dielectric subregions, each of
which being discretized bysurface patches: first, the proposed
method is applied in the absence of any hierarchical organiza-
tion (i.e., only one local scattering problem consisting of all

homogeneous dielectric subregions) and the computational
complexity is found to increase as and, second, the pro-
posed method is applied within a nested hierarchical structure

when the computational complexity is found to increase in pro-
portion to .

To illustrate the importance of the hierarchical organization,
consider a heterogeneous cross section consisting of
equally sized homogeneous dielectric subregions arranged on a

square grid. Let the cross-sectional contour surrounding
each square subregion be discretized intosegments. Without
imposing a hierarchical organization, the proposed method
yields the single unknown electric current density over the
surface of all subregions in multiplica-
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tions/divisions. Direct simultaneous solution of the electric
and magnetic fields tangent to each interface by way of the
EFIE would require multiplica-
tions/divisions. Thus, the computational complexities of both
methods for large is of the order of . Even in the
case of a single homogeneous dielectric cylinder, where the
single-source surface integral equation requires only one half
the number of unknowns as compared to that required by the
EFIE, the overall computational complexity is only reduced by
one eighth.

Alternatively, consider a similar heterogeneous cross section
consisting of equally sized homogeneous dielectric
subregions arranged on a square grid. As before, let
the cross section of the surface surrounding each square region
be discretized into segments. We organize the heterogeneous
cross section in a hierarchical manner as follows: the entire
cross section is divided into four sized subregions,
each of which contains four sized inclusions. Sim-
ilarly, each subsequent inclusion contains four inclusions and
this nesting process continues for a total of levels until the
inclusions are of unit size. After some tedious algebra, the pro-
posed method yields the solution of the wave scattering problem
in a total number of multiplications/divisions

(35)

which converges geometrically to for
large . Thus, the proposed recursive algorithm reduces the com-
putational complexity from the order of to the order of

when the heterogeneous cross section is organized into
a nested hierarchical structure. The total number of arithmetic
operations for a given multibody structure is further substan-
tially reduced when various subregions are translated and/or ro-
tated copies of each other [29]–[32].

By recursive formulation of the single-source surface integral
equation method, the overall storage requirements are limited to
only those matrices needed to represent the single largest local
scattering problem. For the case of the preceding example, the
largest local scattering problem consists of four
sized heterogeneous subregions; therefore, the storage require-
ments increase as where is the total number
of equally sized homogeneous subregions, andis the number
of surface patches over each of them. In comparison, the storage
requirements for the simultaneous solution of all unknowns by
way of the EFIE increase as .

Obviously, the proposed solution method does not require
such a rigid grouping as that described above. In fact, in many
applications, such as material optimization problems, it is more
practical and efficient to group the dielectric regions into com-
ponents that may be reused in subsequent problems without rep-
etition of the equivalencing procedure.

IV. CONCLUSION

The inner structure of a general heterogeneous body is com-
pletely accounted for by a pair of surface integral operators that
yield the electric and magnetic fields tangent to the outermost

surface in terms of only a single unknown electric current den-
sity distributed on this same surface. These exclusive operators
are derived by recursive application of a single-source surface
integral equation formalism to a multiply-nested body, which
is formed by organizing its distinct homogeneous subregions
into hierarchically structured inclusions. Each inclusion is an-
alyzed as a local scatterer embedded within a surrounding ho-
mogeneous medium in which the fields are formulated. A novel
treatment of coincident surfaces permits this surrounding homo-
geneous region to become vanishingly thin as neighboring in-
clusions are brought in contact in the limit. In this way, any het-
erogeneous problem may be treated as multiply-nested. The re-
sulting equivalent surface representation is formulated indepen-
dently of external material and illumination and is, therefore, in-
variant under rotation and translation. Thus, a surface equivalent
derived for a particular heterogeneous body may be archived,
duplicated, and reused in an assortment of surface integral equa-
tion models without repeating the reduction procedure. This re-
duction algorithm does not preclude the calculation of fields at
interior points. In fact, the exclusive operators and source map-
ping operators that were archived during the course of the re-
duction provide windows through which to observe the fields
in any interior region through a fast backward recursion. The
overall computational complexity and storage requirements of
the associated algorithm only increase as and ,
respectively, with the number of homogeneous subregions of
the heterogeneous structure considered. This represents a sub-
stantial improvement over the simultaneous solution of all un-
knowns via the EFIE for which the computational complexity
and storage requirements increase as and for the
same , respectively.

It should be noticed that in the special case where the inclu-
sions do not touch each other or the enveloping surface, the pro-
posed method reverts to that presented in [29] and [30].
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