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Abstract—The problem of rough surface scattering and prop-
agation over rough terrain in a ducting environment has been
receiving considerable attention in the literature. One popular
method of modeling this problem is the parabolic wave equation
(PWE) method. An alternative method is the boundary integral
equation (BIE) method. The implementation of the BIE in inho-
mogeneous media (ducting environments) is not straightforward,
however, since the Green’s function for such a medium is not
usually known. In this paper, a closed-form approximation of the
Green’s function for a two-dimensional (2-D) ducting environment
formed by a linear-square refractive index profile is derived using
asymptotic techniques. This Green’s function greatly facilitates
the use of the BIE approach to study low-grazing angle (LGA)
rough surface scattering and propagation over rough surfaces
in the aforementioned ducting environment. This paper demon-
strates how the BIE method can model the combined effects of
surface roughness and medium inhomogeneity in a very rigorous
fashion. Furthermore, it illustrates its capability of accurately
predicting scattering in all directions including backscattering.
The boundary integral equation of interest is solved via the method
of ordered multiple interactions (MOMI), which eliminates the
requirements of matrix storage and inversion and, hence, allows
the application of the BIE method to very long rough surfaces.

Index Terms—Asymptotic techniques, electromagnetic (EM)
scattering by rough surfaces, ducting environments, integral
equation methods, nonhomogenous media, numerical methods.

I. INTRODUCTION

DURING the past several decades, researchers in the areas
of applied electromagnetics (EMs) and underwater acous-

tics have been searching for rigorous and efficient models for
mathematically describing wave propagation over rough sur-
faces as well as the scattering of these waves by such surfaces.
These researchers have also been interested in studying the com-
bined effect of atmospheric conditions (ducting conditions) and
surface roughness on the propagation and scattering problem.
Two main methods for modeling this problem are available in
the literature. These are the parabolic wave equation (PWE) and
the boundary integral equation (BIE) models.
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Under the conditions of predominant forward propagation
and scattering, i.e., when the rough surface is gently undulating
and the angles of propagation and scattering are close to
grazing, the one-way PWE approximation model proved to be
very adequate [1]. An excellent account of the mathematical
derivation of the PWE along with a detailed discussion of the
underlying assumptions and approximations can be found in
[2]. There are two levels of approximation used in the PWE
method: the narrow-angle and the wide-angle approaches. Both
of these formalisms neglect backscatter. The narrow-angle
approximation is amenable to the very fast and efficient
split-step Fourier method, however, its accuracy deteriorates as
the solution region is moved away from the forward direction
of propagation. The wide-angle approximation can more accu-
rately predict propagation outside the forward region. Although
most of the available forms of the wide-angle PWE require
finite-difference solution, the form suggested by Thomson and
Chapman [3] is amenable to the split-step Fourier method. A
narrow-angle PWE/split-step model for studying low grazing
angle (LGA) propagation over a rough surface was suggested
in [4] among others. The great advantage of the PWE methods
is that they can model most real-life nonhomogeneous environ-
ments. The drawback is the underlying paraxial approximation.
Due to this approximation, the traditional PWE methods are
only capable of modeling continuous forward multiple interac-
tions on the rough surface. By contrast, the BIE method based
on the two-way Helmholtz wave equation rigorously models
all the surface field interactions. Provided the Green’s function
is known in an appropriate domain, an integral equation can be
written for the currents induced on a perfectly conducting rough
surface. These currents are then used in radiation integrals
involving the appropriate propagators to calculate the scattered
field at a point above the surface. Recently, a very elegant
approach that combined the efficiency of the split-step method
and the rigorousness of the BIE method and showed that the
PWE methods have the potential to model forward/backward
interactions was proposed by Rino and Ngo [5]. Nevertheless,
the results reported in [5] are strictly forward-scattering results.
It is worthwhile mentioning that PWE-based boundary integral
equations models are also available in the literature. Uscinski
[6] realized that for a medium with a linear sound-speed profile,
the Green’s function governed by the narrow-angle PWE can
be evaluated using path integral techniques. He then used this
Green’s function in a PWE-based boundary integral equation
formulation to study acoustic wave propagation over a rough
surface in such medium. The same idea was used by Uscinski
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to study high frequency acoustic propagation in shallow water
[7]. The BIE models involved in our study are those based on
the exact Helmholtz wave equation. The applicability of the
BIE model is tied to the calculation of the Green’s function
for the medium of interest. There is, of course, no difficulty in
this respect for a homogeneous medium. For nonhomogeneous
media, exact closed-form integral expressions of the Green’s
function can be obtained for a small class of refractive index
profiles. For general slowly varying profiles, approximate
integral expressions of the Green’s functions can be obtained
via the WKB method [8]. The evaluation of the integrals
involved in these Green’s functions is not tractable numerically
due to rapidly oscillating integrands. In this case, asymptotic
methods of integration are the only resort.

In this paper, we use the BIE model to study the scattering
from a rough surface in an infinite duct formed by a linear-
square refractive index profile , where is a con-
stant called the ducting parameter, where the Green’s function
can be written in terms of Airy functions [3]. We limit ourselves
to such a medium which already gives useful insights into the
problem of scattering by a rough surface in a ducting environ-
ment. The generalization of the method to more general environ-
ments will be the subject of a future study. We use asymptotic
techniques to facilitate the computation of the Green’s function
and make it numerically tractable.

In the proposed BIE model, the surface currents are solved
for via the method of ordered multiple interactions (MOMI).
This method was developed by Kapp and Brown [9] and in-
dependently by Hollidayet al. [10] who gave it the name for-
ward-backward. MOMI is a robust and efficient iterative tech-
nique, which, as opposed to the traditional method of moments
(MoM), does not require matrix storage and, hence, facilitates
the application of the BIE method to very long rough surfaces.
The proposed BIE/MOMI method is capable of predicting scat-
tering in all directions including backscattering. This method is
used to calculate the scattering from a variety of rough surfaces,
including sinusoidal surfaces, surfaces with Gaussian rough-
ness spectrum and surfaces with Pierson–Moskowitz roughness
spectrum, in a ducting environment. Some results are compared
to those produced by the narrow-angle PWE/split-step method.
The ducting effects on the rough surface backscatter are also in-
vestigated in this paper.

II. GREEN’S FUNCTION OF A LINE SOURCE IN AN INFINITE

MEDIUM WITH A LINEAR-SQUARE REFRACTIVE INDEX PROFILE

The Green’s function for the scalar Helmholtz equation in a
medium with a linear-square refractive index profile of the form

(1)

where is a constant called the ducting parameter, is given by
[3] (please see (2) at the bottom of the page). In (2),

Fig. 1. Path of integration in the complexw plane.

is the source point, is the field point, is
the Airy function of the first kind, is the Airy function of
the second kind, and is the free-space wavenumber.

The exact Green’s function given by (2) is not numerically
tractable since the integrals involved are difficult to evaluate
even numerically due to the oscillatory nature of the integrands.
Consequently, an approximate solution valid in the frequency
range of interest, i.e., microwave range, is obtained asymptot-
ically using the methods of steepest descents and stationary
phase [8], [11]. To this end, we follow Felsen and Marcuvitz
[8] and let

(3)

and notice that for large , the Airy functions can be replaced
by the leading term of their large argument asymptotic expan-
sions, and hence, the integral in (2) can be written in the form

(4)

where represents an appropriate contour of integration in the
complex domain shown in Fig. 1. In (4)

(5)

(6)

(7)

where is known as the
turning point and is defined as the point at which the equation

or is satisfied.
One observes that using the large argument expressions of

the Airy functions and their derivatives replaces the exact inte-
grands of (2) by the WKB approximate ones given in (4). The

(2)
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Fig. 2. Ray picture of the Green’s function.

WKB approximation is a good one for slowly varying refrac-
tive index profile, i.e., [8]. It is applicable
in the case at hand, where and the
frequency of interest is in the microwave range. This also says
that our method is applicable for any slowly varying refractive
index profile where we can easily write the WKB solution. Fur-
thermore, although the value was chosen in this
work, a smaller and more realistic value ofmakes the approx-
imations incurred in our development more accurate.

The asymptotic evaluation of the integral in (4) is carried out
in three different regions in space [8]. These regions are delim-
ited in Fig. 2. In region I, each observation point is reached
by two eigenrays. The first ray propagates directly from the
source to the observation point and is characterized by the sta-
tionary point obtained by solving .
As exhibited in Fig. 2, this ray propagates from the source to
the observation point while undergoing continuous refraction
and manages to reach the observation point without having to
reverse its direction under the influence of refraction. In this
paper, this ray is called the direct ray. The second ray, which is
characterized by the stationary point obtained by solving

, propagates again under continuous re-
fraction, all the way to the caustic and then gets reflected toward
the observation point. This ray is called the caustic-reflected
ray. The contribution of each stationary point to the integral in
(4) is evaluated and the results are added to obtain the Green’s
function in this region. In region II, the direct rays mentioned
above reach the observation points after undergoing a direction
reversal under the influence of refraction (see Fig. 2). These
rays are called refracted rays and are characterized by the sta-
tionary points obtained by solving .
The caustic-reflected rays continue to exist in this region and
they are characterized by the stationary points obtained by
solving .1 Regions I and II are separated
in space by the curve [12]

(8)

1In region II, [dq =dw] = 0 has two roots.

As long as the points and are well isolated, the contri-
bution of each of them to integral (4) can be evaluated indepen-
dently and the results are added to obtain the Green’s function
in region II. When , the contribution of each one
of them to the integral cannot be treated independently and the
stationary phase procedure must be modified to accommodate
two nearby stationary points [8], [11]. It can be shown that the
stationary points are well isolated as long as

(9)

where

(10)

and is the minimum Airy function’s argument that allows
the replacement of the Airy function with the leading
term of its large argument asymptotic expansion [11]. The result
given by the modified stationary phase for two nearby stationary
points is also valid on the caustic where the two stationary points
exactly coalesce andin (10) becomes exactly zero. In this case,

is a second order stationary point which si-
multaneously satisfies the two equations

(11)

(12)

The elimination of from (11) and (12) yields the caustic
curve

(13)

which separates the regions II and III.
In the theory of geometrical optics, the caustic is the defined

as the boundary between the propagation and the shadow re-
gions. In region III, stationary points and separate
from each other, move into the complex plane, and form a com-
plex conjugate pair. In this case we resort to the method of
steepest descents and determine the Green’s function by ana-
lytically continuing the Green’s function obtained on the caustic
into the complex domain [8]. Since region III coincides with the
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Fig. 3. Problem geometry.

shadow region, we expect our Green’s function to be exponen-
tially decaying there and indeed it is so.

Together, Regions I and II form the largest portion of the
propagation region. In these regions, the caustic-reflected ray
exists as a byproduct of the fact that the refractive index profile
under consideration is monotonically decreasing with height.
This means that eventually, the refractive index profile will pass
through zero and attain a negative value at a certain height be-
yond which no propagation is permitted and the field is totally
evanescent. In many physical ducting environments, the refrac-
tive index profile decreases with height up to a certain point and
eventually reaches a constant value. In such environments, the
steep rays, which in our model reach the caustic before getting
bent down by refraction, escape the duct and do not contribute
to the ducted field. The modeling of such environments via the
method presented in this paper will be the subject of a future
study. For now, the nonphysical contribution of the caustic-re-
flected rays to the field can be eliminated by eliminating the
contribution of the stationary point which gives rise to it in the
Green’s function integral (4). The effect of the caustic reflec-
tions will be demonstrated in one of the numerical examples in
Section VI.

We should mention here that, as pointed out in [8], the
major contribution to integrals like the one in (4) comes from
the neighborhood of the stationary (saddle) points either at
large observation distances or for short wavelengths. This is
to say that the normalized distance must be large
enough for the steepest descent or stationary phase method to
yield accurate results. Evidently, these methods are sufficiently
accurate for microwave frequencies especially for observation
points located in the far-field region.

III. M AGNETIC FIELD INTEGRAL EQUATION FORMULATION OF

2-D SCATTERING PROBLEMS AND THE METHOD OFORDERED

MULTIPLE INTERACTIONS

The BIE used to model the scattering problem in this paper is
the magnetic field integral equation (MFIE). In this section, we
recall the principles of MFIE/MOMI as applied to the problem
of LGA electromagnetic wave scattering from a one-dimen-
sional (1-D) randomly rough perfectly conducting surface lo-
cated in a duct formed by a linear-square refractive index profile.
The MFIE governing the current induced on a conducting rough

surface by an incident field is set up and numerically solved
using MOMI.

As exhibited in Fig. 3, we elected to work with Cartesian
coordinates, where the-axis extends along the mean plane of
the rough surface and the single-valued surface height above the
mean plane is given by the function . In Fig. 3,
is the angle of incidence, the point

represents the center of the initial field beam, .
This field is propagated toward the rough surface to obtain the
incident field . The vertical dash–dotted lines, in Fig. 3,
represent the range vertical planes at which the scattered field is
to be calculated via the appropriate radiation integrals involving
the surface currents.

The MFIE for an infinite perfectly electric conducting (PEC)
rough surface has the form [13]

(14)

where
unknown surface current;
propagator;
“Kirchhoff current” induced on the surface by
the incident field.

The domain of integration in (14) is infinite in principle, how-
ever, it can be made finite by using an appropriately tapered in-
cident field. For TE waves, i.e., when the incident electric field

is tangential to the surface, the quantities involved in (14)
are given by

(15)

(16)

(17)

For TM waves, i.e., when the incident magnetic field is tan-
gential to the surface, the above quantities are defined as fol-
lows:

(18)

(19)
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(20)

In (15)–(20), is the Green’s function propagator that
was derived in the previous section, is the derivative along
the surface normal at a given point,and are the total elec-
tric and magnetic fields on the surface. The factor
results from converting the integral along the rough surface into
an integral along the mean surface plane and is the sur-
face slope at the point. The scattered field for the TE case
can be determined by

(21)

For the TM case, the scattered field is given by

(22)

For an arbitrary surface, the MFIE can only be solved nu-
merically. To this end, (14) must be discretized and put in the
following matrix form:

(23)

where is now a vector that contains the total surface current
sampled at a uniform grid of discrete points with
a sample spacing of is another vector that contains
the Kirchhoff current sampled at the same discrete points

, and is a square propagator matrix, with entries
which accounts for interactions

between the different current elements on the surface. The
classical MoM solution to (23) is given by

(24)

This requires the storage and inversion of the matrix
either directly or via the decomposition. This procedure be-
comes numerically prohibitive when the illuminated area on the
rough surface is large. This difficulty is alleviated by MOMI
as follows. The propagator matrix is split into the lower and
upper triangular matrices and . It can then be
shown [9] that the discretized integral equation (23) can be re-
cast into the following form:

(25)

where is the identity matrix. The first term in (25), given by

(26)

is the so-called “new Born term.” This term can be used to iterate
(25). It serves as the zeroth-order iterate in the solution of (25)
given by [9]

(27)

Due to the triangular nature of the matrices and ,
no matrix inversion is required to compute the “new Born term”
or any of the higher order iterates. Instead, forward or back sub-
stitution can be used. This eliminates the necessity to store and
invert the propagator matrix as required by the classical MoM.
As a matter of fact, it turns out that in many practical cases
involving rough surface scattering, the new Born term by it-
self produces accurate results and it is not necessary to go to
higher order iterates. The computation time necessary to calcu-
late the new Born term goes like and, thus, a consid-
erable savings is achieved over the decomposition method
used to invert the matrix in MoM solution for which computa-
tion time goes like . In this paper, we are
dealing with LGA rough surface scattering. As the angle of inci-
dence approaches grazing, the illuminated surface area becomes
larger, which means that the number of samplesused to rep-
resent the surface current gets larger and the classical MoM
approach becomes prohibitive, while MOMI provides a much
more promising alternative.

IV. THE INCIDENT FIELD

The incident field, which appears in the MFIE, is defined
as the field produced by the source (antenna) that would exist
in the medium in the absence of the rough surface. When the
BIE/MOMI approach is used to simulate the problem of prop-
agation over a rough surface in a ducting medium, it is appro-
priate to calculate the field produced by the source—the initial
field—on a certain vertical plane . The incident field on the
rough surface, in the TE case and in the TM case is then
evaluated by propagating the initial field from the vertical plane
onto the rough surface using the ducting medium propagator.
We use an initial field constructed from an angular spectrum of
plane waves of the form [14] (see Fig. 3)

(28)

In (28)

• represents the initial fields: for the TE case and
for the TM case;

• is the angle of incidence measured from the positive
-axis;

• ;
• is the half-beam waist;
• The center of the beam is located at

.

If the integration in (28) is performed in an exact manner, the
above incident field satisfies Maxwell’s equations exactly. The
“Kirchhoff” current , which appears in the MFIE (14), is
given by

(29)
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Fig. 4. Multiple bounces of the specular field in a ducting environment.

for the TE case and

(30)

for the TM case. In (29) and (30), is the normal vector
to the vertical plane is the normal to the rough surface
and is the Green’s function derived in Section II for a ducting
medium characterized by a linear-square refractive index pro-
file.

In rough surface scattering calculations, tapered fields are
used to limit the size of the rough surface area illuminated by the
incident field and hence make the numerical computations based
on MoM tractable. As the angle of incidence approach grazing,
this illuminated area grows larger and larger and as a result, the
size of the matrices that need to be stored and inverted to obtain
the MoM solutions becomes prohibitive. This problem is alle-
viated by MOMI as was mentioned earlier. However, MOMI
is still a procedure and, hence, although it is feasible
for large illuminated areas, its efficiency deteriorates asbe-
comes very large. For homogeneous space, Chou and Johnson
[15] proposed a novel acceleration algorithm for the for-
ward–backward method or MOMI. Their method is based on a
new expansion of source current elements via a spectral-domain
representation of the Green’s function. For the inhomogeneous
environments considered in this paper, analogous methods of
improving the efficiency of MOMI are still under investigation.
Although the tapered beam widths and, hence, the surface il-
luminated spots dealt with here are relatively small and hardly
realistic for actual antennas, they certainly serve to illustrate the
features of our method and are definitely out of the reach of a
classical MoM approach.

V. SINGLE-BOUNCE VERSUSMULTIPLE-BOUNCESSCATTERED

FIELD

Throughout this paper, the field scattered by the currents in-
duced by the incident field are termed the “single bounce” scat-
tered fields. Due to ducting, the parts of the field scattered at

very low angles are going to encounter the rough surface again
and again in the form of multiple bounces. The surface current
due to the multiple bounces of the scattered field can be calcu-
lated through the direct application of MOMI to the entire sur-
face. This is feasible but not efficient due to the reasons men-
tioned in the previous section. For LGAs scattering of narrow
tapered incident fields, most of the energy propagates in the
forward direction where the specular field dominates. Knowing
the specular angle and the angular width of the spec-
ularly scattered beam, , allows the approximate calculation
of the location of the second spot and its size via well-known
geometrical optics formulas [16]. The width can be in-
ferred from the single-bounce scattered field evaluated at a con-
venient range. This approximation saves us considerable time
in the computation of the surface current. For the case of two
illuminated spots, MOMI can be set up to calculate the surface
currents induced on these different spots as follows. Consider
the situation depicted in Fig. 4. As was outlined in Section III,
the discretized integral equation governing the surface current
is given by

(31)

In the case of two illuminated spots, the lower triangular matrix,
, contains all the forward current interactions within each il-

luminated spot in addition to all forward interactions between
the first and second illuminated spots through the refractive
medium. The matrix , on the other hand, contains all the back-
ward interactions within each illuminated spot in addition to all
backward interactions between the second and the first illumi-
nated spots through the refractive medium. Since all the rough
surfaces we are dealing with have maximum excursions that
only deviate slightly from the mean plane, the surface
interactions within the same spot can be accounted for using the
free-space propagator. However, it is obvious from Fig. 4 that
the interspot surface interactions must be accounted for via the
ducting medium propagator. Again this is an approximation. For
the more realistic cases of wide incident beams or actual antenna
patterns, this multiple spot approximation is no longer accurate
and the entire surface must be taken into consideration when
solving for the surface currents.
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Fig. 5. Magnitude (decibels) of the single-bounce field scattered by a sinusoidal surface in a ducting environment (� = 85 ; g = 200� ; L = 1000� , TE
polarization).

Fig. 6. Magnitude (decibels) of the single-bounce scattered field from a single realization of a surface with Gaussian roughness (� = 80 ; h = 0:5� ; l =

2� ; L = 300� ; g = 40� ; x = �500� , TM polarization).

VI. RESULTS AND DISCUSSION

Having determined the Kirchhoff surface current, MOMI can
be used to solve for the surface current induced by the inci-
dent field on different types of rough surfaces. Knowing the cur-
rent induced on the rough surfaces, the field scattered inside the
ducting medium can then be determined using the radiation in-
tegrals given by (21) and (22) for the TE and TM case, respec-
tively.

In this section, the BIE/MOMI method is applied to the
problem of scattering from different types of surfaces, namely
sinusoidal surfaces, surfaces with a Gaussian roughness
spectrum and surfaces with a Pierson–Moskowitz roughness
spectrum. Unless otherwise indicated, only single bounce scat-

tered fields are calculated in this section. Some examples with
multiple field bounces on the rough surface are presented later
on in this section. Also, numerical computations are carried
out for single surface realizations unless otherwise indicated.
For all the numerical simulations presented in this paper, the
sampling interval, , is chosen to be while the ducting
parameter, is chosen to be 0.0001. As the first example, we
consider scattering from a sinusoidal surface given by

(32)

where and . In this example,
, the surface length
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Fig. 7. Magnitude (decibels) of the single-bounce scattered field of Fig. 7 with the caustic-reflected field eliminated.

Fig. 8. Magnitude of the surface current induced on two illuminated spots of a flat surface. (� = 80 ; g = 40� ; x = �500� ; L = 12500� , TE
polarization).

is and the polarization is horizontal (TE). The surface
length is used in calculating the initial induced currents on
the surface. The single-bounce field scattered by the above sur-
face in the ducting medium is exhibited in Fig. 5. In the second
example, we demonstrate the effect of the caustic-reflected rays
by considering the scattering from a very rough surface with
a Gaussian roughness spectrum. The root mean square (rms)
height of this surface is and the correlation length

is . Other parameters in this example are the following:
and . The polar-

ization in this example is vertical (TM). With the contribution
of the caustic-reflected rays to the Green’s function taken into
account, the single-bounce field scattered by the above surface
into the ducting environment is shown in Fig. 6. The interfer-

ence between the caustic-reflected and the refracted/scattered
fields is clearly demonstrated in this figure. Fig. 7, on the other
hand, exhibits the interference-free refracted/scattered field for
the same example above obtained by eliminating the caustic-re-
flected ray contribution to the Green’s function.

Next, we consider two examples illustrating the application of
the approximate method of treating multiple illuminated spots
outlined in Section V. The first of these is for a flat surface. The
parameters in this example are the following:

and the polarization is TE. The surface
current on the two illuminated spots is shown in Fig. 8. We ob-
serve that the shape of the surface current on the second illu-
minated spot is still Gaussian with a beam waist which is much
larger than that of the current on the first illuminated spot. The
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Fig. 9. Magnitude (decibels) of the scattered field due to the surface current induced on two illuminated spots of Fig. 8.

Fig. 10. Magnitude of the surface current induced on two illuminated spots of a Gaussian surface. (� = 80 ; g = 40� ; x = �500� ; L = 12500� ; h =

0:5� ; l = 50� , TE polarization).

scattered field due to both current spots is shown in Fig. 9. Due
to its narrow beamwidth localized around , the inci-
dent field on the first spot results in well-defined reflected field.
The medium inhomogeneity causes this narrow beam to widen
upon scattering from the surface. Consequently, the field that
impinges on the second spot is no longer localized around the
specular direction. This means that different parts of this field
impinge on the surface at different angles, which results in a
wide variation of specular reflection angles; the interference
between these reflected fields gives rise to the pattern shown
in Fig. 9. This same example is repeated for a slightly rough
Gaussian surface with rms height of and a correlation
length of . Fig. 10 shows the surface currents induced on
the two illuminated spots of the rough surface for this example.

Fig. 11 shows the scattered field due to the surface currents on
the two illuminated spots of the Gaussian surface in the above
example. From this figure, it is obvious that the rough surface
encountered at the second illuminated spot gives rise to a dif-
fuse scattered field. One observation from Figs. 9 and 11 is that
due to the widening of the specular field under the influence of
refraction, the second and third illuminated spots are not well
separated. Hence, our approximate method of handling multiple
spots is not accurate beyond the second illuminated spot and the
entire surface must be considered thereafter.

The BIE/MOMI is capable of accurately predicting
scattering in all directions including the backscattering di-
rection. Fig. 12 shows the magnitude of the “one bounce”
scattered field from a Pierson–Moskowitz surface charac-
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Fig. 11. Magnitude (decibels) of the scattered field due to the surface current induced on two illuminated spots of Fig. 10.

Fig. 12. Magnitude (decibels) of the single bounce scattered field in the near backscattering direction from a single realization of a surface with a
Pierson–Moskowitz roughness spectrum (� = 85 ; K = 5k ; � = 0:23 m,L = 1000� ; x = �500� ; g = 200� , TM polarization).

terized by a wind speed of 5 m/s and a cutoff wavenumber
in the near backscattering direction for the

TM case. Other parameters in this example are as follows:
and

m. One very important aspect of Fig. 12 is that, for
a strong refractive index profile, the backscattered incoherent
power calculated as a function of distance in the backscattering
direction and along a constant scattering angle radial does not
have the simple inverse distance dependence, but exhibits an
oscillatory pattern on a realization by realization basis and
reaches a certain smooth pattern upon averaging over many re-
alizations. This is attributed to the fact that under the influence
of refraction, the fields scattered in other near-backscattering
directions contaminate the direct backscattered field. This

effect is depicted in Fig. 13, where the average backscattered
field over 100 realizations of the Pierson–Moskowitz surface
in a ducting environment is compared with the same average
calculated in homogeneous space. The effect of the refractive
index profile is more pronounced on a realization by realization
basis as shown in Fig. 13; however, this effect averages out
when multiple realizations are considered. From Fig. 13, one
observes that for observation points located at small distance
from the origin, the average incoherent power is the same for
the homogeneous and the ducting medium. This is due to the
fact that the refraction effects are not prominent at such short
ranges. The variability of the backscattered incoherent average
power due to refraction might be of importance in inverse
scattering applications where information about the refractive
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Fig. 13. Magnitude of the average incoherent single bounce backscattered power in a ducting environment versus that of a homogeneous medium. (� = 85 ; g =

140� ; v = 5 m/s,K = 2k ; � = 0:23 m, x = �500� ; n: number of surface realizations, TM case).

Fig. 14. Magnitude of the “one bounce” scattered field obtained using the
BIE/MOMI approach versus that obtained using the PWE/split-step approach
for a Gaussian surface. The field is evaluated at a vertical plane located at the
range pointx = 1000:05� (� = 85 ; g = 200� ; L = 1000� ; h =

0:1� ; l = 44:72� , TE polarization).

index profile is inferred from the statistical parameters of the
measured backscatter data in the ducting environment.

The next few examples present some comparisons between
the BIE/MOMI method and the narrow-angle PWE/split-step
method. The surface roughness is incorporated in the
PWE/split-step model via the appropriate coordinate transfor-
mations as in [4]. In the following examples, the horizontal
step in the PWE/split-step regime is chosen to be . In
Fig. 14, the single-bounce scattered field in the near forward
direction from a gently undulating Gaussian rough surface
as calculated by the BIE/MOMI method is compared to that
calculated by the PWE/split-step method. This figure exhibits

Fig. 15. The scattered field of Fig. 17 withl changed to14:142� .

the magnitude of the scattered field calculated along the vertical
plane located at from a Gaussian surface with
a rms height of and a correlation length of due
to an incident field of the form (28) which was defined on a
vertical plane located at . Other parameters in
this example are as follows:
and the polarization is TE. The solid curve represents the
BIE/MOMI result while the dashed curve represents the
PWE/split-step result. One notes that, for such a smooth sur-
face, the agreement between the two results is good especially
in the forward direction. However, when the same example
above is repeated for a rougher surface where
and , the agreement between the two methods
is not as close, as exhibited in Fig. 15. In Figs. 16 and 17,
the field scattered by the sinusoidal surface described by (32)
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Fig. 16. Magnitude of the single-bounce scattered field obtained using the BIE/MOMI approach versus that obtained using the PWE/split-step approach for a
sinusoidal surface. The field is evaluated at a vertical plane located at the range pointx = 2000� . (� = 85 ; g = 200� ; L = 1000� ;A = (1:5=�)� ;� =
50� , TE polarization).

Fig. 17. The scattered field of Fig. 16 with the polarization changed to vertical (TM).

and obtained via the BIE/MOMI method is compared to that
obtained via the PWE/split-step method for the TE and TM
cases, respectively. The other parameters in this example match
those of Fig. 5 and the scattered field is calculated on a vertical
plane located at (see Fig. 3). These comparisons
again show a good agreement between the two methods in
the near forward direction. The agreement deteriorates as the
scattering angle moves away from the forward direction. This
is probably due to the fact that a narrow-angle PWE code has
been used.

In the examples where the fields were computed in the two-di-
mensional (2-D) range-height plane we needed to work with
shorter ranges than those used in radar applications, as our pur-
pose was to illustrate the proposed method in an affordable
amount of computation time. For smaller, the same 2-D plots
can be generated at larger ranges and heights. For example, a
value of one-tenth the one used in this paper give the same field
configuration of that exhibited in Fig. 5, which covers a range of
30 km at a frequency of 1 GHz, while the existing Fig. 5 covers
a range of 3 km at that frequency.
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In realistic ducting environments, the value ofis very small
such that only the part of the field incident at angles very close
to grazing are trapped by the duct. As mentioned earlier, the
asymptotic technique used to evaluate the Green’s function
becomes more accurate for smaller, and hence the proposed
method has no difficulty in that regard. However, at these very
low grazing angle scenarios, large illuminated surface spots
are inevitable and the serious problem faced by the proposed
method is numerical efficiency. Methods of accelerating MOMI
analogous to those proposed in homogeneous space, which
were mentioned earlier in the text, are under investigation
for inhomogeneous space. These methods will facilitate the
application of the proposed method to very large surfaces and,
hence, allow it to relate to the more realistic atmospheric prop-
agation scenarios and makes it a more meaningful benchmark
for the efficient PWE-based methods.

VII. CONCLUSION AND FURTHER WORK

This paper documents the application of the rigorous
BIE/MOMI method to the calculation of electromagnetic
scattering from rough surfaces and propagation over rough
terrain in a simple ducting environment characterized by
a linear-square refractive index profile. Some comparisons
between the results obtained using the BIE/MOMI method and
those obtained via the narrow-angle PWE/split-step method
display a good agreement between the two methods in the
near-forward scattering direction when the surfaces under
consideration are gently undulating. Although the combined
effect of surface roughness and medium inhomogeneity is
modeled by the BIE/MOMI method in a more rigorous fashion
than the PWE/split-step method, the former method is not
proposed as an alternative to the latter simply because it is not
as efficient computationally. However, within the limitations
discussed in the paper, which we hope to alleviate by applying
acceleration techniques to MOMI, the BIE/MOMI method is
meant to serve as a benchmark for the PWE-based methods. In
addition, it provides a means by which the ducting effects on
the scattered fields in directions not appropriately modeled or
even neglected by the traditional PWE-based techniques, such
as the backscattered field, can be investigated. One important
item on our future work agenda is the generalization of the
proposed method via the WKB method to more general refrac-
tive index profiles like the piecewise linear profiles which exist
in many physical ducting environments. Another important
item is the acceleration of MOMI in inhomogeneous space to
allow the proposed method to handle very low-grazing angles,
which mandates very large surface illuminated spots. A third
item is the application of the proposed method to nonperfectly
conducting surfaces on which an approximate impedance
boundary condition is satisfied.
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