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A Recursive Single-Source Surface Integral Equation
Analysis for Wave Scattering by Heterogeneous
Dielectric Bodies

David R. SwatekMember, IEEEand loan R. CiricFellow, IEEE

Abstract—The problem of electromagnetic wave scattering humber of homogeneous subregions [8]-[10]. However, as
by heterogeneous dielectric bodies is formulated in a recursive the concentration of these homogeneous subregions increases,
manner by organizing their homogeneous subregions into hi- yhe number of unknowns attributed to the coupled surface

erarchical multiply-nested structures. The inner details of each . ¢ | tion f lati hes that of th |
multiply-nested body are completely accounted for by an equiva- Integral equation tormulation approaches that or the volume

lent surface representation that yields the electric and magnetic integral equation methods and the computational advantage
fields tangent to the body only in terms of a single unknown is lost. A recent region-by-region solution of the coupled

elect_ric surface current density distributed on its outer surface. syrface integral equations succeeded in reducing the associated
In this manner, the problem of wave scattering by heterogeneous computation time and storage requirements, yet still required

dielectric bodies is reduced to a scattering problem over their the simultaneous solution of a linear svstem involving nearl
outermost surfaces in terms of only a single unknown current y g y

density. For a large number N of different homogeneous dielec- all the interfaces [10].
tric subregions within such a heterogeneous b(l)%y, the proposed  An alternative to the typical coupled surface integral equa-
method has a computational complexity of0(IN" ) and storage ;1 formulations is to model the fields in terms of single source
requirements that increase in proportion to O(N). Furthermore, . . . .
the equivalent surface representation derived for a particular Surface integral equations satisfied by only a single unknown
subregion is invariant under rotation and translation and may, current density. This can be done in different ways, but always
therefore, be applied to identical subregions without repeating the such that the fields in a particular homogeneous region are rep-
computation. The fiel_ds at any interior points are calculated by a resented in terms of a single unknown surface current density,
fast backward recursion. in agreement with the Kirchhoff integral representation of the
Index Terms—Heterogeneous dielectrics, integral equations, re- fie|ds in an adjacent homogeneous region [11]-[32]. Recursive
cursive methods, wave scattering. formulations of these single-source surface integral equations
have been derived for the problems of wave scattering by lay-
|. INTRODUCTION ered periodic gratings [12], [13], by layered dielectric cylin-
ders [28], and by systems of multiply-nested dielectric cylinders

problems involving complex heterogeneous dielectr 9], [30]. The term "multiply-nested" describes a body com-

bodies can become intractable if the associated algoritrprgsed of a set of inhomogeneous inclusions embedded within

. ) . . a homogeneous medium, each of these inclusions consisting it-
requires the direct simultaneous solution of all unknown . . ; : S
o . . . . self, in general, of a homogeneous dielectric body enclosing its
quantities. Recently, iterative and also recursive solutions usin . ) . . .
. . : : own set of inhomogeneous inclusions. These previous recursive

the volume integral equation formulations have received mug

attention [1]-[7]. These so-called fast algorithms typicall ormulations retained a common necessity: that each inclusion

) ; o 15 e completely surrounded by a homogeneous medium in which
enjoy computational complexities in the order@fN_°) or . : ; o .
. the fields are to be modeled. This requirement has limited their
even O(N, log N,,), where N,, is the number of unknowns

distributed throughout the cross section of a two-dimensio %?phcanon to anarrow class of layered or multiply-nested struc-

(2-D) structure. An exhaustive review of such algorithms cadre problems in which the inclusions touch neither each other
. 9 nor the enclosing surface.

be found in [3]. Coupled surface integral equation formula- . .
. L . . In this paper, we treat the general problem of wave scattering
tions—such as the electric fields integral equation (EFI . . . .
o . . . . BV structures where different enveloping surfaces and inclusion
magnetic field integral equation, and the combined fiel ; . .
surfaces have sections in common such that the recursive mul-

integral equa_ﬂon—replace th? yolume distribution of thﬁ ly-nested algorithm previously developed by the authors [29],
unknown equivalent sources within a homogeneous subreg ] is extended to the problem of electromagnetic wave scat-

with coupled electric and magnetic surface currents distributed. ; ;

: ering by a system of general heterogeneous bodies. The internal
on the enclosing surface and, thus, greatly reduce the numbger . L .

. tructure of each inclusion is completely accounted for by a pair
of unknowns (and the necessary amount of computation) fg ) . d
. o : of surface integral operators, which we refer to asekeusive

problems where the regions can be partitioned into a small . .
operators that yield the components of the electric and mag-

netic fields tangent to the scattering surface only in terms of a

HE numerical solution of electromagnetic wave scatteri
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finally, the wave scattering problem is solved in terms of a sing
unknown electric current density distributed only on the ou
ermost surfaces. Furthermore, the exclusive operators deri
for a particular scattering feature enjoy the property to be i
variant under rotation and translation and, therefore, provide
equivalent surface representation that may be reused without
peating the associated computation for identical features loca
elsewhere, while permitting the calculation of fields at interic
points by way of a fast backward recursion. The associated aly
rithm has a computational complexity that grows asymptotical
asO(N1-?), whereN is the number of different homogeneou:s
subregions within the heterogeneous structure. While the red
tion procedure is generally valid, in this paper, we only illustrat
the formulation and computational aspects for the wave sc
tering by systems of 2-D heterogeneous dielectric structures

Il. FORMULATION
A. Physical Problem and Objective

Consider the TM H. = 0) illumination of a system of het-
erogeneous dielectric cylindets, i = a, b, ..., m, arranged
parallel to thez-axis, as shown in a cross section in Fig. 1. Th
electric field has only a-directed componenk’, that satisfies
the homogeneous Helmholtz equation

(V2 +K)E. =0 &)

with the continuity conditions of the tangential components «
the electric and magnetic field intensities across each interfa
ie.,

AEFE.(r) =0, 7 € any interface 2
AH(r) =0, r € any interface 3)
where:
k= wyzn relevant wave number that varies from re
gion to region;
H, = magnetic field component tangent to the
(1/jwp)OFE. /on interface;
d/on derivative in the direction of the normal Fig- 1. TM illumination of a system of heterogeneous dielectric cylinders

. R whose cross sections are organized in a hierarchical multiply-nested structure.
unit vectorn;

A step discontinuity in the direction &f.
A time dependence af“* has been assumed and suppress€@Mmponents tangent to the surfaggexclusively in terms of a
throughout. The actual field. in the free-space regio, is single electric current density, distributed on that same sur-
decomposed into the sum of the incident figi# and a scat- face
tered field £2¢. ox
A necessary feature of our formulation is the organization of Bu(r) =&5 o, 7€ S, )
the homogeneous subregions into a nested hierarchical struc- Hy(r) =H."Ja, T € S, (5)

ture. We first examine the heterogeneous bdgythat con- ) ) ) )
tains a collection of different heterogeneous inclusibins; = These exclusive operators are to be derived in a manner that is

1,2, ..., n, within an enveloping surfacs,, which may con- independent of external material and illumination so as to be

form to portions of the included surfacés. The inclusiond/, Invariant under rotation and translation.

may be either in contact or separated within a linear and homo- .

geneous regiok’ of permittivity e, and permeability:,. Each B- The Local Scattering Problem

inclusionV, may itself be comprised of a linear and homoge- The framework of docal scattering problenis prescribed

neous regiorV, enclosing its own set of inclusions. in order to provide an insightful physical interpretation of the
The objective of our formulation is to completely account forecursive single integral equation formalism. Consider the het-

the internal structure of the heterogeneous bigipy deriving erogeneous body, described above and let us assume for the

a pair of exclusive operato&;” and’®;* that yield the field moment that the inclusioni, touch neither each other nor the



SWATEK AND CIRIC: SINGLE-SOURCE INTEGRAL EQUATION ANALYSIS FOR WAVE SCATTERING 1177

where:
ke = wy/eajta Wave number in the homogeneous subre-
gionV/;
HSQ) Hankel function of the second kind and
order zero;
R = |r — #/|, with » and+’ the position vec-

tors of the field point and the source point,
respectively;
a/on’ derivative in the direction of the unit vector
normal to the surfacé, atr'.
The equivalent surface densitigg® andt.J” at any interface
point are expressed in terms of the actual magnetic and electric
fields tangent to the scattering surfaces

z2J°(r) =n x AH(r) = zH,(r) 9)
tJ™(r) = —n X 2AE, (r)=tE_.(r) (10)
where:
: , - , € 5g;
Fig. 2. The local scattering problem. All material is replaced with that of —1 9 "

the homogeneous multiply-connected dielectric; the fields are made to vanish? . ;
within the included surfaces by means of equivalent electric and magneticrn and¢ functions ofr.

surface currents; the incident field is generated by a single layer of electyjg:
surface current distributed on the enveloping surface. Wlth (9) and (10)’ (8) becomes

enveloping surfacé,. This restriction will soon be lifted but,  ge(y) = Z / (_% Ht(r’)HSQ)(kaR)
for the present, it aids in developing the field model. We formu- a=1 * Sq 4

late the field problem withirV! as a local scattering problem in j R — )

the following manner (see Fig. 2). All material internal and ex- — Ber) 5 Ho (k,,,R)) da’  (11)
ternal toS, is replaced with that of’/; the actual electric field

1A D ) o \
E?nln V; is decomposed into thsz.sum of a local incident fielglyore 7 and H, are the tangential components of the actual
£z and a local scattered fiell3"; the local incident field iS  goctric and magnetic fields on the included surfaces. Thus, the
assumed to be generated by a single layer of electric C&Nt |5 scattering model allows us to derive [via (6)] a relationship

distributed on the closed surfasg, wherez is the unit vector in between the single unknown current densftyand the two un-
the positivez-axis direction, while the local scattered field is asg, o\vn field component#. and H; on the surface of each in-
z

sumed to be generated by equivalentsingle layers of electric ai\sjon . This relationship provides the ground work for the fol-
magnetic current.J¢ andtJ™, respectively, distributed OVerIowing recursive reduction algorithm

the surfacess, of the inclusionsV,, ¢ = 1, 2, ..., n, where
t = 2 x # such that the sum of the local incident field and th
local scattered field vanishes within each inclusignimposing
only one current density (i.e/,) on S, implies that the sum of ~ Let the actual fields”. and H, tangent to each included sur-
the local incident and the local scattered fields is unconstrainége S, be expressed in terms of a single unknown electric cur-
beyonds,. Thus, an integral representation of the actual fiekgnt density/, distributed on that same surface by means of the
E. inthe linear homogeneous subregidhis obtained in terms pair of exclusive operatoi;” and#;” in the same manner as

€. The Recursive Reduction Algorithm

of the local incident and the local scattered fields in (4) and (5)
Ein(‘, Esc o
o (r); afé:)T v E.(r)=€%1, r1€Sy, ¢=12...n (12
:{04 forr€VZ7q:1,2,...,n (6) Hy(r) =H;"Jq, r€S, ¢=1,2,....n (13)
? forr¢V,

By this assertion, the equivalent electric and magnetic surface
current densitieg® and.J™ [see (9) and (10)] are replaced, in
ey, _ _WHa (2, ' the local scattering problem, in favor of the single electric cur-
B (r) = /Sa Talr') Ho™ (ko) dl (") rent density/,. Substituting (12) and (13) in (11), and imposing

n Wi ) the null-field boundary condition in (6) just inside each inclu-
EX(r) =) / (—Ta TV HE (ko R) sion yields a system of integral equations in terms of + 1
q=1 754 unknowns, namely the unknown electric current densitiefs

—iJ"'(T/)iHSQ)(/%‘aRO a’ (8) and the unknown source of the local incident field, i.e., the elec-

an’ tric current density/, . By isolating.J,, from the.J,s and moving
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it to the right-hand side of each integral equation, we can wrigesurce mapping (17) constitute an equivalent surface represen-

then integral equations in the form tation of the multiply-nested body, , which is derived indepen-
" dently of external material and illumination and is, therefore, in-
Z [gg;ng + <_‘5P_7 I+ {I)g;’l) g{ﬂ J,=—PE, variantunder rotation and translation. This means that the equiv-
=l 2 alent surface representation derived for a particular body can be
p=1,2,....n (14) Simply copied to identical bodies that appear elsewhere in the
wave scattering problem without repeating the relevant calcula-
where: tions and without transformation.
Opq Kronecker delta; Obviously, the reduction algorithm derived for the body
I identity operator; may be applied to any multiply-nested body in which each in-

PE, andf&;"  surface integral operators derived as followsclusion has been described by a pair of exclusive operators in the
manner of (12) and (13). Since these inclusions are themselves

. Wita N (2) ) multiply-nested bodies, the reduction algorithm is clearly recur-
1fat === / z(r')Hy™ (ko RR) dl, r €5, (15) sive. Consider a set of inclusions nested within an arbitrary host
. Se 9 body. Solving (14) over the surface of these inclusions yields

bEMy = _ﬁ ][x(r’)? HP (ko R)dl, reS, (16) thelinear mapping (17), which permits the calculation via (18)
Sq n and (19), of the exclusive operators for the enveloping surface

The notation adopted for these operators is the following: tHaterms of those previously determined for each inclusion.sur—
left-hand side superscript and subscriptindicate the field surfd@§€- The body thus reduced may now be treated as an inclu-
and the source surface, respectively; the right-hand side s§I2" Within & greater host body; in this manner, the algorithm
script shows the corresponding material constants, for instaff@9resses recursively until the exclusive operators have been
k:o andp, for V; the right-hand side superscriptandm indi- deFermlned over the out_ermost surface of_the comppsne scat-
cate the nature of the source currentinvolved (zelectric,m:  (€1ing body. This recursive procedure begins at the innermost
magnetic) and (16) contains the principal value of the integrdgVe! Of nesting where the exclusive operators for the homoge-
Solution of the system of equations (14) in terms of the curreAg0US inclusions are generated only in terms of the respective
density.J, yields a linear mapping from, to the single-source local incident fields, i.e.n = 0in (18) and (19).

current density on each included surface D Coincident Surfaces
Jy = Lga, 9=1,2,...,n 17) From the perspective of the local scattering problem, it was

' convenient to visualize the inclusions (i.e., the local scatterers
The components of the actual fields tangent to the outer surface ( )

S can now be expressed exclusively in terms of the unknows being completely surrounded by the homogeneous région
el i SXCLSIVEY T u "which we had defined the local incident and scattered fields.
electric current density, asin (4) and (5), i.e&.(r) = £ J,

. However, for practical heterogeneous problems it is necessar
and Hy(r) = HS*J,, r € S,, where the exclusive operators P 9 P y

on om . to place the inclusions in contact with each other and/or with the
& andﬁ“ Lor ﬂ;e su_rfaceg,,, are obFalfr}el(; from (6) to (11) by enveloping surfacé, (as shown in Fig. 1). Such practical ar-
teri(ggisast;:zﬁr: Gfsﬁr?a(\:ézg ;’;n( 1gzgn%ezf3;eresmtee£szfsitna?egrﬁstrgoggements can be accommodated by allowing the portigf) of
7 via the so%rce mapping (17). This fi,nallypgives Y iR t separates the respective surfaces to become infinitesimally
@ ’ thin such that in the limit the contact is obtained. We refer to
n these surfaces that touch in the limitagncident surfaces
E" =0E 4+ > [GEH" + €T ES 1L, (18)  Successful application of (14)—(21) to problems involving
¢=1 such coincident surfaces requires a proper accounting of the step
discontinuities oft’, and H, [see (9) and (10)] when crossing
the corresponding surface distributions of magnetic and electric
current, respectively. In the analysis in the preceding sections,
wherelH;, and? 77" are the integral operators that provide théhese step discontinuities had been extracted from the Cauchy
contributions taH, on S,, due to the electric and magnetic curprincipal valued integrals of (16) and (20) and represented in

He" =31+ 0H, + > [THOHT +iHPETL,  (19)

q=1

rent densities on the surfacg, respectively, in the form (14) and (19) by an appropriately weighted identity operator. In
. P order to accommodate coincident surfaces, we must broaden the

PHox = J ][x(r’)_ HSQ)(kaR) dr, re S, (20) interpretation of the Cauchy principal valued integral to allow

4Js,  "on not only for the extraction of the self-patch integral, but also for

1 o? the extraction of the coincident-patch integral. In order to in-

PLM . / (2) 1 p g

T o s Ondn’ ' ’ corporate both the extracted self- and coincident-patch integrals

Ha'w z(r Hy™ (ko £2) dl both th d self- and coincid hintegral

res, ’ (21) into the integral equation formulation, we derive a specialized

coincidence operator to take the place of the weighted identity
with the integral in (20) taken in principal value. The bodyperator used in (14) and (19).
V, is now said to be reduced from the point of view of the As portions of the enveloping surfasg are made coincident
wave scattering analysis by single-source surface integral equéth the included surfaces, [see Fig. 3(a)], the electric and
tions. The exclusive operators (18) and (19) together with theagnetic fields at points immediately insidg are equivalent
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and the null condition of the local scattering problem in (14) is
obtained now in the form

D BEHT + (BC+LEMET g = —hEGTa

q=1

p=1,2....n (25)

which yields the source mapping = £,J,,¢=1,2, ..., n

Thus, the recursive single-source surface integral equation
formulation can be applied to general heterogeneous dielectric
bodies, once the homogeneous subregions have been organized
into hierarchical multiply-nested structures. As a special case,
if no surfaces are in contact, then (23)—(25) revert to (18), (19),
and (14), respectively, via the coincidence operator in (22).

E. Solving for the Free-Space Scattered Field

Consider again the system of composite scattering cylinders
Vi, Vi, ..., V,,, shown in a cross section in Fig. 1. Having re-
duced, independently, each of these heterogeneous bodies to an
equivalent surface representation, we proceed to solve only for
the single unknown electric current density on the surface of
each of them, i.e./;,i = a, b, ..., m, in terms of the known
incident electric fieldEin<. The free-space scattering problem
is treated in the same manner as each local scattering problem
except that the enveloping surface now recedes to infinity and
the null field condition yields the linear system

Fig. 3. Treatment of coincident surfaces in the limit’fas— 0. (a) The

!ncluded surface is made coincident with the enveloping surface. (b) Two m
included surfaces are brought into contact. Z [?587'[?; + (fC _i_ziagén)giex]Ji _ _E;nC|Sp
i=a,b...
to those immediately outside,. Thus, the electric field p=a,b, ..., m. (26)
intensity tangent taS, in V, will receive a contribution of
y 9 “ Once the surface current densitiés: = a, b, ..., m are de-

(1/2)J™ from integration over the coincident-patch, while
the magnetic field intensity tangent 1§, in V,, will receive
contributions of(1/2).J¢ and —(1/2).J, from the coincident-
and from the self-patch integrations, respectively. Similarl
as the neighboring inclusiorig, and V,, are brought together

termlned the free-space scattered figlif can be expressed by
using the Kirchhoff integral representation in terms of the fields
ngent to each of the outermost scattering surfdtds) =
T, Hy(r) = HE"J;, r € 5;, as

in the limit, the electric field tangent tsp in V, will receive B m o e
a contribution of—(1/2)J™ from the self-patch integration  E2°(r) = Y GESHT" +:E0E") T, reVy (27)
over S, and (1/2).J™ from the coincident-patch integration i=a,b...

overS, [see Fig. 3(b)]. These contributions, which are omittegihere the left-hand side superscripts have been omitted in the
correspondingly from the principal value integrals of (16) angorresponding equations (15) and (16) in order to indicate that
(20), are accounted for by theincidence operatofC which  the field is expressed at an arbitrary poin#in For computing

is defined in terms of the Dirac delta function as this free-space field only the current distributions on the outer
surfaces of the heterogeneous bodies, ..., m need be de-
PCy ==+3 /s x(rYo(r — ') dl termined.
’ ; F. Internal Fields by Backward Recursion
res, 47 fp#a 22) . S
ifp=gq In the formulation presented, the field within any homoge-

neous region is expressed exclusively in terms of the source of
such that the exclusive operators in (18) and (19) become ndie local incident field in that region, i.e., the unknown electric
current density distributed on the respective enveloping surface.
For example the electric field in regidry of Fig. 1 is expressed
ECP =9€° 4 Z [GECHTT + (5C + 1EMETIL, (23) interms ofJ, as

Her =90+ 0+ Y I(0C+ SHHET + ML, Brr)= [+ D0 GEHT +E) € ) Uy

i=a, 8, ...

(24) rev.. (28)

q=1
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An exceptional feature of the method developed consists in thberep™ is the surface density of magnetic charge and is de-
fact that it is not necessary to determine this single-source déermined from the continuity equation for the magnetic current
sity on all interfaces simultaneously. The exclusive operators

and the mapping operators generated and archived during the vV-J= _ 9™ (31)
course of the reduction can be used, in a backward recursion pro- ot

cedure, to obtain the single electric current density and, henas,

the components of the electric and magnetic field intensities tan- P9

gent to any internal surface. The single-source density on any pt(r) = i 5 J"(r) (32)

internal surface is readily obtainable by following a chain of hi-
erarchical mappings from the enveloping surface to a particulgith the derivative taken along the cross-sectional contour in the
included surface. For examplé, in Fig. 1 can be obtained ascounter-clockwise direction. Substituting (32) into (30) and in-
Iy =L dy — Jy = Lyd, « Jg,suchthattE (r) = £5%.J,  tegrating by parts returns (21). If the magnetic current density is
andH.(r) = H:*J,,r € S,. To formalize this backward recur- assumed uniform over each patch (as it is for a pulse-expansion
sion, itis necessary to renumber the inclusions along the chog@plementation), then (32) represents only the charge densities
path of the mapping. The subregion within which we requirgorresponding to the step discontinuity of the magnetic current
the electric and magnetic fields is renumbefgd, having an  density between adjacent patches (i.e., a train of weighted Dirac
outer surfacesy, on which the unknown current densify, is  delta functions). Therefore, the magnetic current sources on an
distributed. Our interior subregiovi,, is embedded within the jsolated patch are modeled as a uniform magnetic current orig-
overall scattering system a§, C V;, C V;, C ... C V,,, inating from and terminating on equal but opposite magnetic
whereV}, is a subregion on whose surface the single-source cgharges such that the magnetic continuity equation is satisfied
rent density/y, is known. This makes the target subregiGpto  for each patch individually. A simple self-patch formula is thus
be uniquely identified even when it appears as an inclusion th@tained as

is defined only as a translated or a translated and rotated copy of

another inclusion. The distribution of, on the surface of the (H{"):;

target body is determined recursively as ~ —weA;J[(0.25+50.287 924) — j0.159 154 941n(kA,; )]
1 e @ Kild;
Jor = Lo oy,  i=1-1,1-2,...,0 (29) +§\/£Ji H; " (kR;;) cos <7— (33)
where the mapping operatofs,, i = 0, 1, ..., 1 — 1, have whereHl(Q) is the Hankel function of the second kind and order

been determined and saved during the course of the reductigre and
algorithm. The field components tangent.$g, are obtained

i _ cex — ex 2 AiAi
directly from E.(r) = 7.1y, and Hy(r) = H;* Jy,, 7 € Sy, o sin <n4 40 .
Az/27 R; = 0
[ll. NUMERICAL RESULTS is the distance from the end of the patcto its center and is
) expressed in terms of the patch curvaturand patch length,;.
A. Moment Method Implementation This accurate self-patch formula does not require integration

A simple pulse-expansion and point-matching mdRver the entire closed surface as inthe method presented in [22].

ment-method implementation is used to transform the integral
operators defined above into matrices whose number of rofs Computed Examples
and columns are given by the number of patches on the dis-The validity of the recursion, the invariance of the exclusive
cretized field surface and source surface, respectively. Reguperators under rotation and translation, and the treatment of co-
patch contributions are calculated by Gaussian quadratureingident surfaces are each demonstrated by way of a simple nu-
nonvanishing self-patch contribution to the Cauchy principaterical example. Consider a heterogeneous dielectric cylinder
valued integral due to the curvature and the finite length @fteracting with a TM plane wave propagating in the negative
the patch is accounted for in the manner of [22]. A self-patchaxis direction, as shown in Fig. 4. We organize the four homo-
formula for the integration of the weakly singular kernel ofjeneous quadrants of this heterogeneous cross section by two
(15) can be found in [33]. methods: first, as four separate quadrants each illuminated di-
The hypersingularity of the kernel of (21) can be relativelyectly by the incident wave [see Fig. 4(a)], and second, as a
easily treated in the case of a pulse expansion implementatitirice-nested body formed by gathering the quadrants, one by
Indeed, the magnetic field contribution due to magnetic curremihe, in an ever increasing enveloping surface [see Fig. 4(b)].
sources on a given surfadecan be expressed as Initially, we set the permittivity of each quadrant4e, and
compare the numerical solution of the bistatic radar cross sec-
myN _ WE myoay 17(2) PN tion (RCS) to that obtained analytically through series expan-
H'(r) = - 4 s T ) He™ (kR) (- #) sion (see Fig. 5). All surfaces are discretized to roughly ten
7 I oo 2 , patches per local wavelength which entails 20 patches on the
- an Jo 7 ()3 ( x VH? (kR))dI' (30) radial surfaces and 32 patches on the arc of each quadrant. The
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Fig. 4. Circular nonmagnetig: = o) heterogeneous dielectric cylinder of radis (i.e., the wavelength in free-space). The heterogeneous cross section is
structured in two ways: (a) as four sectors and (b) as a thrice-nested body.

15

RCS/\g (dB)

0 45 90 135 180
Scattering Angle ¢ (degrees)

Fig. 5. Bistatic RCS of the cylinder shown in Fig. 4 with uniform permittivity= co = 3 = ¢3 = 4¢,: analytical solution —, “four-sector” formulation - -
-, and “thrice-nested” formulation-++.

solutions obtained by the “four-sector” and “thrice-nested” for- The validity of the recursive construction of the exclusive op-
mulations are identical to each other and are in excellent agreeators is demonstrated by the “thrice-nested” formulation [see
ment with both the analytical solution for the homogeneous ciFig. 4(b)]. The regionV; is embedded as an inclusion in the
cular cylinder and the numerical solution obtained by the EF&micircular regiontz, which is an inclusion of the notched
assuming an identical surface discretization. cylinder V3, which itself is an inclusion of the circular cylinder
The invariance of the exclusive operators under rotation ah@, that is,V; C Vo C V3 C V, (the subregiond’], Vi and
translation is demonstrated by the “four-sector” formulatiol/{ correspond to the homogeneous subredipim Fig. 1). By
Exclusive operators calculated for regibh are copied to re- the proposed recursion, the exclusive operators obtained for the
gionsV,, V3, andV, without further calculation since these rehomogeneous regioW; are used to generate the exclusive op-
gions are simply rotated and translated copieBjofThe wave erators on the surfacs;, which in turn contribute to the exclu-
scattering problem is solved, for the “four-sector” formulatiorsive operators 085 and, finally, to those 0. Thus, the wave
in terms of a single unknown electric current density distributestattering problem is solved only in terms of the single unknown
on the surface of each of the four regions. electric current density, on Sy.
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Fig. 6. Bistatic RCS of the cylinder shown in Fig. 4 with = 4cq, €2 = 2g4, €3 = 6¢¢, andey = 8&¢: “four-sector” formulation —, “thrice-nested”
formulation+++-, and EFIE method - - -.

As a second test, we create a genuine heterogeneous cylintat is formed by setting the permittivity of each quadrant of the
by setting the permittivities of the quadrantssto= 4e, £2 =  circular dielectric cylinder shown in Fig. 4 to that of free-space,
2e9, €3 = 6egg, andey = 8=(. Surface discretization is set toi.e., £o. We first note that the residual error does not increase
30 patches on the radial segments and 45 patches on the quath increasing levels of nesting, moreover the RCS generated
rant arcs in order to provide roughly ten patches per local wauvgy the “thrice-nested” model is generally less than that of the
length inV,. We note that the bistatic RCS calculated by wa¥four-sector” model. Furthermore, the residual error of both for-
of the “four-sector” and “thrice-nested” models are both in exnulations decreases with increasing discretization, thus indi-
cellent agreement with that calculated by way of the coupledting the convergence of both formulations.

EFIE (see Fig. 6). The same is true for the electric and magnetic
fields tangent to the coincident surfaces along the positisgis C. Computational Complexity

(see Fig. 7). Having solved for the single electric current density\ne begin by studying the number of operations required in
on the surface of each homogeneous quadrant, the “four-secigiger to form the equivalent surface representation of a single
formulation yields these tangential components directly in termgytiply-nested bodyV, that contains the inclusion,, ¢ =
of the single electric current surface densltyon the surfacé’; 1,2, ..., n. The total number of operations consists of four
ask, = &£["J; andH, = H{"J;. The “thrice-nested” formula- components: the two matrix—matrix multiplications required to
tion only requires a backward recursion in order to reconstrygim the left-hand side of (14), the LU decomposition of the
these same fields since, having reduced the scattering obstagl@ie, the back substitutions required to generate the source
to the equivalent circular cylindéf,, we had only solved for the mapping operatord,,, and the six matrix-matrix multiplica-
single electric current density, on the surfaces;. The fields tjons per inclusion required to generate the two exclusive opera-
tangent taS; are constructed &, = &7 Jz andH; = H3"J3,  torsge* andH<”. It should be noted that prior to equivalencing
where we have applied the source mappifig= LsJi. ASa y, the operations listed above must be carried out for each
further confirmation of our backward recursion and our treafncluded bodyV,, with the exception of those bodies that are
ment of coincident surfaces, we continue this source mappigig]my copies of previously equivalenced bodies (whose gener-
to obtainJ; = L,Jz andJ, = £L;J; and, thus, express theated exclusive operators can be reused without repeating these
electric and magnetic fields at the same points along the pagherations). IfV, is a part of a larger system of scatterers in
tive z-axis in the formE, = £57J; andH, = H5"J;, as well  free-space, with;, i = a, b, ..., m, asin Fig. 1, then the wave
ask. = &"J; andH; = H{"J;. Recovery oft. andH, on  scattering problem is solved in terms of the known incident field
51 by backward recursion requires only 4.8% of the total exgnrough an additional two matrix—matrix multiplication needed
cution time. to form the left-hand side of (26) and the LU decomposition of
The question of accuracy and residual error is further invesfie same. The fields on any interior surface are generated inex-
gated by considering the bistatic RCS of a “phantom” cylindgfensively by a small number of matrix—vector multiplications.
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E, (V/m)

Fig. 7. Intensity of (a) electric and (b) magnetic fields tangent to coincident surfaces alongptti® of Fig. 4, withe; = 4eq, e5 = 2¢¢, €3 = 6&¢, and
g4 = 8c9:0NnS5;---,0nS, ———, and orb; — by the “thrice-nested” formulation; ofi; by the “four-sector” formulatiom o o; and by the EFIE+++-.

The actual computational complexity depends greatly upahen the computational complexity is found to increase in pro-
the hierarchical organization of the heterogeneous body. \pertion toO(N?-5).
consider two special cases for a heterogeneous body consistingo illustrate the importance of the hierarchical organization,
of NV equally sized homogeneous dielectric subregions, eachoohsider a heterogeneous cross section consistidg ef 72
which being discretized bysurface patches: first, the propose@qually sized homogeneous dielectric subregions arranged on a
method is applied in the absence of any hierarchical organizax r square grid. Let the cross-sectional contour surrounding
tion (i.e., only one local scattering problem consisting of atach square subregion be discretized ingegments. Without
N homogeneous dielectric subregions) and the computatioiraposing a hierarchical organization, the proposed method
complexity is found to increase &¥ N3) and, second, the pro- yields the single unknown electric current density over the
posed method is applied within a nested hierarchical structumerface of all subregions ifi1/3)c®r*(r? + 6) multiplica-
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tions/divisions. Direct simultaneous solution of the electrisurface in terms of only a single unknown electric current den-
and magnetic fields tangent to each interface by way of tlséy distributed on this same surface. These exclusive operators
EFIE would requirg1/3)c3r3(r® 4+ 372 4+ 3r + 1) multiplica- are derived by recursive application of a single-source surface
tions/divisions. Thus, the computational complexities of botihtegral equation formalism to a multiply-nested body, which
methods for large is of the order of 1/3)(cN)3. Even in the is formed by organizing its distinct homogeneous subregions
case of a single homogeneous dielectric cylinder, where timo hierarchically structured inclusions. Each inclusion is an-
single-source surface integral equation requires only one halfzed as a local scatterer embedded within a surrounding ho-
the number of unknowns as compared to that required by tim@geneous medium in which the fields are formulated. A novel
EFIE, the overall computational complexity is only reduced biyeatment of coincident surfaces permits this surrounding homo-
one eighth. geneous region to become vanishingly thin as neighboring in-
Alternatively, consider a similar heterogeneous cross sectidiisions are brought in contact in the limit. In this way, any het-
consisting of N = 4° equally sized homogeneous dielectrierogeneous problem may be treated as multiply-nested. The re-
subregions arranged on24 x 2° square grid. As before, let sulting equivalent surface representation is formulated indepen-
the cross section of the surface surrounding each square reglently of external material and illumination and is, therefore, in-
be discretized inte segments. We organize the heterogeneouariant under rotation and translation. Thus, a surface equivalent
cross section in a hierarchical manner as follows: the entderived for a particular heterogeneous body may be archived,
cross section is divided into fo2f —! x 2°~! sized subregions, duplicated, and reused in an assortment of surface integral equa-
each of which contains fo@*~2 x 2°~2 sized inclusions. Sim- tion models without repeating the reduction procedure. This re-
ilarly, each subsequent inclusion contains four inclusions addction algorithm does not preclude the calculation of fields at
this nesting process continues for a totakef 1 levels until the interior points. In fact, the exclusive operators and source map-
inclusions are of unit size. After some tedious algebra, the pqaoing operators that were archived during the course of the re-
posed method yields the solution of the wave scattering probleimction provide windows through which to observe the fields
in a total number of multiplications/divisions in any interior region through a fast backward recursion. The
overall computational complexity and storage requirements of
. S the associated algorithm only increasesvV'->) andO(N),
Otor = %CP’NI'O <5 + 142 2_Z> ’ s> 1 (35) respectively, with the numbeéy of homogcgneoug subreg(]ior)13 of
=1 the heterogeneous structure considered. This represents a sub-
stantial improvement over the simultaneous solution of all un-
mowns via the EFIE for which the computational complexity
and storage requirements increas®és/®) andO(N?) for the

which converges geometrically 0,,; = (2/3)19¢3N*-® for

larges. Thus, the proposed recursive algorithm reduces the co

putational complexity from the order 6¥( N?) to the order of .
t’a\meN , respectively.

O(N'3) when the heterogeneous cross section is organized i . . . .
a %este)d hierarchical strgcture. The total number ogf] arithmetk;?t should be noticed that in the special case where the inclu-
operations for a given multibody structure is further substapns do not touch each other or the enve_lopmg surface, the pro-
tially reduced when various subregions are translated and/or P8s ed method reverts to that presented in [29] and [30].
tated copies of each other [29]-[32].
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