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The Fallure of “Classic” Perturbation Theory at a
Rough Neumann Boundary Near Grazing

Donald E. Barrick and Rosa Fitzgerald

Abstract—Rice’s “classic” perturbation theory predicts an er- (1-D) profile for this polarization, the conducting surface
roneous limit at grazing for vertically polarized plane wave scatter pecomes the Neumann or “hard” boundary condition; for easier
from an infinite perfectly conducting rough surface; likewise, the understanding, we restrict study to the 1-D geometry. Lord

attendant result for the specularly reflected mode also fails at . . . .
grazing. We show where and why in the system of perturbational Rayleigh [5] used perturbation theory to derive scattered fields

equations this difficulty occurs. We then reformulate the pertur-  from a sinusoidal Neumann boundary more than a century ago;
bational approach to handle the low-incidence angle region for Rice [6] was the first to apply the same technique to arbitrary
a one-dimensionally (1-D) rough Neumann boundary (vertical periodic and randomly rough surfaces.

polarization from a perfectly conducting surface). The result for

scattered fields vanishes in direct proportion to incidence angle

above grazing and the result for the normalized roughness-modi- A- Scatter Theory

fied surface impedance becomes constant with angle near grazing. Rjce’s perturbation theory [6] leads to the following result for

For completeness and comparison, we give results for the hori- . . . . .
zontal polarization at a Dirichlet boundary, where perturbation the normalized in-plane bistatic scatter cross section from a sta

results encounter no difficulties. Scatter dependence on grazing tistically rough 1-D Neumann boundary with roughness height
angle is explained in terms of the “classic” perturbation result spectrumS(x) at the surface wavenumberthat satisfies the
multiplied by a propagation factor to the cell. The latter includes  Bragg conditiors = k(cos o — cos 3)

the sum of the direct and specularly reflected waves at the surface.
This quantity can be replaced by the appropriate surface-wave
propagation factor for radiation from dipole antennas, thereby
explaining the strong observed vertically polarized sea scatter at
high frequency (HF) on and below the horizon. where

k radio wavenumber;

00, = 7k*S(k(cos o — cos 8))(1 — cos arcos 3)?

Index Terms—Electromagnetic (EM) scattering from rough sur-

faces, perturbation methods. o incidence angle above grazing;
J5) scatter angle above grazing with respect to the forward
direction.
I INTRODUCTION Thus, for backscattef; = = — « andcos3 = — cos«. We

R. James R. Wait led the way in the west in applying surefer to this equation and its three-dimensional (3-D) counter-
face impedance concepts to both propagation and scatiarts (e.g., Tatarskii and Charnotskii [7], [8]) “as “classic” per-
of vertically polarized waves at planar and spherical boundari¢stbation results in our subsequent discussions. Power does not
His classic texElectromagnetic Waves in Stratified Medld vanish as it should above any dissipative surface when grazing
is based entirely on this description of earth and sea interfacssapproached.
Wait also showed [2] how roughness on a curved conducting
boundary modifies its near-grazing impedance, which prior ® Propagation and Energy Conservation
that had been derived by Barrick [3] and Feynberg [4] only for

: : . : The above inconsistency of the “classic” perturbation solu-
planar boundaries. Unravelling the perturbation theory failure . - X )
; . ) 1on for scatter is attended by contradictions in the fields prop-
conundrum—the purpose of this manuscript—is all based on t

e .. . . . .
: ; ting across the surface as grazing is approached. For inci-
connections between roughness, the surface impedance/ad E g 9 g PP

: ; . S 1t plane wave excitation, we define the propagating field as

tar;cr(ce), znit?gst;e; dors](;/;?[lgr 3r.v\e/\:3g£|as S(:Zﬂzpégnslzzggrlg@ e “space wave,” which includes the incident and the specu-

ropag . y P rly reflected plane waves. The latter is often referred to as the
netic (EM) waves near grazing above a slightly rough perfect]

. . ) . ) . “coherent” component of scatter from statistically rough sur-
conducting surface is fraught with a number of |ncon5|stenC|e% P y 9

X . , . . ces. In the grazing limit, the two components of the space
For two-dimensional (2-D) fields above a one-dmensmngvave merge into a single forward propagating field.

Rice [6] gives expressions from perturbation theory through
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where the first equation applies to vertical polarization (théefined with respect to thg-directed magnetic field, (x, =)
Neumann 1-D boundary) and the second to horizontal (tbg

Dirichlet 1-D boundary). In Rice’s words, .". . v is the cosine

of the angle between the vertical and the reflected ray,” and h;(x,((z))

“..., sp, sy, stand for small quantities.” Thus, = sin « using +00

our definition. = Z S,enre—ikcosaz  (gn the surface) (2a)
For horizontal polarization (Dirichlet boundary), the second n=—oo

equation behaves like a plane wave Fresnel reflection at any h;(x, 2)

planar interface between free-space and a lower, denser, and ho- +o00

mogeneous medium; it approaches in the grazing limit. The = Z H,,eimre—ikcosaztirmz  for o > (yrox

above equation for vertical polarization (Neumann boundary) m=—o0

has a big problem at grazing: the second term dominates and (2b)

the reflected field goes to infinity. Hence, energy conservation
is grossly violated, as the power in the incident (causative) plawbere
wave was taken to be constant. This breakdown for reflection

should sound an alarm that the preceding scatter results near Km = kXm, xm=y1-E&2,, and

grazing must be suspect also, both having been derived from £ = cos o — mk ©)
. =

the same system of equations. k

In the next section, we revisit “classic” perturbation theor%h
; ere

for a Neumann boundary, using our more exact modal formula- di ber:
tion [9], [10], which avoids the Rayleigh hypothesis. We show radio wavenumber, A

' ’ > : _" k=2n/L fundamental wavenumber for the periodic sur-
exactly how and where the perturbational system of equations face:
fail at grazing. In Section .III, we derive perturbanon soluyons angle from grazing of the incident plane wave
for scatter and propagation that are valid and exact in the
grazing limit. In Section IV, we reconcile the two seemingly
different perturbational approaches, examining the transition B — @ik cos aw—iksinaz—iwt (4)
zone between the two; we also clarify the inextricable inter- Y
connection between scatter and propagation in this importamd, henceforth, the time-dependent exponential factor is
limit and resolve the quandary of why high-frequency (HFymitted but implied.
radars at grazing see such a strong sea scatter echo. Section™e matrice$F,, ] and[@..,] are defined from Green’s inte-
considers horizontal polarization for a Dirichlet boundangral equations[10, egs. (4), (5)], e.g., for the Neumann boundary
deriving an admittance counterpart to the Neumann impedarthe relevant equation giving,,.,, becomes
and examining propagation and scatter behavior near grazing.

Oz
Il. WHY “CLASSIC" PERTURBATION FAILS AT GRAZING x B (x, ((x)) de = 2kLsin ad?, (5)

/OL [ﬁm e 8((37)} explim® + ihm ()]

A. Review of Modal Formulation . . . .
whered?, in (1) and (5) is the Kronecker delta, implying that

Barrick [9], [10] presents an exact formulation for 2-D proponly one term on the right side of (1a) involvirty is nonzero.

agation and scatter above any arbitrary 1-D rough periodic Ngtpr the Neumann boundary the matrix coefficients required on
mann boundary with heighf(x) and fundamental period. the left sides of (1) become

Unlike earlier approaches of Rice [6], Wait [2], and Barrick

[3], [11] that invoke the Rayleigh hypothesis, [10] avoids this 1— &6, m
: ) : : Ppp=|————| -py,, and
assumption that the fields are approximated by only upgoing Xm n—m
modes in the region between crests and troughs. Rather, solu- 1—¢ménl
tion follows a two-step process where unknown surface-current Qmn = [T} “n—m- (6)

Fourier coefficients are first determined from a simple system
of equations with only one nonzero element on the right; these
coefficients are then multiplied by a known matrix to find thd3. Applying Perturbation

reflected and scattered field modal amplitudes. Thus, we haverpe gyrface profile height enters through the coefficigfits

91, [10] andq;". These are defined [9], [10] as the Fourier coefficients of
the height characteristic functiomsp|+irx.,.{(x)]. In the per-
[Prn][Sn] = [2sinas,]  and [Qnn][Sa] = [2xmH,,].  turbation limit of small heights, the exponential is expanded
1 in its f_ir_st terms resulting in the following reductions for these
guantities:
Here,S,, andH,,, are the unknown surface-current Fourier coef- [ 14k (ks 9 7
ficients and the scattered-field modal amplitudes, respectively, g . [ = L& #FXmzn—m = (Exm) vnm+ (78)
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with the coefficients of the surface height and its square definedThis is the “classic” perturbation result for the scattering am-
from plitudes dating to Rice [6]: nonspecular scatter is directly pro-
N portional to the surface height to first order. This “classic” Rice

_ i 2, N = i result also clearly demonstrates our point of contention: for ver-

(o) = Z Fme and (%(z) = Z Um¢ ) tical polarization at a perfectly conducting surface (Neumann
e e boundary), the scattering amplitudes of (9b) remain constant as

(7b) . . .
incidence angle approaches grazing=- 0). This is at odds
f{ith the more general result proven by Barrick [9], showing that

+ oo

e

With the above equations defining the scatter process in he scattering amplitudes should decrease in direct proportion to

small surface-height limit, one employs the methodology in [ :
appendix] to set up the “classic” perturbation equations [9, e%{.at grazing.
(A1), (A2)]. For clarity we show the process applied to a si- .
nusoidal profile at grazing in which only two surface coeffi?- Propagation
cientsz; and~_; are nonzero. This is extended by inspection When a plane wave is incident, the “propagated field” (or
to the general case of more complex surfaces involvingup  space wave) is normally taken to be the sum of the direct wave
through|n| = N. Hence, we need show only three equatior{gncident field) and reflected wave, the latter for a planar in-
of the set represented by (1) above since only these three higréace being proportional to its Fresnel reflection coefficient.
terms larger than “order three” (denotéd3)) in the perturba- When the surface is rough, the specularly reflected field (often
tion parametetkz,. The upper/lower line and signs represereferred to as the “coherent” component of scatter for statisti-

the first and second of (1), respectively, cally rough surfaces) is defined #f. “Classic” perturbation
theory above has found this to Bel to lowest order, a result
+ikz (1 — & 1€ 9)S o+ x 15 1 +ikz initially derived by Rice and discussed in the Introduction. For
0 aflat Neumann boundary, the reflection coefficient is ind¢éd
x (1 =& 1cosa)So+O(3) = { 2y 1 H_, (82) for all angles of incidence. For a rough boundary, however, this

result implies failure of energy conservation at grazing, as dis-

. . . . 2 . .
Fikz (1-4-1 cos a)S_rH1~{ksin ) vo| Sosin o L ikz_1 o oo in the Introduction. The effective surface impedance is

x (1 —¢& cosa)S; +O(3) = { 2sin O‘H (8b) defined from the expression for the specular reflection coeffi-
2sin ko cient as follows:
+ikz1(1 — & cosa)So + x151 £ ikz_q
0 _ _sina—z . . 1—-Hy
X (1 -6£&)S24+0(3) = { o1 Hy (8c) Ry = Ho = P leading toz = s
(10)

C. Scatter Solutions To the lowest (zero) order wheféo(o) = +1, the impedance of

In the “classic” perturbation approach, it is assumed that thgis rough Neumann boundary is zero; let us, therefore, extend
grazing anglex and, thussin«v, in the above equations is ang, to the next nonzero order, which turns out to be second.

independent variable and, hence, not necessarily small. In tRigtain terms in (8b) through second order (with terms to zero
case, the first and third terms on the left of (8b) are at leagfger already removed) to obtain

first order (we shall see these are actually second ordez,in

and only the middle term involving, remains to lowest order.

Hence, solving the upper set of (8b), this zero-order term i%kzl(l —¢
equated to the right side (with the commsin « factor can- — (ksina)?voSS” sina + ikz_1 (1 — & cos @)S = 0.
celing) to giveSéO) = 2, where superscript denotes the small- (11a)
ness order in the perturbation parameter. When this is substi-

tuted into (8a), the rightmost term withi, is first order; the
middle term inS_; must, hence, be at least first order and, thu
S,, in general fom # 0 must be at least first order. This leads td!
solutions to first order ik z,, for the surface-current coefficients

_1€O8 oc)S(_ll) + S((JQ) sin o

Eor smalle, we can ignore the third term involvir@go). Then,
sing (9a) in (11a) and solving fat?, we get

@ _ 2k2 5 (1 — &, cos a)?
8o =5 |l (11D)

1—-¢&,cosa
1= Gncosa (9a) 720 Xn

S = —i2kz,

Xn

These are now substituted into the second matrix equatiwhere we have used the fact thatz_,,, = 2,25 = |zm|> =
(1) to get the scattered mode amplitudés,, represented as |»_,,|? for () real. Write the counterpart faH, using the
the lower line and signs of (8) leading to a zero-order solutidower signs
Héo) = 1. To the first order inH,,, we obtain

—tkz1(1 — &_1 cos a)S(_ll) + S((JQ) sin o

1—¢,cosa
1) — gl) — _sop m
" = 5y = 12k : (9b) —ikz_1(1 — & cos 04)551) = 2sin ocHé2). (11c)

m
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Solving this forHéQ) by employing (11c) and (9a) we obtainnear grazing. Hence, let us, therefore, expand these quantities in

our result powers of«
o) _ o N Sncosoa)Q S,=s,a+s'a® H,=ha+h'a® forn#£0
Hy =D |l : A1) g = HO 1 ha+ hla?, (14)

n#0
Substitute these into (8) and group terms in like powersa.of
We can now substituté\”’ + HS? into the second of (10) to AlSO, recognizekz, as a perturbational ordering parameter in

obtain the surface |mpedance of the rough Neumann bounddfg Sizes of the terms of the equations. Doing so, one obtains
the following equation sets:

7 — L2 Z |vn|2 Sn cos 04)2' (12) +ikzm (1 — En)sy + XmSm + -+ O(2)
n#0 - { gxl w form#0 (15a)
Thisis the 1-D version of the result obtained by Wait [2], Barrick
[3], and Feynberg [4]. Z kz n(1—=&,)s, + O(3)
";;ON

E. Why These “Classic” Results Fail at Grazing

1
Both of the above “classic” perturbation results are clearly at =2 { HO form = 0. (15b)
odds with the general findings of [9]: 1) nonspecular scattered
energy does not vanish as the angle of the incident plane wayéhe same way, one obtains the following equations for terms

approaches grazing as it should and 2 2 the energy in the speditiplied by &

larly reflected ray (zero-mode{,; ) 4 H; ) increases without Eikzm(l — )8t 4 xmS 4 4+ O(2)
limit, catastrophically failing energy conservatlon. The latter is 0 "
evident by examination of this quantity = { 2y B form # 0 (16a)
1 m
© , g 2 -
Ho=Hy’ + Hy' =1-— shEi ZA kz_n(1—&,)s" +O(3)
2 n=—N
> -——=-00 asa=0. (13) 770
(841 0
=2 { B form = 0. (16b)
0

This depiction of the interaction at grazing has the total en-
ergy in the “propagated” field (sum of incident and reflected Each of the upper sets of equations is solved to obtain the
plane waves) approaching infinity, even though the energy in theknown surface current coefficient§, and s, . First, solve
causative incident field is finite. In addition, the total energy ifl5a) and (16a) fog/,, ands!, in terms ofs, ands and substi-

the “diffuse” (nonspecular) scattered modég remains con- tute these into (15b) and (16b) respectively, to obtain

stant in this limit. What went wrong with the above perturba-

tional derivation (as well as that of Rice [6]) in the grazing limit? s Z |k7" ")| -9 (17a)
This becomes clear by examining (8) above. The right-side P

vector, i.e., the “excitation” that drives the equation system rep- n7#0

regente_d by the upper _sign/li_nes, contai_ns o_nly one element: , Y N lkzn(l— &)

2sin o in (8b). This vanishes in the grazing limit. Except for so+50 D B 0. (17b)

the middle term inSy, however, the left side of (8b) clearly re- ":;(j\" "

mains finite. Thus, the entire system of equations for the surface

currents defined b, has become indeterminate in the grazingN4S: We end up with the following solutions fef and s,
limit. If one ignores this fact but later decides toset> 0inthe Which we substitute into (16a) and (16b) to get subsequent so-

11
“classic” results for reflection and scatter, one cannot expect fyions fors;,, ands;,
results to remain valid when the system of equations that pro- o — 2 (183)
duced them had already broken down. o TNy Eenl=6)F
(n#0) o
lll. VALID PERTURBATION EXPRESSIONSBELOW THE § — 2 (18b)
BREWSTERANGLE 0 N W%if)l
5 n
A. Scatter (T;i)kr (1-¢)
o “m "
We overcome the failure of the “classic” perturbation (8) at Sm = Xm Y AN (18c)
grazing in the following way. Barrick [9] has proven that the " ’Z;;é; Xn
surface currents/fields decrease in direct proportian the in- Y ik 2 (1 — &m)
cidence angle above grazing, for all rough surfaces. In addition, Sm = oY N = (18d)
m n=-—u Xn

all of the scattering amplitudes excefiy also decrease with T (ns0)
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When (17) and (18) are substituted back into the lower setswlffiere the integral form converts the discrete Fourier coefficients

(15) and (16) to solve for the scattered mode coefficients, wg into a continuous 1-D average roughness height spectrum

obtain the same identities between the first-orgglandh,,, as S(x) at surface wavenumber, the normalized wavenumber is

in the “classic” case treated earlier, i.e., defined as) = «/k. Thus, the general effective impedance (12),

Bo—d s W = which includes incidence angle, is valid over a wide span all
o ) the way to grazing. As we shall see, this expression is slowly
o =50; butinthis caset;” = —1. (19) varying as grazing is approached, becoming constant in this
Observe that the quantities, andh,,, for m # 0 are smaller limit.

than sy and hg by one perturbation order ihz,, as assumed Yet,ofthetwoexpressionsforthereflectedfield (21a)and(21b),

earlier. However, we note what at first seems puzzling: (18) dfas clear that the first, obtained by “classic” perturbation, goes to

to infinity as our “perturbation parametek’, becomes suf- infinity asincidence angle approachesgrazing and, hence, cannot

ficiently small. This seems unacceptable in a perturbation agerrectly represent the interaction at shallow angles. Equation

proach since we expect a stable result as the perturbation paréib) approaches1 + 2a/z, which cancels the incident plane

eter vanishes. However, we have argued that these hold onlyiave field so that the sum of the two then varieagis addition,

the limit of very small incidence angle. Hence, this imposes aall of the scattered field modes derived in this section given by

restriction onoy under which the results of this section are validi14) and (18) also vanishin direct proportiomtso thatan energy

whena exceeds this limit, one must revert to the “classic” pebalance between the propagating and scattered fields is obtained.

turbation solutions of Section Il. This “transition” region andNote thatthe reflected field at any flat buthomogeneous interface

the criterion for findinge, that it imposes is found by settingbetweenairandalowermediumalsovariesast 2«/z,asseen

So = spay from this section (18a) equal t8, = 2 from the from (10), with the singular exception of the pure flat Neumann

preceding “classic” perturbation solution to obtain boundary, whereitis alwaysl.
’ 20ét 2
Sty = i . — ~ . .
0 AN 'k(i—g)lz C. Example—Cosine Profile
(n#0) -
giving The issues and interactions at play for the Neumann boundary
N ez (1 — £,)2 near grazing can be further elucidated by studying a simple ex-
=Yy o~ = mjl | (20) ample: a cosine height profilé(z) = Acos(xz) that satis-
n=—N Xn fies the perturbation requirements. Take the radio wavelength
(n#0) to be unity sok = 2. Selects = 0.8 k so the surface spa-

As we shall see in the next section, the expression on the rigial period is 1.25, resulting in only two propagating modes for
turns out to be the effective impedance of this rough Neumagrear-grazing incidence regime. In particular, we study the re-
boundary, which is coincidentally identical to that found earligjion whered® < « < 10°. Hence, the scatter angles of the two

in (12) using the “classic” perturbation approach. propagating modes remain sufficiently high over this region that
i Wood's anomalies are avoided for the incidence angle region
B. Propagation betweend® < « < 10°, i.e., none of the propagating modes

If we were to use the “classic” perturbation results of Sectigpasses below the horizon, which would produce a discontinuity
I (or those of Rice [6]) for the reflected field mode expandeth energy apportionment at that angle.

for small e, we would obtain To satisfy perturbation theory, let = 0.025 so thatkA =
) () 2k? (1 —¢&, cosa)? 0.157 and the maximum surface slope (the arctangent 4y
Ho=Hy" +Hy”" =1- o Z [2n] e is 7.16. To verify the perturbation approximations being dis-
n70 cussed in this paper, we employ the full modal approach of Bar-

(21a) rick [9]. It turns out that truncating this system to only three
Using the more exact, smalltesults of this section for the sameequations is adequate to obtain good accuracy for this simple

reflected field mode, we obtain example, which we verified by using ax/ 7 system.
Ho~ HO £ ho— —1 4 2a Both the exact modal result and the perturbation so-
0="o 0 k23 |2 |2 (1—¢y cos )? lution (12) above predict an effective surface impedance
nEo o (21b) ~= 0.0040 — 40.0024 for 0° < « < 5°. Above ¥, they change

only in the second decimal, so that at°1¢hey both become
When both of these are substituted into the defining equatign= (0.0041 — 0.0026. This demonstrates our claim that the

for the surface impedance (10) near grazing, ze= «(1 — effective impedance due to roughness approaches a constant at
Hy)/(1 + Hy), itis quite surprising that both give identicallygrazing like that for most flat interfaces over dense media.

the same result, i.e., [4, eq. (12)] derived more than 50 years agfigs. 1 and 2 show how perturbation theory results exhibit

by Feynberg . At grazinga = 0), this is the behavior claimed by Barrick [9], focusing here on the case
5 5 (1—&,)2 where the incidence angle approaches grazing. In Fig. 1, we
z=k Z [2n] T show the lowest two propagating modé&s and H, as well
n#0 ’ as the lowest evanescent moffe ;. (Evanescent means the
= 13 oo S(kn)n” dn (22) z-directed wavenumber, defined As,,,, becomes pure imag-

inary rather than pure real, so that the field produced by this

e VI (02
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—
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4 Do IR R
0.001 0.01 0.1 1 10
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Fig. 1. Lowest order scattering amplitudes or modes. Curves are obtained from exact solutions for sinusoidal Neumann profile [9]. Pointsdeare first-o
perturbation theory results;«are “classsic” perturbation theory predicting no grazing angle dependence,, arare grazing-limit perturbation theory derived
herein.

mode attenuates exponentially with height above the surfachis Brewster angle (about G.3or this profile) to 186 below

The solid and dashed curves are obtained from inversion of theThis example demonstrates the claim in [9] that rough pure
7 x 7 exact modal matrix solution for the Neumann sinusoideumann boundaries exhibit a Brewster-angle phenomenon at
[9]. One observes two distinct regions, with a transition negbme angle. Also supported is the more general claim that the
0.3. Below this value, all of the scattered field mode amplispecularly reflected plane-wave mode at any rough boundary
tudes have a linear dependence onincidence angleove this  (Dirichlet, Neumann, or general impedance) must appreath

value, the scatter amplitudes tend to a constant. The overlyidyrazing, thereby canceling the incident plane wave.
points are the results of perturbation theory: 1) the “x” and “

come from the “classic” perturbation theory reviewed in Section
2 and 2) the %" and “o” come from the grazing-limit perturba- IV. CONNECTION BETWEEN PROPAGATION AND SCATTER AT

tion treatment derived in this section given in (18) and (19). On GRAZING INCIDENCE

the log—log plot these points follow the predicted lineaand  The perturbation results below and above the Brewster-angle
constant dependences of the two different perturbational soltansition are explained by considering both propagation and
tions we examined in Sections Il and IlI, respectively. Since watter. Recall that we are dealing with a rough surface of in-
derived explicit perturbational results here only to first ordefinite extent (rather than a patch or cell of roughness) and we
no points accompany the dashed amplitude migewhich is  are allowing only the incidence angle to vary near grazing.
second order. The general lineabehavior of these modes was

established in [9]. Equation (14) here is our newly derived pek: Propagation Factor for Incidence Very Near Grazing
turbation-limit expression that supports that general behavior.

Fig. 2 shows the specularly reflected plane wave mHge Equation (19) can be expressed in an interesting form that

Again, the solid and dashed curves come from the exact sof veals the meaning of the interaction near grazing. Note that
’ Lﬁ 9) for the low-angle scattered modes is merely (9b) for the

tion [10] applied to our Neumann sinusoid. The points res L . \
from the use of the perturbation-theory roughness-modified Su#gh-angle modes divided by the effective surface impedance,

face impedance of (12), which was shown to be valid abov"e(?"

through, and below the transition regiondn The points are HO,,

not distinguishably different from the exact results. The inter- Rl o= (23a)
pretation of the transition region is clear from this plot: the “dip” z

in the amplitude is a Brewster-angle phenomenon exhibited 8§cos « = 1 in this small grazing-angle region. The “classic”
the Fresnel specular reflection coefficient at any planar intefirst-order perturbation scatter result expressef 2$0) in (9b)
face above a more dense homogeneous lower medium for Tdindependent ofx in the low-grazing limit, i.e., it becomes
(vertical) polarization. The phase is changing frofhdbove constant; this was its failing near grazing.
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Fig. 2. Zero-order or specularly reflecting mode. Curves are obtained from exact solutions for sinusoidal Neumann profile [9]. Points are based on th
roughness-modified surface impedance obtained from perturbation theory.

If one were to postulate a plane-wave illuminating a poirgnergy gets to and from the scattering surface as discussed in
at or near the surface, the total field would be the sum of tliee preceding section

direct and reflected rays, tending to zero phase-path difference din o 2
: — o 130(
between rays exactly on the surface at grazing. Thus, one caElU,hh = wk>S(k(cos o — cos f3)) m‘
write a “propagation factorF' to describe the sum of these two ’ Y )
rays (assuming unity incident field strength) as x |1 — cosacos B — 22, y?|? sin 3 (24)
sino — z ’ sinfi+z,y|
2F =14+ R () =14 — Fuks et al. [15] derive this result rigorously for a slightly
. sl o+ 2 rough Neumann boundary, but wheraow includes the effects
2sin « 2 .
=——="— asa=0. (23b) of roughness, as in [15, eq. (53)].
sine+z -z Now, going to the limit of grazing incidence at backscatter for

Hence, (23a) takes on the following interpretation. Theertical polarization, one simplifies the bracketing “propagation
“classic” perturbation scatter result with constanbehavior factor” expressions (as done in the preceding section) to find
near grazing (when multiplied by the “propagation factét” o 5 alt
that includes the effect of the field reflected from the rough sur- oy = ATk°S(2k) ‘;‘ (25)
face with effective impedanca) is identically the solution for yhere it is assumed thatis small compared to unity. The ef-
scatter below the Brewster angle. This means one can intergiglive impedance of course, includes the effects of roughness
the direct dependence of the scattered fieldhomear grazing cajculated in (22) for the Neumann boundary.
from an infinite rough surface as due to propagation, i.e., the
sum of the direct and specularly reflected fields producing tli& Why Finite Sea Scatter Is Seen by HF/VHF Radars at
scatter must cancel in direct proportiondonear grazing for Grazing

any imperfect planar boundary. The results of the previous section thus lead to a resolution of
) , the following quandary, “Why does one see a large, nonzero HF
B. Plane-Wave Perturbation Scatter Theory Near Grazing  reym from the sea with vertical polarization at grazing although
Including Finite Surface Impedance/Admittance exact theories predict zero backscatter?” A pulse-limited radar
Barrick derived expressions [9, appendix; eq. (24)] farell is not of infinite extent. One can analyze the return as seen
bistatic scatter cross sections when a plane wave is incidabbve in terms of the interplay between propagation and scatter.
on a slightly rough impedance/admittance boundary. Given Hirst, propagate the energy from the radar to the cell being ob-
terms of the intrinsic surface material impedamcer admit- served, defined by the effective pulse width and the azimuthal
tancey for vertical or horizontal polarization, respectively, itbeamwidth. The energy at the cell depends on the “propaga-
has a form similar to the first equation of our Introduction—buion factor” over the medium between the radar and the cell. If
modified by “propagation factors” that account for how th@lane waves adequately describe the propagation, then the sum
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of the direct and reflected rays is the propagation factor andFitzgerald [16] invoked results of phase perturbation theory
this will cancel, exhibiting the behavior discussed in the preleveloped by Maradudin [17], [18] to work with the reflectivity
vious section. Radiation from a dipole source (i.e., a simple &ior horizontal polarization forom a 1-D Dirichlet boundary as
tenna) near grazing, however, as originally derived by Sommenodified by slight roughness. We generalize Fitzgerald’s [16,
feld [12] can be expressed in terms of a “Norton surface wavety. (3)] for the reflectivity, which is the absolute square of our
[13]. At grazing, its unique propagation factor must replace tlemplex reflection coefficient (26), i.e., h&(6,) is our| Ry |?
free-space factor derived above. This heuristic suggestion is dis-
cussed by Barrick in greater detail [9], [11] and was rigorously oo
justified by the compensation theorem of Monteath [14] in [11]. X / S(kcosa — rw)VE? —rk2drn  (27)

Our purpose here is to elucidate the rationale rather than review ) . ) .
the more rigorous justification. wherek = w/c is the radio wavenumber defined in terms of

At grazing above any mean planar interface, the Norton projp® radian frequency and the speed of light. Her integral,

agation factor for radiation from an antenna, replacing the plaftgrefore, was the second term above, but multiplied by four

wave propagation factor we callétin Section 111, is unity from instéad of two and integrated over its real region, ek, <
the near-field zone, out to a point called the “numerical dig: < - _ o .
tance,” e.g., Wait [1]. The near-field distande, for a dipole is ~ Substituting (25) above into (24), one simplifies by noting
defined fromiR = 1, while the numerical distandg is defined thatflx = —1 for any perfectly conducting Dirichlet surface
from kD = [2/z2|, wherek is the radio wavenumber ardis in the limit of vanishing roughness. This implies thais very

the effective normalized impedance of our surface. Hence, 18f9€- Becausin(1—6) = —¢ for smalls, one therefore obtains

In Ry = i¢w — 2ksin o

sea-type surfaces whegzes small, the numerical distance can 1 I i S(k _ 17— 2 4

extend out tens of kilometers at low HF. Within this distance v ) (keosa—r) e

from the radar antenna, therefore, the total field reaching the 5 [ 5

radar cell is not zero as predicted by plane wave analysis, even =k /_ S(kmv1—(1=n)?dn (28)

though the incidence angle may be exactly grazing; the Ver\;}'/here the right side (taken in the grazing limit= 0) should

cally polarized sea echo return is, therefore, finite and, in fa%e compared to the right side of (22) for surface impedance of a

generally strong. Beyond the numerical distance, the Norton i%hgh Neumann boundary. The counterpart here to the discrete
tenuation factor asymptotically approactiés- |z2/kr|, which {:ourier series on the left o.f 22) is
he

means one-way field strength decreases with distance from N
source ad /2. I S ol (29)
In reality, for the sea at HF, earth curvature and diffraction be- y 20 A
Zgggéhger:ao\;:/za?tn[f]rgrné(;rrfi(r:ekk[as\’/]ar':}htgi?o;hee-izat:;sﬁ:z\r;i‘i) I?;rinIa_‘SNote that in the absence of roughness, the above equations
' : rngive 1/y = 0, ory = oo, which is the correct admittance for a

llar, hgwevr(le(;, ,:/r\::thF ;tl ?hUt tor~20—3t(iJ I;rr; attl? iMHif/ oxt?rr]tther rﬂat Dirichlet (perfectly conducting) plane. We use the previous
sea. Beyo S paint, the propagation factor is give €M% usoidal profile of Section Il as an example and calculate the

of aresidue series obtained from an asymptotic evaluation of { %zing-angle dependence of the roughness-caused admittance
Watson transform result for dipole radiation above a sphere [ tainingy — 49.6370 — i75.8218 at grazing(c = 0°) and ’

Although we have focused on propagation from the radar O 05560 — i76.0498 at o — 10°. Thus, like the impedance,

the cell, there is an analogous factor involved in scatter fro . . . . .
9 e admittance is nearly constant in the region near grazing, ex-

the cell back to the receiver. If transmitter and receiver are COI}%b'ting very little dependence om due to roughness. Because
cated (a backscatter geometry), the two factors are identical an

: . y IS large in terms of unity, however, the corresponding reflec-
the radaf equayon for power contains the fadtdr see [9] for tion coefficientZ g from (24) changes very little from 1 in this
further discussion.

region, and exhibits none of the “Brewster-angle” type behavior
seen with the other polarization (Fig. 1). The latter, nonmono-
V. GRAZING REGION AT A ROUGH DIRICHLET BOUNDARY  tonic behavior of the reflection coefficient is a consequency of

For comparison and completeness, we include analogous3gimpedance—or admittance—being less than unity.

sults for horizontal polarization at a slightly rough perfectly con- On€ can now contrast the behavior of backscatter vs. po-
ducting 1-D surface: the Dirichlet boundary. The classic Rid@rization at a highly conducting surface for plane wave inci-
results discussed in the Introduction do not have difficulties f€nce by examining (24). For slightly rough Dirichlet bound-
this case since the reflection coefficient is well behaved nedies.y is sufficiently large so the center factor is replaced by
grazing, tending to-1. Just as with our definition of surfacey " cancelling they=* dominance in the denominators of the
impedance from the vertical reflection coefficient (10), we daurrounding factors. Thus the limiting dependence near grazing
fine an effective normalized surface admittancén terms of for horizontal polarization becomes

the horizontal reflection coefficient on, = 7k*S(2k)at (30)
: _ i i iy el 0 4 i
Ry = S¥na y7 which leads to f';md the scatter polarization r_atl(_)(tshh/o,,:.,,/.) = (|z|*/4). This _
sina +y is valid only for plane wave incidence, i.e., where propagation

1—- Ry to and from the scatter region does not follow surface-wave ra-
1+ Ry (26) " giation laws from dipole sources, as discussed earlier.
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