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Self-Initiating MUSIC-Based Direction Finding
and Polarization Estimation in Spatio-Polarizational
Beamspace

Kainam Thomas WongMember, IEEEand Michael D. ZoltowskiFellow, IEEE

Abstract—A novel self-initiating multiple signal classification geometry, with a dipole and a loop aligned along each of the
(MUSIC)-based direction-finding (DF) and polarization-esti- Cartesian coordinates. A vector cross product between an
mation algorithm in spatio-polarizational beamspace is herein j,cijent source’s normalized electric-field vector estimate with

presented for an arbitrarily spaced array of identically oriented th , lized tic-field ¢ timate to i
electromagnetic vector sensors. An electromagnetic vector sensor, '€ SOUICE'S normalized magnetic-ieid vector estimate 1o give

already commercially available, is composed of six colocated, the kth source’s normalized Poynting vecigy: [12]
but diversely polarized, antennas distinctly measuring all six
electromagnetic-field components of a multisource incident

wave field. This proposed algorithm: 1) exploits the incident dor | P Uk 51.119’“ cos P

sources’ polarization diversity; 2) decouples the estimation of Pr = |[Puu | = | Uk | = | S O sin ¢y,

the sources’ arrival angles from the estimation of the sources’ Dz W cos Oy

polarization parameters; 3) uses ESPRIT on pairs of vector *

sensors to self-generate coarse estimates of the arrival angles to :Re{ e (O, Pk, Tk, k) X R Ok, Drs s k) }
start off its MUSIC-based iterative search without any a priori lle (6x, Grs v m)ll 1ROk, Py vies i)l

information on the incident sources’ parameters; 4) estimate (1)
the sources’ polarization states; and 5) automatically pairs the
x-axis direction-cosine estimates with they-axis direction-cosine

estimates and with the polarization estimates. Monte Carlo where . .
simulation results verify the efficacy of the proposed method. * conjugation; )

Index Terms—Antenna arrays, array signal processing, data fu- Pk kth source’s azimuth angle;
sion, direction of arrival estimation, polarization. 0 elevation angle;

1, andm,  polarization parameters.
I. INTRODUCTION This vector cross-product direction-of-arrival (DOA) estimator,
) . ) regardless of the array geometry, automatically pairs the esti-

A. Basic Ideas Underlying the New Algorithm mates of{uy, k = 1, ..., K} and{v;, j = 1, ..., K} with

1) What are Electromagnetic Vector-Sensors?: no further processing. Furthermore, the vector cross-product es-

N electromagnetic vector sensor consists of six spatialiynator produces the-axis direction cosine estimates, which
colocated nonidentical nonisotropic antennas, separatgflow unambiguous source localization along any spherical di-

measuring the incident wavefield’s three electric-field confection, rather than the hemispherical region of support cus-
ponents and three magnetic-field components [10], [12]. ABmary of planar arrays.

electromagnetic vector-sensor, like other diversely polarized2) why Use MUSIC?:Multiple signal classification

array, can exploit any polarization diversity among the imaUSIC) [2] is a highly popular eigenstructure-based (i.e.,
pinging sources. Vector sensors are already commerciajyctor subspace-based) direction-finding (DF) method ap-
available, for example, from Flam and Russell, Inc., Horshamlicable to an irregularly spaced array. MUSIC uses the
PA [14]* and from EMC Baden, Inc., Baden, Switzerl#n@ihe noise-subspace eigenvectors of the data correlation matrix
former implements the vector sensor concept by colocatifg form a null spectrum, the minima of which are iteratively
three electric dipoles and three magnetic loops in a point-liggtimated to yield the signal parameter estimates. Relative to
the optimum maximume-likelihood (ML) parameter estima-
Manuscript received October 13, 1997; revised November 22, 1999. Thien method, eigenstructure-based methods: 1) demand less
work was supported by the U.S. National Science Foundation under Grg@mputation; 2) do not require arg priori information of
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Initiative under Grant DAAH04-95-1-0246. only the noise’s second-order statistics; 3) yield asymptotically
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versity of plong Kong. S\;\t}fﬁ"}#:g?ﬁ&ﬂ ﬁ?”gléec'trr?;:' g%orgo@r;:xteefrg)n'gi_moderate signal-to-noise ratios (SNRs) estimation performance
neering, Purdue University, West Lafayette, IN 47907-1285 USA (e-maftomparable to the optimal methods. Irregularly spaced arrays
mikedz@ecn.purdue.edu). are widely used, for example, to mount antennas on the body
Publisher ltem Identifier S 0018-926X(00)07706-1. of an airplane or to extend array aperture by spacing array
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half-wavelength maximum, array designers need to cont®&5PRIT-based direction finding scheme involving multiple
grating lobes to avoid ambiguity in the DOA estimates. vector sensors and is followed up by [32] and [37]. References
3) Why Use Spatio-Polarizational Beamspace®h electro- [25], [28] apply the vector cross-product DOA-estimator in
magnetic vector sensor, with its six constituent antennas, nmeyother ESPRIT-based with a solitary vector sensor. Signal
form spatio-polarizational beams (for example, via linearly comletection using vector sensors are investigated in [17]. Polari-
strained minimum variance (LCMV) beamforming [1]) to passetric modeling using vector sensors are performed in [19].
only a signal-of-interest along certain angular/polarizational ddentifiability and uniqueness issues associated with vector
mensions. Moreover, vector sensor-based beams decouplestiresors are analyzed in [9], [20], [21], [23], [24].
DOA-estimation problem from the polarization parameter esti-
mation problem, thus reducing MUSIC's iterative search from Il. DATA MODEL FOR IRREGULARLY SPACED
four dimensions to two dimensions (over only the azimuth and ELECTROMAGNETIC VECTOR SENSORS

the elevation). This eliminates many local optima in MUSIC'’s Completely polarizetl transverse electromagnetic plane

iterative search gnd, thus, facilitates more speedy convergegv%%esy having traveled through a nonconductive homogeneous
to the global optimum.

o . . isotropic medium, impinge upon an array of identically ori-

4) Self-Initiating ~ MUSIC-Based Iterative  Estima- : : .

. . . . . ented electromagnetic vector sensors located irregularly in
tion: MUSIC performs amV/ -dimensional iterative search for 9 g y

. : a three-dimensional (3-D) region. Thgh incident source’s
K extrema of a scalar function to estimate fleparameters of o -
all K incident sources. Whether this optimization converges géectrlc-ﬁeld vectore,, and magnetic-field vectoh, may be
. ' S optim! 9 >épressed in Cartesian coordinates as [10], [12]
the global optimum and how fast this iterative search converge

depend very much on the proximity of the initial parameter ¢ (6, ¢w. v, M)
values to the true global optimum. Withoat priori infor-

. . ) €z (Oks Prs Vios T
mation of the incident sources, initial estimates are generally e (O, @1, e, )

Cy (eka d)ka Yk 77k)

unobtainable. This new algorithm self-generates its own initial | . r .. 7 4 e. (6 )

. . . o0 . lef k| de 2 \Vk; Tk Tk
coarse estimatadindly without anya priori information. The = hk:| = | ke B, b s ) 2
deployment of multiple spatially displaced vector sensors thus - hy (B, b Ve k)
allows two separate independent approaches to estimate the he (Br, i)
DOAs—via the vector cross-product DOA estimator at each Fcos ¢y cos Oy _sin ¢
electromagnetic vector sensor and via an iterative search (as sin ¢ cos O cos i
in MUSIC) over the multivector-sensor array manifold param- def _sin 6, 0 sin el Tk
eterized by the intervector-sensor spatial phase delays. The = _sin ¢y — cos by, <08 by [ R, }
Poynting vector estimate, obtained by the vector cross-product c0s i —sin ¢y cos Oy, | ——~—
above, serve here as coarse direction cosine estimates to start | 0 sin 6, g,
off MUSIC's iterative search. ~ ~

. d;r@(aky¢k)

B. Summary of Relevant Literature ©)

This present scheme distinguishes itself from most other
beamspace MUSIC algorithms [3], [5], [7] in two regards: 1yhere o _
beams are formed in the polarization domain besides the spatidl < fx <7  signal's elevation angle measured from the

domain and 2) these beams are forrbéddly, with noa priori vertical z-axis; -
source information. However, if any suahpriori information 0 < ¢ < 2m azimuth angle measured from the positive
is available, it may be incorporated to the present technique. Z-axis;

Many other direction finding algorithms (e.g., [11], [13], O < v+ < /2 auxiliary polarization angle;
[16]) use multicomponent polarization-sensitive sensors; —7 < 7% <7 polarization phase difference.
however, they do not separately measure all six electromd¥pte that®(6s, ¢x) depends only on the angular parameters,
netic-field components of the impinging wavefields and, thu¥/hereag;, depends only on the polarizational parameters. For
do not use the vector cross-product DOA-estimator pivotti€arly polarized transverse electromagnetic wayes: 0; for
to the success of the present algorithm. The first directigifcularly polarized wavesy, = 45° andu, = £90°, + for
finding algorithms explicitly exploiting all six electromagnetic'eft'c'rcmar polarization, and- for right-circular polarization.
components appear to be developed separately in [10] and here exist several essential observations about the electro-
[12]. Reference [12] introduces the vector cross-product DORagnetic vector sensor array-manifold. First, e_ach single vector
estimator to the signal processing community, proposes $NSOr possesses 61 steering-vector and is effectively a
scalar mean square angular error (MSAE) as a performarﬁpé-element array in and _of itself. Second, this v_alectromagnetlc
measure and derives a compact expression and a bound forM@dor sensor array-manifold contains no spatial phase factors
asymptotic MSAE. Reference [10] is first to apply ESPRIT to &S such; that is, the vector sensor array-manifold, unlike that
vector-sensor array, but it does not use the vector cross-prodfcePatially displaced arrays, isdependent of the impinging
DOA estimator. Reference [10] is simplified in [35] and isignal’s frequency spectrum due to the spatial colocation of the

?Xt?nded in [27] for partially polarized sources. R?fefeﬂc? [36]3This proposed algorithm may be modified to handle partially polarized or
is first to use the vector cross-product DOA estimator in ampolarized signals by incorporating the technique in [30].



WONG AND ZOLTOWSKI: DIRECTION FINDING AND POLARIZATION ESTIMATION IN BEAMSPACE 1237

vector sensor’s six constituent antennas. Third, the electromagWith a total of X' < 5 cochannel signaisand additive white
netic vector sensor array-manifold is polarization sensitive; thadise at each dipole or loop, thh vector sensor produces the
is, itis afunction of{ v, 7 }. This means that signals having thés x 1 vector measurement

same DOAs but different polarizations will have different array-
manifolds and are thus distinguishable based on their polariza-

K
tion diversity. Fourth, any broad-band or narrow-band source’s t) = ’;?(9’“’ Prs ’Vk’j’“) @ (O, Pr) sk (t) +mu(?)

e, andh;, are orthogonal to each other and to the source’s nor- I Bk, D, v 70)
malized Poynting vectags,, whose components simply consti- I=1,..., L. (8)
tute the three direction cosines along the three Cartesian coor-
dinates For the entire arbitrarily spacedl-element electromagnetic
. vector-sensor arrdythere exists ab x 1 vector measurement
der | P ek h; Uk S Or o8 Pk | ateacht
P = |DPu | = lexl X ] = | v | = | sin 6 sin ¢
Daa k k W, cos O, z1(t)
@ A= |
. . def . zp(t)
wherex denotes complex conjugatian, = sin 8y cos ¢p, I
def . . def .
v, = sin @y sin ¢y, andwy, = cos 6y, respectively, repre- =" sk(t)q (u, vx) @ @ Bk, Gy Yo M) +l2)
sent the direction-cosines along theaxis, they-axis and the k=1
z-axis. This normalized Poynting vector uniquely determines =As(t) +n(t) 9

the source’s DOA. Thus, if the array-manifolds of all im-

pinging sources can be estimated from the received data, thérere® denotes the Kronecker product addrepresents the
the signal-of-interests’ DOA's can be estimated by performirfgl. x K matrix

the above vector cross product. After that, it would also be

def
possible to estimate the signals’ polarization states. A= [qu(ur, vi) @a (b, 1, 71, m), -,
The spatial phase factor for thgh narrow-bant incident q (ur, vi) @a(k, ¢, vic, mx)]  (10)
source to théth vector-sensor located @t;, v;, 2;) equals [ si(t) na(t)
def . def .
ql(uka Uk) d:ef Cj?ﬁ((ml'u,k—l—yl'nk—l—zl'wk)/)\) S(t) = : ; 'n,(t) = :
_ ej27r(a;luk/)\) ej27r(yl'vk/)\) ejQW(zl'wk/)\) ) (5) _SK(t) ﬂL(t)
~ ~~ ~ ~~ ~ ~~ r 6j27r(.7:1'u,k+y1'1;1+z1'wk/)\)
def def - def _ o
=q7 (ur) =g/ (vr) =q; (wy) q (ux, vg) E : (11)
Thekth signal impinging upon th&h vector sensor at time | eP2mmnmtur vtz on /)

produces the six-component vector measurerment: where nl(t) symbolizes the 6 x 1 complex-valued

zero-mean additive white noise vector at tlgh vector

@Ok i Yoo ) sk (t)n (e, i) ) sensor. With a total ofV > K snapshots taken at the
h distinct times{t,,n = 1,..., N}, the present electro-
where magnetic vector-sensor DF problémis to determine all
e ; O, o1, k=1, ..., K} fromthe6L x N data set
si(t) el Proy(t)ed Brle/Ntter) ) {Or; Pn } X
A . i i Zl Zl(tl) Zl(tN)
with P, thekth signal’s powerg, (¢) a zero-mean unit-variance gt || _ . . (12)
complex random procesk the signals’ wavelengtl,the prop- B : :
agation speed, ang; the kth signal’s uniformly-distributed Zr zp(t) . zo(tn)

random carrier phase. where each of thé, submatrice<; of size6 x N corresponds

to measurements at i electromagnetic vector sensor.

6The abovel < 5 maximum limit on the number of sources may readily

4These incident signals are narrow-band in that their bandwidths are v&i§increased t6L — 1 by replacing each vector sensor with a subarray. of
small compared to the inverses of the wavefronts’ transit times across the ar¥8gtor sensors. Such subarrays may be arbitrarily configured so long as the same
The case involving broad-band signals may be reduced to a set of narrow-bgr@array configuration is used at all locations. This extension will be discussed
problems using a comb of narrow-band filters. in detail in the next section.

5While the following electromagnetic vector-sensor model has not accounted While the preceding algorithmic development has assumed thanattor
for mutual coupling among the vector sensor’s six component antennas, §f§sors are identically oriented, a simple correctional procedure is presented in
model has been reported by Flam and Russell to be a very good approximatiol$éi to accommodate any nonidentical orientation amongtivector sensors.
their superCART array implementation of the vector-sensor concept. According?Although the proposed algorithm is presented in the batch processing mode,
to R. Flam (Flam and Russell, Inc., Horsham, PA) in a private correspondeneal-time adaptive implementations of this present algorithm may be readily re-
to the first author on January 15, 1997, ‘the patterns of the loops and dipolesalized for nonstationary environments using fast recursive eigendecomposition
[of the superCART array] are EXTREMELY close to the theoretical patternapdating methods such as that in [15]. This proposed scheme may also be mod-
indicating very good isolation and balance among the elements.” ified for tracking; see [33].
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[ll. DIRECTION-FINDING WITH SELF-INITIATING MUSIC IN DOA parameters, thereby decoupling the polarization param-
SPATIO-POLARIZATIONAL BEAMSPACE eters estimation problem from the direction finding problem.

Furthermore, spatio-polarizational beamforming nulls out all

but the signal-of-interest and thus removes those optima in
In eigenstructure (subspace) direction finding methods sufe MUSIC spectrum corresponding to the interfering sources.

as MUSIC, the overall data correlation mat# "’ (whichem-  Thjs facilitates speedy convergence to the MUSIC spectrum’s

bodies a maximum likelihood (ML) estimate of the true samplgiohal optimum. While data size has already been reduced

autocorrelation matrix if the additive noise is Gaussian) is dgym 6L x N to 6L x K in the eigendecomposition step at (13)

composed into & -dimensional signal subspace and/a—  and (14), spatio-polarizational beamforming further reduces

K)-dimensional noise subspace. The first step in the proposgd data size td, x K.

algorithm is to compute th&™ (6Lx 1) signal-subspace eigen- The LCMV beamformer weights passing thth source but

vectors by eigendecomposing tfig x 6L data correlation ma- ny|ling all otherk — 1 sources may be derived as

trix. Let E; represent théL x K matrix composed of thé& .

eigenvectors corresponding to thelargest eigenvalues of the wy = Rb_.SlC'H (CR,ZSICH) Cx (15)

6L x 6L sample correlation matrig Z;® and letE,, denote

A. Eigendecomposition of Collected Data

the6L x (6L — K), matrix composed of the remainitd. — K where X«
eigenvectors o Z# of
g Ry, Y agal! (16)
Rzz =Z7Z" = — z(ti)z (tz) e . .
N & cY [&1:...:64 (17)
=E,D.E" + E,D,E” (13) o _
whereay, is the estimate o&(6, ¢u, v, 1), ande; denotes
where a K x 1 vector with all zeros except a one at thth posi-
tion to signal that only thé&th source is to be passed. The
E, ~ AT columns of the constraint matr® simply correspond to th&
= [q(u, 1) ®@a(br, 1, v, m), .-, sources’ estimated steering vectaig, minimizesw! R, ;w;,

q(ux, vie) @ a (B, drc, vie, )| T (14) (i.e._, theHoutput variance or power) while saFisfying the con-
straintC"” wy, = ¢;.. These vector sensor polarized beams have
D, symbolizes & x K diagonal matrix whose diagonal entriedeen formed with no explicit estimation of either the polariza-
embody theX largest eigenvalues arfd,, represents L — tion parameters or the arrival angles.
K) x (6L — K) diagonal matrix whose diagonal entries contain This 6 x 1 LCMV polarized-beamforming weight vectar,
the6L — K smallest eigenvalues afftidenotes an unknown butis to be applied identically to ea¢hx K sector of thesL x K
nonsingularK’ x K coupling matrix T is nonsingular becausesignal-subspace eigenvector matrix of (14)

both E; and A are full rank. If there exists no noise or if an def -
infinite number of snapshots are available, the approximation in By, = (IL @ wy, ) E, (18)
(14) will become an exact identity. wherel 1, refers to anl, x L identity matrix and;, denotes the

kth source’sl, x K polarized beamformer output, passing only
thekth source but nulling all othek — 1 sources. Note that each
LCMV [1] is a statistically optimal beamforming techniquesignal-of-interest has its owsn;, and, thus, its owtd,, plus its
that allows extensive control of beamformer response by a sein 2-D iterative search. This x K polarized-beamformer
of linear constraints, which may be set 1) to pass (with speaiutput is to be used in a 2-D DOA search to be discussed in the
fied gain and phase) signals from favored directions and polaext subsection.
izations or to block interferences from other directions and po- The impinging sources’ spatial diversity (in additional to their
larizations and 2) to minimize output variance. LCMV beanpolarization diversity) is exploited by this uni-vector-sensor-
forming produces a specified set of spatial angular peaks amked beamformer in away fundamentally different from the sit-
nulls much like setting a finite impulse response (FIR) filter'siation with a conventional phased array of scalar sensors. In the
coefficients to produce a specified set of spectral peaks datter case, the sources’ spatial diversity is encapsulated in the
nulls. Regardless of the overall array geometry, an identicgdatial phase-factors between the phased-array’s spatially dis-
LCMV spatio-polarization beamformer is realizable at each iplaced antennas. In contrast, no spatial phase-factors, as such,
dividual vector-sensor using the electromagnetic-field estimatesst among the vector-sensor’'s component-antennas because
derived in (25). all six component-antennas are spatially colocated—though the
This spatio-polarizational beamforming reduces MUSIC’gector sensor’s six-component manifold, a function of the ele-
four-dimensional search (over the azimuth, the elevatiovation angle and the azimuth angle, implicitly depends on the
the auxiliary polarization angle and the polarization phaselues of the spatial phase factors. The Vandermonde struc-
difference) to only a two-dimensional (2-D) search over the twtare in the array manifold of a uniformly spaced array of iden-

- o _tical scalar-sensors no longer exists with vector sensor. In-
9The value ofK (i.e., the number of impinging sources) may be estimated

based on the magnitude distribution of the eigenvalueZ8f’ using various Stead, the sources’ spatial diversity is directly encapsulated in
model selection criteria such as that in [18]. the vector sensor through the complex scalar response of each of

B. Blind Spatio-Polarizational Beamforming
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Fig. 1. The rms standard deviation §fi1, ©1, @2, 02} versus SNR: two Fig. 2. The rms bias of @1, 1, @2, 02} versus SNR: same settings as in
closely spaced equal-power uncorrelated narrow-band incident sources, E@D 1.
snapshots per experiment, 300 independent experiments per data point.

wheree; symbolizes d x L vector with all zeros except a one
the six component antennas. Uni-vector-sensor beamformifigthe /th position andls denotes & x 6 identity matrix.
thus, embodies a kind of electromagnetic-field weighting, dis- An ESPRIT matrix pencil pair involving théth and thejth
tinct from the phased-array’s spatial-filtering. Note also thakctor-sensor may be constructed using the@wak matrices

spatial beamforming techniques [3], [5], [7] mentioned earlieg; andE;, both of which, being full rank, are related bysax K
can be applied to further reduce the dimension of thig K nonsingular matrix¥,;

polarized-beamspace data set whgsriori information on the

incident sources are available. EZ:I;U =E; (23)
C. Estimation of Electromagnetic Vector-Sensor Steerin -1
S gnet g = (PyTy) " @i (PiyTij) (24)

Vectors

The previously developed blind beamforming procedu?'é(here . -
needs{ay, ¥ = 1, ..., K}, which are to be derived using % K x K permutation matrix; _
ESPRIT [4]. ESPRIT here exploits the translational invariance ./ d!agonal matrix whose diagonal eI_emept,
between two translationally displaced vector sensors. Alto- [®i;]i. eigenvalue oft;; W|thacorr§ﬂ)ond|ng eigenvector
getherL(L — 1)/2 different possible pairs of vector sensors eql_JaI to thewth c_olumn OfT’;;"; . .
may be formed out of thd. vector sensors. Each of these Ti; estimate ofI" using data from theéth and the;th

L(L — 1)/2 ESPRIT vector sensor pairs produces its own - vector-sensors; : :
estimate of{a(6k, ¢r, v, ), k = 1, ..., K}, which must i ®,; except a re-ordering of the diagonal elements.

then be summed coherently to preserve signal power while aﬂae above eigendecomposition &;; can only determine

SN iy s . o .
to enhance noise cancellation. T’ to within some column permutation. This is because (24)

Available at this point of the algorithm are ti& number of ;“";5]0'(}? ref’llaﬁmgr“ t:;nd Nk reSpeﬁL\gly}?W“Tii at_nd
6L x 1 signal-subspace eigenvectors (14), from whichithe * % i (Pi;)”", hence, the presence of thex & permutation

vector-sensor'd 6 x 1 signal-subspace eigenvectors may pgatrix Py; on the nght—hgnd sides of the equat|qn. ESF.)RlT
extracted may be concurrently applied to theEéL — 1) /2 matrix pencil

pairs via parallel computation.
E e (g @ Ig) E, (19) In order to sum thesd (L — 1)/2 estimates of thek
steering vectors, the permutational ambiguities associated with

~ [qi (w1, v1)a (6 .
[0 (wss v @t b, vem) - {P;;, 1 >4 < j > L} mustnext be resolved. That B;; must

@ (wic, vic) @ (0, duc, yic, )] T (20)  pe estimated. A%, T;; embodies a unitary matrix, the rows
~ [a(01, o1, v, m) s -5 a(Or, Py Y5 M) of P;;T;; constitute an orthogonal set. Ligtdenotes the row
“Q(ur, ooy ug, U1y e, u) T (21) index of the matrix element with the largest absolute value in

the kth column of theK x K matrix (P, T ) (PiyTi;) .
Then thelith row of P,,,,T,., must correspond to thé&h
Q, (ur, s g, 1, ey UK row of P;;T;;. This pair?ng pr9<:_edure requirem'exhaustive
searches and thus requires minimum computation.
der @ (u1, v1) Having thus permutedP;;T;;, 1 < i < j < L} to obtain
= (2) {T;;,1 <i < j <L} {E,1 <1< L} may now be
q (uk, vi) decoupled and coherently summed to yield composite estimates
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0.08 T T T

eigenvalues’ phase angles and the direction-cosines will no
longer exist and no unambiguous direction cosine estimates
can be obtainable from ESPRIT’s eigenvalues. However, given
that it isT’, not ESPRIT’s eigenvalues, which is needed in the
algorithm, this cyclic ambiguity of ESPRIT’s eigenvalues’
phases is irrelevant to the objective on hand. ESPRIT, regard-
less of the intervector sensor spacing, can always estimate
T;; and¥,,;, which are all that matter. In other words, coarse
direction-cosine initial estimates are herein derived not from
ESPRIT’s eigenvalues, as is often the case in other sensor array
direction finding schemes in other ESPRIT-based algorithms,
but from ESPRIT’s signal-subspace eigenvectors. ESPRIT'’s
eigenvalues are not usable because any or all of the intervector
sensor separations may exceed the Nyquist half-wavelength
o ‘ i ; ‘ o ; maximum and some unknown cyclic ambiguities will thus exist

° ° 1 oo o % % “in ESPRIT’s eigenvalues. In contrast, ESPRIT’s signal-sub-
space eigenvectors are usable because they suffer no ambiguity
despite to extended intervector sensor spacing. Knowledge of
these signal-subspace eigenvectors leads to direct estimation
. ) _ (via the vector cross-product estimator) of the direction-cosines
{ar, k=1, ..., K} ofthe K’ six-component electromagnetic-necayse full electromagnetic field information is available in
field vectors the vector sensor’s manifold. If each vector sensor is replaced
7 by a subarray of uniformly polarized but displaced scalar

0.07 - -
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|
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f=] (=3
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1 1
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Fig. 3. The rms standard deviation and biag %f, 7.} (in radians) versus
SNR: same settings as in Fig. 1.

Z (EiT;jl + EjT;jldsij) b, | e sensors, the present algorithm would not work. This is because
\<ici<L the direction-cosine information cannot be easily extracted
ay = T4 3 (25) from the subarray manifold of a subarray of displaced but

identically polarized sensors unless another MUSIC-like search

-l T1le. . .
Z (EZT” +E;T ;) Bu; | e is to be performed over the subarray manifold.

1<i<j<L

def . D. Spatio-Polarizational Beamspace Self-Initiating
where®,;, = I, ande; denotes ak' x 1 zero vector with \ys|c-Based Direction Finding

a single one at théth position.®;; renders the summation of . . o
Applying MUSIC to the LCMV spatio-polarizational beam-

E;T;; andE,T;;* coherent for any particularand;. Com- ¢ he directi ; ) forkte
puting all L(L — 1)/2 matrix-pencil pairs enhances noise can— e’ output, the direction-cosine estimates foritfesource

cellation because that will utilize all data collected from&ll 3¢

vector sensors and exploits all spatial invariances among all .y del arg mMax || Ly

vector-sensors. However, it may be possible to economize on L, 04} = Uy, U HE"kq(u’ U)H ) 27)
computation by applying ESPRIT to only a few of théL — . .
1)/2 possible pairs at the cost of poorer sdecoupling of tﬂ\éOte trlﬁt ukrllkl]ke custqma(;y form_ulahog of :jhe.MU|SICbaIgo-
sources’ steering vectors and thus less accurate DOA coarggn: the source's dimension-reduced signal-subspace

estimates and less effective source selectivity in LCMV bearicerng vector, not the null-space eigenvectors, is used in the

forming. (i.e., poorer estimation @ and poorer separation oftabovebo_pnmlztar;uon. TT'? is because thz nﬂll—slpace ?(genvec-
the steering vectors of thE sources.) ors, being orthogonal to al{q(ux, vy), & = 1,..., K},

The coarse direction-cosine estimatés, 4, 4y} may now contains “contaminating” information from the phase factors
Pk TR f the other X' sources. In contrask,,, as the output of

be obtained by a vector cross-product between each sign . T o .
y P g EMV interference rejection beamformer contains information

electrical-field estimate and magnetic-field estimate : )
g only of the kth source. Thus, using;, in (27) removes the
o interferers’ spectral optima in the MUSIC spectrum, resulting

O | =P =|by | = LI by, (26) in a flattened scalar function for optimization and, thus, faster
n Pe el hy, ‘ convergence to more accurate arrival angle estimates. As a side

note, customary formulations of MUSIC uses the null-space
In the more realistic scenario when noise is present and whaigenvectors and not the signals’ steering vectors in above
only a finite number of snapshots are available, the above retgtimization because the individual sources’ steering vectors
tions become only approximate. are unavailable. The signal-subspace eigenvector set (i.e., the

As a side note, many of thedg . — 1)/2 ESPRIT vector columns of E;) cannot ordinarily be decoupled into tH€

Sensor pairs may possess an intervector sensor spacingnmipinging sources’ respective steering vectors. In contrast, this
excess of an half wavelength. This will result in a cyclidecoupling can be successfully performed using techniques de-
ambiguity of some integer multiple & in ESPRIT's eigen- scribed in the preceding subsections. Thus, the MUSIC-based
values’ phases. The one-to-one mapping between ESPRI3&arch of this novel algorithm may use each individual array
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ConsiderL identical subarrays, each of which consists.of
vector-sensors, irregularly placed in a 3-D space. The overall 6
LLx 1 array manifold for thé:th incident source becomes

™ (

Uk Uk)
def
a (O, b, v, M) = q(up, vi) @

a3 (

g, k)
Ergsub (up, v)
Cx (ekv ¢k7 Vs nk)
ey Ok, Prs Yi> M)
Cz (eka Yk 77k)
® 33
b (ks S5, Yis 1) (33)
hy (Bx, Pry Vi T
o 40 SNR, w.r.t. stronger source Ly (h’“((gk’ ’Zk)’ nk)
z ks Tk

def jam(@f us by o+ w0 /N (34)

log10 of Est. Std. Dev. of Stronger Source’s Direction Cosines

Source Power Ratio

qSUb(Ufka Uk)
Fig. 4. The rms standard deviation and biag §f, 92} (in radians) versus l

SNR: same settings as in Fig. 1. .
g 9 where (a:?“b, ¥, 2£") represents the location of the

subarray’s /th vector sensorrelative to the subarray’s
source’s manifold instead of the null-space eigenvectors asfiigt vector-sensor located af(z5"", 35>, 25**). Thus,
identically polarized MUSIC's iterative search. sub(y ) = 1.

From the direction-cosine estimates derived above/the  pevelopments in Section Ill and all equations from (2) to
Signal's azimuth and elevation arrival angles may be estimatgt) still hold with the appropriate size changes and (19) to be
as modified as

6, = sin~! 03 4+ 93 = cos ™1 iy, (28) E =(agel;)E, (35)
Pr = £ (g + Jr) - (29)  wheree; denotes d x L vector with all zeros except a one at the
Ith position. Thise; selects théth-subarray sector df, asE;.
The corresponding polarization parameter estimates equal (25) now produces th&L x 1 subarray manifold estimates, from
which the kth source’s six electromagnetic-field components

~

A = tan—t || T (30) May be derived
gkz — -
e =2L3gr, — L3r, (31)

L
Z c; @ IG Z (.EZZWZ1 + .EJT';1 ‘1)“) Pl e

where [1<i<i<L

< | Ok,
9 |:gk2:|

ap = - -

i
Z Ci ® IG Z (l’;lzfr'z_‘]:L + EJTZ_JIQSU) @11‘ Ci

[1<i<yi<L ]
N PO
e [QH (9k7 </>k> (9k7 ¢k):| e (9k7 ¢k> ar (32) (36)
(18) also becomes
and®(6;, ¢x) has been defined in (3). Note that these estimates
of the sources’ azimuths, elevations, and polarization parame- Ey, o (I,;@w)E,. (37)
ters have been automatically matched with no additional pro-
cessing. The above modifications allow the proposed method to handle

up to6L — 1 sources. IfL. > L, then up to6L — 1 can be

accommodated if the above array configuration’.df vector-

IV. EXTENSION TO IRREGULARLY SPACED SUBARRAYS OF sensors is viewed ab identical but translated subarrays bf
ELECTROMAGNETIC VECTOR SENSORS irregularly spaced vector-sensors.

This section extends the above developed scheme to accom-
modate more than five sources. This five-source constraint
arises from the 6x 1 size of an individual electromagnetic Simulation results in Figs. 1-11 verify the efficacy of the pro-
vector sensor’s array manifold. This maximum may be rais@ased self-initiating MUSIC-based direction finding and polar-
to 6L — 1 or 6L — 1 by deploying at each of thé irregularly ization estimation algorithm. In all figures, two closely spaced
spaced location a subarray df vector-sensors instead ofuncorrelated narrowband incident sources with the following
just one vector sensor. These subarrays may be arbitrapgrameter valuegf; = 59.1°, ¢; = 53.5°, v1 = 45°, 1 =
configured so long as all subarrays at all locations are identical90°} and{f, = 59.1°, ¢3 = 36.5°, v = 45°, 170 = 90°}.

V. SIMULATIONS
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T T T T T T T

Solid-~Final Estimates; Dashed--Coarse Estimates

&

107

Direction Cosine Estimation Bias

Direction Cosine Estimation Standard Deviation

20
SNR, dB SNR, dB

Fig.6. Therms standard deviation{daf,, ¢ } versus SNR an®, /P-. Same
scenario as in Fig. 1 except the valueRy.

Fig. 5. Misconvergence frequency versus SNR: same settings as in Fig. 1
That is, the signal-of-interest (with subscript 1) has= 0.51
andwv; = 0.69 and is right-circularly polarized, and the inter-
ference (with subscript 2) hag = 0.69 andv, = 0.51 and is
left-circularly polarized. Thirteen identically oriented electro-
magnetic vector sensors are placed af{they, z) coordinates
A
3 x {(0, 0, 0), (0, 1, 0), (0, 2.7, 0), (1, 0, 0), (2.7, 0, 0)
(0, -1, 0), (0, —2.7, 0), (-1, 0, 0), (—=2.7, 0, 0),
(47 _47 1)7 (47 47 1)7 (_47 _47 1)7 (_47 47 1)}

IS & & L
' [ ! /

Bias of Stronger Source’s Direction Cosines

!
o
1

where\ refers to the sources’ common wavelength. The add§
tive white noise is complex Gaussian; and the SNR is defineg
relative to each source. One-hundred snapshots are used in €
of the 300 independent Monte Carlo simulation experiment o SNR, w.r.t. stronger source
The estimation error in each experiment is computed by findir.y Source Power Ratio
the difference betweefi:, ©}. The Nelder—-Meade simplex al-Fig. 7. The rms bias of iy, #: } versus SNR an@®; /P.. Same scenario as
gorithm is used in the iterative searches. In Figs. 1-5, the twd-ig. 1 except the value ¢P-.
sources have equal power, whereas in Figs. 6P11P, varies
from unity to 64.L—1 = 12 TLS-ESPRIT® matrix pencil pairs,
those involving th€0, 0, 0) vector sensor and each of the other
12, estimate the Poynting vector. :
Figs. 1 and 2 respectively plot the direction-cosines’ comg °7
posite estimation standard deviation and bias versus SNR f£ -7
P1 = P». The composite root mean square (rms) standar’§
deviation equals the square root of the mean of the respecti¢”
samples variances ofi, vy, 12, U2}; the composite bias
equals the square root of the mean of the square of the respeci
sample biases ofii;, 91, 42, U2}. Fig. 3 plots the composite
rms standard deviation and bias{@f, 72} versus SNR. Fig. 4
plot the composite rms standard deviation and biaSiof 4 }
versus SNR. All four figures follow similar trends. Because
uy —u; = vy — v2 = 0.18, the two sources are resolved and o 40 SNR, wrL. sironger source
identified with high probability if both the estimation standard Soutce Power Ratio
deviation and the bias are under approximately 0.06. Referrigg. g, The rms standard deviation{at., .} versus SNR an@, /7. Same
to these two figures, the proposed blind algorithm successfusigenario as in Fig. 1 except the valuey.

st

|
=R
N\

Cosines

-2.5

-3+

-3.5+

—44
70

log10 of Est. Std. Dev. of Weak

10TLS-ESPRIT [4] represents a total-least squares (TLS) realization of the ived th | | d f Il SNR b 2
ESPRIT algorithm. TLS-ESPRIT recognizes that both subarrays, rather tH&o0IVed these closely spaced sources for a S above

just one subarray, are corrupted by noise. dB without anya priori information on the sources’ DOAs.
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\/o

Misconvergence Probability of the Weaker Source

©
o

log10 of Est. Bias of Weaker Source’s Direction Cosines
~
3o
N

15

o 40 SNR, w.r.t. stronger source 25 20

Source Power Ratio Source Power Ratio 40 SNR, w.r.t. stronger source

Fig. 9. The rms bias ofiz, 92} versus SNR an®; /P.. Same scenario as _ )
in Fig. 1 except the value 6P,. Fig. 11. The weaker source’s misconvergence frequency versus SNR and

P./P-. Same scenario as in Fig. 1 except the valu@of

008 and 7, respectively, plot the rms standard deviation and bias for
007 : the first source, whereas Figs. 8 and 9 do the same for the weaker
' source. Figs. 10 and 11 plot the misconvergence frequency for
the stronger source and the weaker source, respectively. It may
be observed that while the stronger source is little affected by
the weaker source’s power level, misconvergence tends toward
amajor problem for the weaker source at laRyg¢P, and small
SNR.

(<

Misconvergence Probability of the Stronger Source

o
S

VI. CONCLUSION

This novel MUSIC-based direction finding method recog-
nizes the impinging electromagnetic wavefield as a diversely
15 polarizedvectorfield instead of a mere intensity field. By de-
ploying electromagnetic vector sensors instead of uniformly po-
larized antennas, spatio-polarization beams may be formed to
Fig. 10. The stronger source’s misconvergence frequency versus SNR &g@nove false optima in MUSIC'’s cost function and to decouple
P1/P-. Same scenario as in Fig. 1 except the valu®of the DOA estimation problem from the polarization parameter

estimation problem, resulting in two degrees of dimensionality
Fig. 1 also shows the closeness of the proposed algorithmesluction in MUSIC's optimization procedure. Moreover, the
performance to the Cramer—Rao bound (CRB). for SNR at sources’ DOAs are estimated through the vector cross-product,
above 20 dB. rather than through estimating interelement spatial phase de-

Very occasionally, the iterative search in Section Ill fails ttays as customarily done. This vector cross-product DOA esti-
converge to the intended source specified by the coarse estimatator supplies coarse direction-cosine estimates to start off the
Fig. 5 shows that misconvergence happens at only SNR'’s belbAJSIC-based iterative search over the intervector sensor spatial
20 dB and remains under 2% down to 10 dB. Misconvergenplase-delay array manifold withitanya priori information of
may be caused by imperfect decoupling of the signal-subspdle sources’ parameters, thereby facilitafiagterconvergence
eigenvectors and, thus, imperfectly formed LCMV beams bloc¢& theglobal optimum. Simulation results verify the efficacy of
the interference only partially. MUSIC's iterative search thetie proposed method. While the preceding algorithmic develop-
misconverges to a spectral optimum corresponding to an interent has assumed that dllvector sensors are identically ori-
fering source. This problem may be alleviated by using moented, a simple correctional procedure is presented in [35] to ac-
ESPRIT matrix pencil pairs (instead of orlly-1 pairs asin (25) commodate any nonidentical orientation amongstithector
to better decouple the signal-subspace eigenvectors. A moresmisors. Partially polarized signals may be handled by incorpo-
phisticated search algorithm than the the Nelder-Meade simphating the technique in [30]. Techniques in [31] allows the sub-
algorithm (implemented in MATLAB as “fmins”) may also con-stitution of the six-component vector sensor by the dipole triad
verge better. or the loop triad, while preserving the efficacy of the presently

Figs. 6-11 plot the estimation performance when the firptoposed scheme. Although the algorithm is herein developed in
source has higher power than the second source. The SNEh&sbatch processing mode, real-time adaptive implementation
defined with reference to the stronger source’s power. Figsfd@ nonstationary environments is possible by incorporating the

25 20

0 35 30
Source Power Ratio 40
SNR, w.r.t. stronger source
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techniques in [15], [34]. An underwater acoustic analog of thg15] B. Champagne, “Adaptive eigendecomposition of data covariance
present scheme is available in [33] using underwater acoustical

particle velocity hydrophones.

[16

Numerous electromagnetic issues, however, remain to be ad-
dressed before the present signal processing scheme may be-

come deployable. For example, reflection of the incident sigI17

nals off the ground has not been addressed, though such mul-
tipaths may be decorrelated by spatial smoothing and thus H&s]
treated as additional incident signals. Mutual coupling across
vector sensors presents another issue. Furthermore, The vecigy;
sensor array’s support structure may severely distort the elec-
tromagnetic field, unless extraordinary precautions are taken tg
communicate the signal in and out of the vector sensors. Whil[ezo]
optical fibers can transport power to the vector sensor and to
carry signals out from the dipole/loop structure, it is technically
challenging to embed the necessary couplers and converters!
the vector sensors with only negligible distortion to the electro-
magnetic field. This problem is especially acute when subarrayig2]
of vector sensors are to be placed at each array grid point.
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