2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Ultrawide-Band Synthetic Aperture Radar for Detection of Unexploded Ordnance:Modeling and Measurements

Anders Sullivan, Member, IEEE Raju Damarla, Member, IEEE Norbert Geng, Member, IEEE Yanting Dong, Student Member, IEEE and Lawrence Carin Senior Member, IEEE

Page 1306.

Abstract:

Electromagnetic (EM) scattering from subsurface unexploded ordnance (UXO) is investigated both theoretically and experimentally. Three EM models are considered: the multilevel fast multipole algorithm (MLFMA), the method of moments (MoM), and physical optics (PO). The relative accuracy of these models is compared for several scattering scenarios. Moreover, the model results are compared to data measured by an experimental synthetic-aperture radar (SAR) system. SAR images have been generated for subsurface UXO targets, in particular 155-mm shells. We compare SAR images from the measured data with theoretical images produced by the MoM and PO simulations, using a standard back-projection imaging technique. In addition to such comparisons with measurement,we consider additional buried-UXO scattering scenarios to better understand the underlying wave phenomenology.

References

  1. R. W. P. King and C. W. Harrison, "The transmission of electromagnetic waves and pulses into the earth", J. Appl. Phys., vol. 39, pp.  4444-4452,  Aug.  1968.
  2. J. A. Fuller and J. R. Wait, "Electromagnetic pulse transmission in homogeneous dispersive rock", IEEE Trans. Antennas Propagat., vol. AP-20, pp.  530-533,  July  1972.
  3. D. L. Moffat and R. J. Puskar, "A subsurface electromagnetic pulse radar", Geophys., vol. 41, pp.  506-518, June  1976.
  4. L. Peters and J. D. Young, "Applications of subsurface transient radars,"in Time-Domain Measurements in Electromagnetics, E. K. Miller, Ed. New York: Van Nostrand Reinhold, 1986.
  5. G. S. Smith and W. R. Scott, "A scale model for studying ground penetrating radars", IEEE Trans. Geosci. Remote Sensing, vol. 27, pp.  358-363, July  1989.
  6. C. Liu and C. Shen, "Numerical simulation of subsurface radar for detecting buried pipes", IEEE Trans. Geosci. Remote Sensing, vol. 29, pp.  795-798, Sept.  1991.
  7. N. Osumi and K. Ueno, "Microwave holographic imaging of underground objects", IEEE Trans. Antennas Propagat., vol. AP-33, pp.  152-159, Feb.  1985.
  8. L. Peters, J. J. Daniels and J. D. Young, "Ground penetrating radar as an environmental sensing tool", Proc. IEEE, vol. 82, pp.  1802 -1822, Dec.  1994.
  9. J. M. Bourgeois and G. S. Smith, "A fully three-dimensional simulation of ground penetrating radar: FDTD theory compared with experiment", IEEE Trans. Geosci. Remote Sensing, vol. 34, pp.  36 -48, Jan.  1996.
  10. S. F. Mahmoud and J. R. Wait, "Scattering from a buried insulated loop excited by an incident electromagnetic plane wave", J. Electromagn. Waves Applicat., vol. 12, pp.  1297-1311, Oct.  1998.
  11. B. A. Baertlein, J. R. Wait and D. G. Dudley, "Scattering by a conducting strip over a lossy half space", Radio Sci., vol. 24, pp.  485-497, July/Aug.   1989.
  12. S. Vitebskiy, L. Carin, M. Ressler and F. Le, "Ultrawide-band, short-pulse ground-penetrating radar: Simulation and measurement", IEEE Trans. Geosci. Remote Sensing, vol. 35, pp.  762-772, May  1997.
  13. L. Carin, R. Kapoor and C. Baum, "Polarimetric SAR imaging of buried land mines", IEEE Trans. Geosci. Remote Sensing, vol. 36, pp.  1985-1988, Nov.  1998.
  14. L. Nguyen, J. Sichina, K. Kappra, D. Wong and R. Kapoor, "Minefield detection algorithm utilizing data from an ultra wideband wide-area surveillance radar", in Proc. 1998 SPIE Conf. , Orlando, FL, Apr. 1998, pp.  627-643. 
  15. L. Carin, N. Geng, M. McClure, J. Sichina and L. Nguyen, "Ultra-wide-band synthetic-aperture radar for mine-field detection", IEEE Antennas Propagat. Mag., vol. 41, pp.  18-33,  Feb.  1999.
  16. J. K. Jao, "Performance analysis for synthetic aperture radar detection of underground targets", MIT Lincoln Laboratory, Lexington, MA, Project Rep. GPR-4, Oct. 1995.
  17. N. Geng, A. Sullivan and L. Carin, "Multi-level fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space", IEEE Trans. Geosci. Remote Sensing, vol. 38, pp.  1567-1579, July  2000 .
  18. R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.
  19. M. A. Ressler and J. W. McCorkle, "Evolution of the Army Research Laboratory ultra-wideband test bed,"in Ultra-Wideband Short-Pulse Electromagnetics 2, L. Carin, and L. B. Felsen, Eds. New York: Plenum, 1995, pp.  109-123. 
  20. N. Geng, M. Ressler and L. Carin, "Wideband VHF scattering from a trihedral reflector situated above a lossy dispersive halfspace", IEEE Trans. Geosci. Remote Sensing, vol. 37, pp.  2609-2617, Sept.  1999.
  21. N. Geng and L. Carin, "Wideband electromagnetic scattering form a dielectric BOR buried in a layered, dispersive medium", IEEE Trans. Antennas Propagat., vol. 47, pp.  610-619, Apr.  1999.
  22. N. Geng, A. Sullivan and L. Carin, "Fast multipole method for scattering from 3-D PEC targets situated in a half-space environment", Microwave Opt. Tech. Lett., vol. 21, pp.  399-405, June  20, 1999.
  23. N. Geng, A. Sullivan and L. Carin, "Fast multipole method analysis of half-space scattering problems", IEEE Trans. Antennas Propagat., to be published.
  24. R. Coifman, V. Rokhlin and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription", IEEE Antennas Propagat. Mag., vol. 35, pp.  7-12, June  1993.
  25. J. M. Song and W. C. Chew, "Fast multipole method solution using parametric geometry", Microwave Opt. Tech. Lett., vol. 7, pp.  760 -765, Nov.  1994.
  26. J. M. Song, C. C. Lu and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects", IEEE Trans. Antennas Propagat., vol. 45, pp.  1488-1493, Oct.  1997.
  27. A. F. Peterson, S. L. Ray and R. Mittra, Computational Methods for Electromagnetics, Piscataway, NJ: IEEE Press, 1998.
  28. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering from surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, pp.  409-418,  May  1982.
  29. J. J. Yang, Y. L. Chow and D. G. Fang, "Discrete complex images of a three-dimensional dipole above and within a lossy ground", Proc. Inst. Elect. Eng., vol. 138, no. 4, pp.  319-326, Aug.  1991.
  30. T. K. Sarkar and E. Arvas, "On a class of finite step interative methods (conjugate directions) for the solution of an operator equation arising in electromagnetics", IEEE Trans. Antennas Propagat., vol. AP-33, pp.  1058-1066, Oct.  1985.
  31. A. C. Dubey, and R. L. Barnard, Eds., Detection and Remediation Technologies for Mines and Minelike Targets, Orlando, FL: Proc. SPIE, 1997,vol. 3079.