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Abstract—In this paper, we present the characteristics of radio
propagation in a circular lossy waveguide whose walls are com-
posed of earth soil materials with frequency-dependent properties.
This type of structure is used to represent a radio link for an un-
derground wireless communication channel such as a tunnel, mine
shaft, or borehole. We present calculated results of the attenua-
tion constant for various propagation modes in the soil waveguide
structure for various soil constituents and moisture levels. Trans-
verse field plots of the various modes for different soil types are
also presented. Finally, it is shown that for small 2 (where 2

is the wavenumber in the soil and is the radius of the waveguide)
some modes in the waveguide disappear and a discussion of this
behavior and how it relates to excitation problems is given.

Index Terms—Circular waveguides, geologic measurement,
mining industry.

I. INTRODUCTION

I N past years, it was common practice to use a center con-
ductor (i.e., trolley wire) and its ground return as a transverse

electromagnetic (TEM) mode communication link in tunnels,
mine shafts, and boreholes. Such quasi-TEM mode communi-
cation links have been studied extensively by Wait and others
[1]–[5]. The use of conductors was advantageous at low fre-
quencies, where waveguide modes are cut off or at least have
high attenuation. In some cases additional conductors, such as
rails [6] provided a return path, making the tunnel walls less im-
portant. However, with the increasing use of wireless communi-
cation equipment operating at higher frequencies, there is a need
to understand the propagation characteristics of radio waves in
tunnels, mine shafts, and boreholes when no wire conductor is
present (i.e., a non-TEM mode communication link). This type
of propagation environment can be modeled as a circular wave-
guide with lossy soil walls (Fig. 1).

Electromagnetic wave propagation characteristics of circular
waveguides have been studied in detail by many researchers
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Fig. 1. Cross section of the circular waveguide structure with lossy soil walls.

[7]–[23]. However, most of this work has concentrated on either
perfectly conducting waveguides or waveguides in which the
surrounding medium is lossless (e.g., optical fibers) [19]–[22].
The limited published work on lossy circular waveguides covers
only the case for frequency-independent materials over a limited
frequency range [12]–[15] and [23].

In this paper, we calculate the attenuation of radio waves over
a frequency range of 100 MHz to 10 GHz for a circular wave-
guide surrounded by a lossy medium with electrical properties
characterized by two distinct types of soil with frequency-de-
pendent material properties. This paper is organized as follows.
After the introduction, the second section presents mathemat-
ical expressions for the electromagnetic fields in the waveguide,
along with the transcendental equation that characterizes the
modes. The winding number approach is used to solve the com-
plex transcendental equation and this technique is presented in
Section III. In Section IV, the calculated attenuation constants
for various modes and soil types are presented. Illustrations of
the transverse field distribution for different modes are also pre-
sented in this section. Finally, we discuss and illustrate that par-
ticular modes can disappear for certain frequencies, waveguide
dimensions, and soil types.

II. M ODAL FIELD REPRESENTATION

The geometry of the waveguide structure that is used is de-
picted in Fig. 1. In this analysis, Region 1 is of circular cross sec-
tion with radius and has the electrical properties of free-space.

U.S. Government work not protected by U.S. copyright.



HOLLOWAY et al.: RADIO WAVE PROPAGATION CHARACTERISTICS IN LOSSY CIRCULAR WAVEGUIDES 1355

(a) (b)

(c) (d)

Fig. 2. Transverse electric field distribution for these four types of modes. (a)HE mode. (b)EH mode. (c) TE mode. (d) TM mode. These results were
obtained from Soil I with a moisture level of 25.8% fora = 38 cm and at a frequency of 1 GHz.

Region 2 is a lossy medium, characterized by the electrical prop-
erties of the various soils under study. A standard cylindrical co-
ordinate system with coordinates denoted by, , and is used.

A. Mathematical Form

It can be shown that the- and -components of the electric
( ) and magnetic ( ) fields can be obtained from knowing only
the -component of both the - and -fields. From Maxwell’s
equations it can be shown that the-component of the - and

-fields must satisfy Helmholtz’s wave equation. For this cylin-
drical geometry, the variables can be separated and the-com-
ponents of the fields can be written in the following form:

(1)

where and are functions of and only and the subscripts
1 and 2 correspond to the fields in regions 1 and 2, respectively.

is the complex propagation constant of the field and is ex-
pressed as

(2)

where and are the attenuation and phase constants, respec-
tively.

After substituting (1) into Maxwell’s equations and imposing
the radiation condition and boundary conditions so that the tan-
gential components of both the- and -fields are continuous
at , the -components of the fields are

for

for

for

for (3)
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Fig. 3. The complexw -plane with the constraint in (21).

Fig. 4. The complexw-plane: the allowable contour is depicted by the shaded
region.

where

(4)

represents the Bessel function of the first kind andrep-
resents the Hankel function of the second kind (where the time
dependence is assumed). The integer parameteris the
mode index discussed below, and, , , and are constants
defined as

(5)

and

Fig. 5. The allowable contour for searching for the roots ofG(w).

(6)

As is customary, the primes denote differentiation with respect
to the argument. The boundary conditions can also be used to
determine the propagation constant. In particular, for each
mode is determined by solving the following transcendental
equation of complex order:

(7)

where

(8)

and

(9)

Using (4), can be expressed in terms ofand the material
properties

(10)

where it is assumed that and .With
written in this form, the propagation constant is expressed in

terms of

(11)

The roots of this expression are the allowed values of the prop-
agation constant , which also determines the characteristic
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Fig. 6. Attenuation constants for the three dominant modes for a waveguide with a 5 m radius for two types of soil and various moisture levels: (a)HE for
Soil I. (b) TE for Soil I. (c) TM for Soil I. (d)HE for Soil II. (e) TE for Soil II. (f) TM for Soil II.

or normal modes of propagation. A discussion of the different
modes of propagation is given below.

Once the propagation constant for a particular mode is deter-
mined, the -components of the - and -fields can be deter-
mined from (3). From Maxwell’s equations, the remaining field
components can be determined from the-components of the
fields as follows:

(12)

and

(13)

where, as before, the subscripts 1 and 2 correspond to the fields
in regions 1 and 2, respectively.
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Before we describe methods used to solve the transcendental
equation (7), a discussion of the types of modes that can exist in
the waveguiding structure is given in the following section.

B. Mode Definitions

The allowable modes are split into four different categories
or mode types. The two simplest modes to characterize are the
transverse electric (TE ) and transverse magnetic (TM)
modes. As usual, the TE modes have no-component of the

-field; the TM modes have no-component of the -field.
The subscript “0” indicates that there is nodependence in the
fields and the “ ” corresponds to the number of maxima in the
field distribution in the direction from to .

The remaining two mode types are referred to as hybrid
modes. That is, there are nonzero- and -field compo-
nents. These two modes have different designations in the
literature. Here, we use the designation given by Snitzer [9],
where the hybrid modes are divided into two types depending
on the relative contributions of and to the transverse
field components. denotes modes where the transverse
field component is dominated by the field. For this type
of mode, the transverse field tends to form straight lines.

denotes modes where the transverse field component is
dominated by the field. For this type of mode, the transverse

field tends to form circular loops. In this nomenclature the
subscript “ ” corresponds to the number of times the field
changes sign for a rotation in from to , and the “ ”
corresponds to the number of maxima in the field distribution
in the direction from 0 to .

Transverse field distributions for these four types of modes
for the soil waveguide are shown in Fig. 2. These distributions
were obtained from equations (12) and (13). Details of this cal-
culation are given in the following sections.

III. SOLVING THE TRANSCENDENTAL EQUATION

Unfortunately the transcendental equation (7) that is used to
determine the propagation constant cannot be solved in closed
form and must be solved numerically. For a numerical solution,
we express the roots of the transcendental equation as

(14)

For the TE and TM modes, the transcendental equation reduces
to a simpler expression. For the second term of (14) is
zero and, hence, either or equals zero depending on the
type of mode. For the TE mode, must be zero and

(15)

and for the TM mode, must be zero and

(16)

Fig. 7. Comparison between the attenuation constant for the three modes for
Soil I with a 40.7% moisture level and a 5 m radius.

A. Possible Solution Methods

There are various methods that can be used to determine the
roots (or zeros) of a complex function. Newton’s and Müller’s
methods are common approaches used to determine roots
[10]–[15]. Newton’s method is easy to implement, however,
it does require an initial guess for. A poor initial guess can
result in failure to converge to the root for a particular mode
of interest. Approximate methods have also been used to solve
(14) (see [14]–[18]), however, these methods have a limited
range of validity ( ). In this paper, the so-called
“winding number” approach [24]–[26] is used to determine
the roots of the transcendental equation. The advantage of
this method is that it finds all the roots that lie within a given
contour in the complex plane.

B. Winding Number Approach

The winding number of a complex function is given by
[24] and [25]

(17)

where is a contour in the complex plane. If the function
has no singularities or branch points within the contour, then
the winding number equals the number of zeros of inside
the contour . The number of zeros (or the winding number)
can also be written as

(18)

where denotes the change in the argument of
over the contour . This expression states that the number of
zeros equals the number of times the argument of winds
around some reference axis in the complex plane.

Once the number of zeros within a given contour is known,
there are various ways of locating all the zeros within that con-
tour. We have chosen to use the algorithm given by Singarajuet
al. [26] and modified by Tijhuis and van der Weiden [27].
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Fig. 8. Attenuation constant for the three dominant modes for a waveguide with a 19 cm radius for two types of soil and various moisture levels: (a)HE for
Soil I. (b) TE for Soil I. (c) TM for Soil I. (d)HE for Soil II. (e) TE for Soil II. (f) TM for Soil II.

The winding number approach finds all the roots of an equa-
tion that lie within a given contour in the complex plane. The
first step in using the winding number approach is to determine
a contour within which is analytic (i.e., a contour free of
poles and branch points). Sinceand are related by (10), the
branch points of are given by

(19)

where

(20)

These branch points result from the wayappears (a square root
of a quantity involving ) explicitly in through the
term and the Hankel function with argument.

In order to ensure that waves propagating in thedirection
in Region 2 (the soil) do not increase exponentially,must lie
in the IVth quadrant in the complex plane. This implies that

(21)

as shown in Fig. 3. Thus, in the-plane, the allowable contour
is bounded by the following hyperbola on which is pure real

(22)
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Fig. 9. Comparison between the attenuation constant for the three modes for
Soil I with a 40.7% moisture level and a 19 cm radius.

Fig. 10. Location of the roots of theHE , TM and TE modes for Soil I
anda = 5 m. The root locations of the TE mode are represented by the solid
line (the root locations are essentially identical for the four moisture levels).

The allowable contour is depicted by the shaded region in Fig. 4.
The branch cut where runs in only one direction from
the branch point where , as shown in Fig. 3. In the
other direction, so that is pure imaginary.

We also want to ensure that the roots of yield propaga-
tion constants that have exponentials of the following form:

forward–traveling wave

backward–traveling wave (23)

To assure this, the contour must also be bounded by the real
and imaginary axes. The allowable contour for searching for
the roots of is depicted by the shaded areas in Fig. 5.
The shaded area in thefirst quadrant corresponds to forward-
traveling waves, whereas the shaded area in thethird quadrant
corresponds to backward-traveling waves.

(a)

(b)
Fig. 11. Illustration of the roots for the TE and TM modes approaching
the branch cuts for Soil I with a 6% moisture level anda = 19 cm. (a) TE
mode. (b) TM mode.

Fig. 12. Propagation constant for a wave propagating along� in region 2. The
results are for a TM mode for Soil I with a 6% moisture level anda = 19 cm.



HOLLOWAY et al.: RADIO WAVE PROPAGATION CHARACTERISTICS IN LOSSY CIRCULAR WAVEGUIDES 1361

(a) (b)

(c) (d)

Fig. 13. Transverse electric field distribution for these four types of modes. (a)HE mode. (b)EH mode. (c) TE mode. (d) TM mode. These results
were obtained from Soil I with a moisture level of 25.8% fora = 38 cm and at a frequency of 400 MHz.

IV. NUMERICAL RESULTS

A program using the modified winding number algorithm
presented by Tijhuis [27] was written to search the shaded area
in thefirst quadrant depicted in Fig. 5. In order to avoid the poles
of that occur on the real axis, the bottom of the search area
was set just above the real axis ( ). Once the roots of

were determined, the attenuation constant was obtained
from the real part of (11). To insure that the root finding proce-
dure was implemented properly, the results were compared to
those given in [12]–[14] and [23], with excellent agreement.

Fig. 6 shows results for the three dominant modes for a wave-
guide with a 5 m radius for two types of soil and various mois-
ture levels. The material properties for the soil are given in the
Appendix. Fig. 7 shows a comparison between the attenuation
constants for the three modes. Figs. 8 and 9 show results for a
waveguide with a 19 cm radius. Notice that the mode type with
the smallest attenuation constant changes as the frequency in-
creases. For example, from Fig. 9 it is seen that the mode

for cm has the smallest attenuation up to approximately
1.5 GHz, and above 1.5 GHz, the TEhas the smallest attenu-
ation; while for m (Fig. 7), the TE has the smallest at-
tenuation for the entire frequency range of 100 MHz to 10 GHz.

It is interesting to observe the variation of the roots of the
transcendental equation for the different modes as a function of
frequency. Fig. 10 shows the location of the roots of the ,
TM , and TE modes for Soil I at various moisture levels and
frequencies. The root locations for the TEmode are essen-
tially identical for the four moisture levels. Therefore, to im-
prove clarity of the figure, all the root locations of the TE
mode are represented by the solid line. Notice that the root loca-
tions of the TE mode does not have as much variation across
the complex plane (which is confined to the upper frequency
locations of the TM mode) as the other two modes. In gen-
eral, for increasing frequency, the real parts of the roots for all
three modes increases. The real part of the high-frequency roots
for the mode approach the real part of the low-frequency
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roots for the TM mode; the high-frequency roots for the TE
mode approach those of the TMmode. Similar behavior in
the location of the roots is also observed in dielectric waveg-
uides with no losses ([11] and [20]).

From Figs. 8 and 9, we see that not all the curves have values
down to 100 MHz. For small the modes approach the
branch cut and disappear onto another Riemann sheet. This is
illustrated in Fig. 11 for the TE and TM modes for a wave-
guide of cm. For frequencies below 900 MHz the TE
mode disappears and below 700 MHz the TMmode disap-
pears. This figure shows that as the frequency decreases, the lo-
cation of the root approaches the branch cut and eventually goes
onto another Riemann sheet. The significance of this in excita-
tion problems is discussed in the next section. This type of be-
havior, where the mode disappears and enters onto another Rie-
mann sheet, is also found in other types of waveguiding struc-
tures [28]–[30].

If the search is continued on the other side of the branch cut,
roots will be found. However, these roots will result in expo-
nentially growing waves. This is illustrated in Fig. 12, which
presents the propagation constant for a wave propagating radi-
ally (along ) obtained from the root of as the branch cut
is crossed. Below about 700 MHz, the imaginary part ofob-
tained from the root is positive and, hence, the wave grows ex-
ponentially. Similar results for a surface wave in an absorbing
layer are given in [30].

Once the propagation constants are determined, the trans-
verse field for various modes can be obtained. Figs. 2 and 13
illustrate the transverse field distributions for the , ,
TM , and TE modes, for frequencies of 1 GHz and 400 MHz,
respectively. As expected, the lower-frequency signals pene-
trate farther into the soil. The field distributions for the TE,
TM , , and modes of the lossy (i.e., soil) wave-
guide are similar to the field distributions for the TE, TM ,
TE , and TE modes of a perfectly conducting waveguide, re-
spectively. One distinguishing feature of the TEmode for the
soil waveguide as compared to the TEmode for the perfectly
conducting waveguide is that the tangentialfields at in
the soil are not zero (as with a perfectly conducting guide).

From Fig. 13, it appears that there is very little field pene-
trating into the lossy soil for the and the TM modes,
while the and TE modes clearly penetrate the lossy soil
and then exhibit very rapid amplitude oscillation as a function
of once in the lossy soil. Actually all four modes penetrate the
lossy soil and exhibit this very rapid field variation. This varia-
tion is masked in the vector field plots for the and TM
mode since the amplitude of the fields in the air region are sig-
nificantly larger than the fields in the soil for these two modes.
This is explicitly illustrated in Fig. 14, where the normalized
field amplitudes for the and TE modes in the two re-
gions are depicted. This figure shows that there is an order of
magnitude difference in the field in the two regions for
mode, while for the TE mode the field differs by only a factor
of two.

Additional soil types with frequency dependent properties are
given in [33]. Waveguides with these additional soil types were
analyzed and results similar to those presented here were ob-
tained.

Fig. 14. Normalized amplitude of fields in the two regions for theHE and
TE modes. These results were obtained from Soil I with a moisture level of
25.8% fora = 38 cm and at a frequency of 400 MHz.

Fig. 15. Geometry for anx-directed electric dipole source in a circular
waveguide.

V. EXCITATION OF MODES

The excitation problem is important both for practical trans-
mission applications [34] and for illustration of the relative im-
portance of the discrete waveguide modes and the continuous
spectrum. We chose a transverse Hertzian dipole source because
it avoids the need to solve for the current distribution and be-
cause it can excite all the modes. The geometry for an-directed
electric dipole of moment located at ( , ) is shown in
Fig. 15.

The solution for the fields of this problem has been given
previously with application to determining the change in the
dipole impedance due to the waveguide walls [35]. The sec-
ondary fields (due to the waveguide walls) can be derived in
terms of the components of the fields, which are given in [35]
in terms of modified Bessel functions [36]. If we convert those
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results to our notation, thecomponents of the secondary fields
in the waveguide ( ) are

(24)

where is defined above. The propagation constantand the
axial wavenumber are related by . The summation
is taken over all integers, and the integration is taken along
the real axis. The precise forms of the coefficients, and

, are not needed for this discussion, but are given in [35].
For other sources, the general form of (24) would hold, but the
coefficients would change.

In the dipole impedance application [35], theintegrations
were evaluated at by numerical integration along the
real axis. To illustrate mode excitation, we need to deform the
integration path in the complex plane. We start by rewriting
the coefficients in a form that displays their poles explicitly

(25)

where and is defined in (14). Thus, the
poles of the coefficients determined from are the same
as the zeros of and and have no poles.

In addition to poles, the integrand also has branch cuts in the
plane. From (4), we see that there are branch points at

. As with the previous -plane analysis, we need to
establish branch cuts so that is negative throughout the

plane. The branch cuts where are determined by
the hyperbola

(26)

along with the second condition

(27)

which is required so that is real on the branch cuts. Equation
(27) determines that the branch cuts run from the branch points
toward the imaginary axis, as shown in Fig. 16.

For positive , we can deform the integration contour from
the real axis into the negative half plane so that we pick up
the pole residue series and the branch-cut integral, as shown in
Fig. 16. (For negative, we would make the analogous defor-
mation into the positive half plane.) The contribution from
the semicircle at infinity vanishes because of exponential atten-
uation. So we can rewrite (24) in the following form:

(28)

Fig. 16. Pole locations, branch cuts, and integration contours in thek plane.

Fig. 17. Soil mixture triangle.

where , and the prime
indicates differentiation of with respect to the argument. The
index runs over all poles for a fixed value of.

The branch-cut integral in (28) is typically referred to as a
continuous spectrum of modes, and it is characteristic of open-
region problems [37]. Physically, it represents propagation out-
side the guide ( ). The sum over represents the discrete
modes which are the main subject of this paper. For a waveguide
with perfectly conducting walls, the branch-cut integral disap-
pears and the sum over includes an infinite number of modes.
For that case, there is a finite number of poles on the realaxis
for (propagating modes) and an infinite number
of poles on the imaginary axis (evanescent modes). For our
case with lossy walls, all of the modes have some attenuation
and there is not such a clear distinction between propagating
and evanescent modes. In the-plane analysis of the previous
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(a)

(b)

Fig. 18. Permittivity of Soil I. (a)� . (b) � .

section, we saw that some roots can intersect the branch cut and
pass into another Riemann sheet. The same thing happens with
the poles and the branch cut in the-plane. In that case, the ef-
fect of the disappearing mode would show up in the branch-cut
integral in (28). We show only a few poles in Fig. 16 because
the actual number would depend on the waveguide parameters.
For large values of , the dominant field would be the mode of
lowest attenuation. If none of the modes has an attenuation rate
smaller than that of the external medium, then the waveguide
is not very effective and most of the energy is propagating in
the external medium. We would expect this behavior at low fre-
quencies, where the waveguide radius is electrically small. In
this case, the dominant field contribution might well come from
the branch-cut integral.

VI. CONCLUSION

This paper presented the propagation characteristics of var-
ious modes of a lossy circular waveguide consisting of a soil
wall with frequency-dependent electrical properties. This struc-
ture was used to simulate a wireless communications channel
through tunnels, mine shafts, and boreholes. Results for dif-
ferent soil types and moisture levels were presented. The be-
havior of the attenuation as a function of moisture level, fre-

(a)

(b)

Fig. 19. Permittivity of Soil II. (a)� . (b) � .

quency, and waveguide radius is complicated. For example, it
was shown that as the moisture level of the soil increases, the
attenuation increases for frequencies above 100 MHz for the
TM and modes for a 5 m waveguide. However, this
type of trend does not occur until 5 GHz for a 19-cm waveguide.
For the TE mode, as the moisture level of soil increases the at-
tenuation decreases for frequencies above 1 GHz for both radii.
In general, however, regardless of the mode type and moisture
level as the frequency increases the attenuation decreases and,
as a result, the attenuation of radio waves through tunnels, mine
shafts, and boreholes will decrease. It was shown that for small

some modes in the waveguide disappear, and a discus-
sion of this behavior and how it relates to excitation problems
was given. Finally, transverse field distributions for the various
modes were depicted.

Radio performance predictions for underground tunnels and
similar environments, that are essentially lossy waveguides, are
important due to the increased reliance upon radio communica-
tions for business, government, and personal use. Perhaps the
most important parameter for predicting radio performance is
the signal-to-noise ratio, which depends directly on the attenu-
ation of the propagation channel. The methodology and results
presented in this paper can be used to estimate the signal-to-
noise ratio based on the electrical properties of materials that
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compose the walls of the lossy wave guide. Such calculations
will require a knowledge of what propagation modes can be ex-
cited. Our results show that depending on the electrical parame-
ters of the soil, not all modes will propagate (e.g., when is
small). Understanding the character of the propagation modes
that will be excited by a particular radio system is essential for
the design of an effective communication system.

A comprehensive analysis of the excitation of electromag-
netic fields for this type of waveguide for various antennas will
be the topic of future work. It is interesting to note that, due
to the complicated nature of the root locations (occurring on
different Riemann sheets) of the different modes, there may be
only a finite number of modes present in the waveguide. This
phenomenon will also be investigated in future work.

APPENDIX

MATERIAL PROPERTIES OFSOME SOILS

One way of characterizing soils is by their fractional content
of sand, silt, and clay [31]–[33], which can be described on a
soil mixture triangle as shown in Fig. 17. The soil mixture tri-
angle shows that soil types can vary significantly and, hence, the
electrical properties can be quite variable. In this study we have
chosen the two different soil mixtures that are distributed along
the soil mixture triangle. Soil I consists of 55% sand, 32% silt,
and 13% clay, while Soil II consists of 1% sand, 48% silt, and
51% clay. The percentages listed are by weight.

Figs. 18 and 19 show the measured permittivities as a func-
tion of frequency and moisture content for the two soil types
used in this study. This measured data was obtained from [33].
The moisture contents in these figures are based on the ratio of
volume of water to the volume of dry soil.

ACKNOWLEDGMENT

The authors would like to thank A. G. Tijhuis, Vakgroep
Elektromagnetisme, Technische Universiteit Eindhoven, Eind-
hoven, The Netherlands, for supplying a modified version of
the winding number algorithm presented in [27].

REFERENCES

[1] J. R. Wait and D. A. Hill, “Propagation along a braided coaxial cable in
a circular tunnel,”IEEE Trans. Microwave Theory Tech., vol. MTT-23,
pp. 401–405, May 1975.

[2] , “Electromagnetic fields of a dipole source in a circular tunnel con-
taining a surface wave line,”Int. J. Electron., vol. 42, no. 4, pp. 377–391,
1977.

[3] D. A. Hill and J. R. Wait, “Analysis of radio frequency transmission in a
semicircular mine tunnel containing two axial conductors,”IEEE Trans.
Commun., vol. COM-25, pp. 1046–1050, Sept. 1977.

[4] , “Electromagnetic fields of a coaxial cable with an interrupted
shield located in a circular tunnel,”J. Appl. Phys., vol. 46, no. 10, pp.
4352–4356, 1975.

[5] S. F. Mahmoud and J. R. Wait, “Calculated channel characteristics of
a braided coaxial cable in a mine tunnel,”IEEE Trans. Commun., vol.
COM-24, pp. 82–87, Jan. 1976.

[6] J. R. Wait and D. A. Hill, “Radio frequency transmission via a trolley
wire in a tunnel with a rail return,”IEEE Trans. Antennas Propagat.,
vol. AP-25, pp. 248–253, Mar. 1977.

[7] R. A. Waldron,Theory of Guided Electromagnetic Waves. London,
U.K.: Van Nostrand Reinhold, 1969, ch. 4 and 7.

[8] J. A. Stratton,Electromagnetic Theory. New York: McGraw-Hill,
1941, ch. 9.

[9] E. Snitzer, “Cylindrical dielectric waveguide modes,”J. Opt. Soc. Amer.,
vol. 51, no. 5, pp. 491–498, 1961.

[10] C. Yeh and G. Lindgren, “Computing the propagation characteristics of
radially stratified fibers: An efficient method,”Appl. Optics, vol. 16, no.
2, 1977.

[11] A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigen-
values of a dielectric or optical waveguide,”IEEE Trans. Microwave
Theory Tech., vol. MTT-17, pp. 1130–1138, Dec. 1969.

[12] Y. Yamaguchi and T. Sekiguchi, “Propagation characteristics of normal
modes in hollow circular cylinder surrounded by dissipative medium”
(in Japanese),Trans. IECE Japan, vol. J-62, no. 4, pp. 368–373, 1979.

[13] J. I. Glaser, “Attenuation and guidance of modes on hollow dielectric
waveguides,”IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.
173–174, Mar. 1969.

[14] T. Abe and Y. Yamaguchi, “Propagation constant below cutoff frequency
in a circular waveguide with conducting medium,”IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-29, pp. 707–712, July 1981.

[15] C. S. Lee, S.-W. Lee, and S.-L. Chuang, “Normal modes in an over-
moded circular waveguide coated with lossy material,”IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-34, pp. 773–785, July 1986.

[16] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric
wave-guides for long distance optical transmission and lasers,”Bell Syst.
Tech. J., pp. 1783–1809, July 1964.

[17] J. Brown, “Corrections to the attenuation constants of piston attenua-
tions,” Proc. Inst. Elect. Eng., pt. 3, pp. 491–495, 1949.

[18] C. Dragone, “Attenuation and radiation characteristics of the
HE 1-mode,” IEEE Trans. Microwave Theory Tech., vol. MTT-28,
pp. 704–710, July 1980.

[19] N. S. Kapany and J. J. Burke,Optical Waveguides. New York: Aca-
demic, 1972.

[20] G. Biernson and D. J. Kinsley, “Generalized plots of mode patterns in a
cylindrical dielectric waveguide applied to retinal cones,”IEEE Trans.
Microwave Theory Tech., vol. MTT-13, pp. 345–356, May 1965.

[21] P. J. B. Clarricoats, “Propagation along unbounded and bounded dielec-
tric rods: Part 2—Propagation along a dielectric rod,”Proc. Inst. Elect.
Eng., pt. c, pp. 177–186, Oct. 1960.

[22] A. W. Snyder, “Excitation and scattering of modes on a dielectric or
optical fiber,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.
1138–1144, Dec. 1969.

[23] J. C. Chiba, T. Inaba, Y. Kuwamoto, O. Banno, and R. Sato, “Radio
communication in tunnels,”IEEE Trans. Microwave Theory Tech., vol.
MTT-26, pp. 439–443, June 1978.

[24] M. Y. Antimirov, A. A. Kolyshkin, and R. Vaillancourt,Complex Vari-
ables. New York: Academic, 1998.

[25] M. J. Ablowitz and A. S. Fokas,Complex Variables: Introduction and
Application. New York: Cambridge Univ. Press, 1997.

[26] B. K. Singaraju, D. V. Giri, and C. E. Baum, “Further developments in
the application of contour integration to the evaluation of the zeros of
analytic functions and relevant computer programs,” Air Force Weapons
Lab., Mathematics Note 42, Mar. 1976.

[27] A. G. Tijhuis and R. M. van der Weiden, “SEM approach to transient
scattering by a lossy, radially inhomogeneous dielectric circular
cylinder,” Wave Motion, vol. 8, pp. 43–63, 1986.

[28] E. F. Kuester, D. C. Chang, and S. W. Plate, “Electromagnetic wave
propagation along horizontal wire systems in or near a layered earth,”
Electromagn., vol. 1, no. 1, pp. 243–265, 1981.

[29] S. W. Plate, D. C. Chang, and E. F. Kuester, “Propagation modes on
a buried leaky coaxial cable,” Electromagn. Lab., Dept. Elect. Engrg.,
Univ. Colorado, Boulder, CO, Scientific Rep. 32, Mar. 1978.

[30] R. T. Ling, J. D. Scholler, and P. Y. Ufimtsev, “The propagation and ex-
citation of surface waves in an absorbing layer,” inProgress in Electro-
magnetic Research, PIER 19, J. A. Kong, Ed. Cambridge, MA: EMW,
1998, pp. 49–91.

[31] M. T. Hallikainen, F. T. Ulaby, M. C. Dobson, M. A. El-Rayes, and
L.-K. Wu, “Microwave dielectric behavior of wet soil—Part I: Empir-
ical models and experimental observation,”IEEE Trans. Geosci. Remote
Sensing, vol. GRS-23, pp. 25–34, Jan. 1985.

[32] M. C. Dobson, F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes,
“Microwave dielectric behavior of wet soil-Part II: Dielectric mixing
models,”IEEE Trans. Geosci. Remote Sensing, vol. GRS-23, pp. 35–46,
Jan. 1985.

[33] J. O. Curtis, C. A. Weiss Jr., and J. B. Everett, “Effect of soil composi-
tion on complex dielectric properties,” U.S. Army Corps Eng. Res., U.S.
Army Eng. Waterways Experiment Station, Vicksburg, MS, Tech. Rep.
EL-95-34, Dec. 1995.



1366 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 9, SEPTEMBER 2000

[34] D. A. Hill and J. R. Wait, “Calculated transmission loss for a leaky feeder
communication system in a circular tunnel,”Radio Sci., vol. 11, no. 4,
pp. 315–321, 1976.

[35] J. R. Wait and D. A. Hill, “Impedance of an electric dipole located in
a cylindrical cavity in a dissipative medium,”Appl. Phys., vol. 11, pp.
351–356, 1976.

[36] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Func-
tions. Washington, DC: Nat. Bureau Standards, 1964.

[37] J. R. Wait and D. A. Hill, “Theory of transmission of electromagnetic
waves along a drill rod in conducting rock,”IEEE Trans. Geosci. Elec-
tron., vol. GE-17, pp. 21–24, Apr. 1979.

Christopher L. Holloway (S’86–M’92) was born in
Chattanooga, TN, on March 26, 1962. He received
the B.S. degree from the University of Tennessee at
Chattanooga in 1986, and the M.S. and Ph.D. degrees
from the University of Colorado at Boulder, in 1988
and 1992, respectively, both in electrical engineering.

During 1992, he was a Research Scientist with
ElectroMagnetic Applications, Inc., in Lakewood,
CO. His responsibilities included theoretical anal-
ysis and finite-difference time-domain modeling of

various electromagnetic problems. From the fall of 1992 to 1994, he was with
the National Center for Atmospheric Research (NCAR), Boulder, CO. While
at NCAR his duties included wave propagation modeling, signal processing
studies, and radar systems design. From 1994 to 2000, he was with the Institute
for Telecommunication Sciences (ITS), U.S. Department of Commerce,
Boulder, CO, where he was involved in wave propagation studies. Since 2000,
he has been with the National Institute of Standards and Technology (NIST),
Boulder, CO, where he works on electromagnetic theory. He is also on the
Graduate Faculty at the University of Colorado at Boulder.

Dr. Holloway received the 1999 Department of Commerce Silver Medal for
his work in electromangetic theory and the 1998 Department of Commerce
Bronze Medal for his work on printed curious boards. His research interests
include electromagnetic field theory, wave propagation, guided wave structures,
remote sensing, numerical methods, and electromagnetic compatibility and
electromagnetic interference issues. He is a member of Commission A of the
International Union of Radio Science and is an Associate Editor on propagation
for the IEEE TRANSACTIONS ONELECTROMAGNETICCOMPATIBILITY .

David A. Hill (M’72–SM’76–F’87) was born in
Cleveland, OH, on April 21, 1942. He received
the B.S.E.E. and M.S.E.E. degrees from The Ohio
University, Athens, in 1964 and 1966, respectively,
and the Ph.D. degree in electrical engineering from
The Ohio State University, Columbus, in 1970.

From 1970 to 1971, he was a Visiting Fellow
with the Cooperative Institute for Research in
Environmental Sciences, Boulder, CO, where he
worked on pulse propagation. From 1971 to 1982,
he was with the Institute for Telecommunications

Sciences, Boulder, CO, where he worked on antennas and propagation. Since
1982, he has been with the National Institute of Standards and Technology,
Boulder, CO, where he works on electromagnetic theory. He is also a Professor
Adjoint in the Department of Electrical and Computer Engineering, University
of Colorado, Boulder.

Dr. Hill is a member of URSI Commissions A, B, E, and F. He has served as
a technical editor for the IEEE TRANSACTIONS ONGEOSCIENCE ANDREMOTE

SENSINGand the IEEE TRANSACTIONS ONANTENNAS AND PROPAGATION.

Roger A. Dalkereceived the B.S. degree in physics from the University of Col-
orado, Boulder, in 1971, and the M.S. and Ph.D. degrees from the Colorado
School of Mines, Golden, in 1983 and 1986, respectively.

As a Research Engineer, he has developed numerical techniques for a variety
of electromagnetic scattering problems as well as signal processing and imaging
methods used in exploration geophysics. More recently, he has been involved in
the development of computer simulation models for digital radio systems, noise
and interference measurements and analysis, and radio propagation in urban
environments.

George A. Hufford (S’45–M’55–LF’95) was born in San Francisco, CA, in
1927. He received the B.S. degree in engineering from the California Institute
of Technology, Pasadena, in 1946, the M.S. degree in electrical engineering from
the University of Washington, Seattle, in 1948, and the Ph.D. degree in mathe-
matics from Princeton University, Princeton, NJ, in 1953.

In 1964, he joined the U.S. Department of Commerce as a member of the
Tropospheric Telecommunications Laboratory, CRPL, Boulder, CO, and has
remained there. The organization has undergone several name changes and is
now the Telecommunications Theory Division of Institute for Telecommuni-
cation Sciences, National Telecommunication and Information Administration,
in the Department of Commerce. Currently, he has been active in research re-
lated to the computation and modeling of tropospheric radio propagation under
real-world conditions as when irregular terrain and a changing atmosphere are
involved.

Dr. Hufford is a member of the American Mathematical Society, the Society
of Industrial and Applied Mathematics, and Sigma Xi.


