2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Ray-Density Normalization for Ray-Optical Wave Propagation Modeling in Arbitrarily Shaped Tunnels

Dirk Didascalou, Student Member, IEEE Thomas M. Schäfer, Student Member, IEEE Frank Weinmann and Werner Wiesbeck Fellow, IEEE

Page 1316.

Abstract:

This work is concerned with the calculation of natural electromagnetic (EM) wave propagation and the determination of the propagation channel characteristics in highway or railway tunnels in the ultrahigh-frequency (UHF) range and above (>300 MHz). A novel ray-tracing technique based on geometrical optics (GO) is presented. Contrary to classical ray tracing,where the one ray representing a locally plane wave front is searched, the new method requires multiple representatives of each physical EM wave at a time. The contribution of each ray to the total field at the receiver is determined by the proposed ray-density normalization (RDN). This technique has the further advantage of overcoming one of the major disadvantages of GO, the failure at caustics. In contrast to existing techniques, the new approach does not use ray tubes or adaptive reception spheres. Consequently, it does not suffer their restrictions to planar geometries. Therefore, it allows to predict the propagation of high-frequency EM waves in confined spaces with curved boundaries,like tunnels, with an adequate precision. The approach is verified theoretically with canonical examples and by various measurements at 120 GHz in scaled tunnel models.

References

  1. A. Straßenentwurf, "Dokumentation für Straßentunneln in Deutschland", Forschungsgesellschaft für Straßen-und Verkehrswesen, Köln, Tech. Rep., 1996.(in German) .
  2. J. Chiba, T. Inaba, Y. Kuwamoto, O. Banno and R. Sato, "Radio communication in tunnels", IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.  439-443, 1978.
  3. Y. Yamaguchi, T. Abe and T. Sekiguchi, "Radio wave propagation loss in the VHF to microwave region due to vehicles in tunnels", Trans. Electromagn. Compat., vol. 31, pp.  87-91, Feb.  1989.
  4. S. F. Mahmoud and J. R. Wait, "Guided electromagnetic waves in a curved rectangular mine tunnel", Radio Sci., vol. 9, no. 5, pp.  567-572, 1974.
  5. P. Delogne, "EM propagation in tunnels", IEEE Trans. Antennas Propagat., vol. 39, pp.  401-405, Mar.  1991.
  6. Y. Yamaguchi, T. Abe, T. Sekiguchi and J. Chiba, "Attenuation constants of UHF radio waves in arched tunnels", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  714-718, 1985.
  7. Y. P. Zhang, Y. Hwang and R. G. Kouyoumjian, "Ray-optical prediction of radio-wave propagation characteristics in tunnel environments-Part 2: Analysis and measurements", IEEE Trans. Antennas Propagat., vol. 46, pp.  1337-1345,  Sept.  1998.
  8. P. Mariage, "Etude théorique et expérimentale de la propagation des ondes hyperfréquences en milieu confiné ou urbain", Ph.D. dissertation, Univ. Lille, France, 1992 . .
  9. B. Rembold, "Simulation of radio transmission in a tunnel", Frequenz, vol. 47, no. 11/12, pp.  270-275, 1993.
  10. T. Klemenschits, "Mobile Communications in Tunnels", Ph.D. dissertation, Univ. Wien, Austria, 1993. .
  11. P. Mariage, M. Lienard and P. Degauque, "Theoretical and experimental approach of the propagation of high frequency waves in road tunnels", IEEE Trans. Antennas Propagat., vol. 42, pp.  75-81, Jan.  1994.
  12. S.-H. Chen and S.-K. Jeng, "An SBR/image approach for indoor radio propagation in a corridor", IEICE Trans. Electron., vol. E78-C, no. 8, pp.  1058-1062, 1995.
  13. S.-H. Chen and S.-K. Jeng, "SBR image approach for radio wave propagation in tunnels with and without traffic", IEEE Trans. Veh. Technol., vol. 45, pp.  570-578, 1996.
  14. S.-C. Hung, C.-C. Chiu and C.-H. Chen, "Wireless communication characteristics for tunnels with and without traffic", in IEEE Int. Conf. Universal Personal Communications (ICUPC'98) , Florence, Italy,Oct. 1998, pp.  117-122. 
  15. C. A. Balanis, Advanced Engineering Electromagnetics, New York: Wiley, 1989.
  16. H. Ling, R.-C. Chou and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity", IEEE Trans. Antennas Propagat., vol. 37, pp.  194-205, Feb.  1989.
  17. G. A. Deschamps, "Ray techniques in electromagnetics", Proc. IEEE, vol. 60, pp.  1022-1035, Sept.  1972.
  18. D. Didascalou, "Ray-optical wave propagation modeling in arbitrarily shaped tunnels", Ph.D. dissertation, Univ. Karlsruhe (TH), Germany, 2000, http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2000/elektrotechnik/2 . .
  19. D. J. Cichon, T. Zwick and J. Lähteenmäki, "Ray optical indoor modeling in multifloored buildings: Simulations and measurements", in Proc. IEEE Antennas Propagat. Soc. Int. Symp., Newport Beach, CA, June 1995, pp.  522- 525. 
  20. H. Suzuki and A. S. Mohan, "Ray tube tracing method for predicting indoor channel characteristics map", Inst. Elect. Eng. Electron. Lett., vol. 33, no. 17, pp.  1495-1496, 1997.
  21. W. Honcharenko, H. L. Bertoni, J. L. Dailing, J. Qian and H. D. Yee, "Mechanisms governing UHF propagation on single floors in modern office buildings", IEEE Trans. Veh. Technol., vol. 41, pp.  496-504, 1992.
  22. S. Y. Seidl and T. S. Rappaport, "Site-specific propagation prediction for wireless in-building personal communication system design", IEEE Trans. Veh. Technol., vol. 43, pp.  879-891, 1994.
  23. G. A. J. van Dooren, "A deterministic approach to the modeling of electromagnetic wave propagation in urban environments", Ph.D. dissertation, Tech. Univ. Eindhoven, The Netherlands, 1994. .
  24. N. Geng and W. Wiesbeck, Planungsmethoden für die Mobilkommunikation, Funknetzplanung unter realen physikalischen Ausbreitungsbedingungen, Berlin: Germany: Springer-Verlag, 1998.
  25. A. S. Glassner, Ed., An Introduction to Ray Tracing, New York: Academic, 1989.
  26. C. A. Balanis, Antenna Theory, Analysis and Design, New York: Wiley, 1997.
  27. J. S. Lamminmäki and J. J. A. Lempiäinen, "Radio propagation characteristics in curved tunnels", Proc. Inst. Elect. Eng.-Microwaves, Antennas, Propagat., vol. 145, no. 4, pp.  327-331, 1998.
  28. S. F. Mahmoud and J. R. Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels", Radio Sci., vol. 9, no.  12, pp.  1147-1158, 1974.
  29. P.-S. Kildal, "Artificially soft and hard surfaces in electromagnetics", IEEE Trans. Antennas Propagat., vol. 38, pp.  1537-1544, Oct.  1990.
  30. G. Michel and M. Thumm, "Spectral domain techniques for field pattern analysis and synthesis", Surveys Mathematics Industry: Special Issue Scientific Computing Elect. Engrg., vol. 8, pp.  259-270, 1999.
  31. A. Arnold, "Entwicklung eines vektoriellen mm-wellen-netzwerkanalysators mit hoher meßdynamik und messungen an überdimensionierten wellenleiterkomponenten", M.S. thesis, IHE, Univ. Karlsruhe (TH), Germany, 1997. .
  32. O. Schindel, "Entwicklung einer automatisierten meßwerterfassung für einen vektoriellen millimeterwellen-netzwerkanalysator mit hoher dynamik", M.S. thesis, IHE, Univ. Karlsruhe (TH), Germany, 1999. .