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Petrophysics of Magnetic Dipole Fields in an
Anisotropic Earth

Allen Q. Howard, Jr, Fellow, IEEE

Abstract—Measurement-while-drilling (MWD) resistivity
log data are often acquired in highly deviated or horizontal
holes. The loop sensors are located on the drill collar and are
approximated as magnetic dipoles. The conductivity of the earth
in the vertical direction and horizontal direction are almost
always different. When an MWD resistivity tool enters a new
bed, the response is compared with the precomputed logs to aid
in the determination of the location of the drill bit. The MWD
tool response, however, is sensitive to resistivity anisotropy. An
alternative method is used to derive analytical expressions for the
Sommerfeld-type integrals. Numerical results give typical MWD
tool response as a function of the inclination angle the tool
makes with respect to the axes of anisotropy and also as a function
of the anisotropy index = ( )1 2.

Index Terms—Apparent resistivity interpretation, electrical
anisotropy, measurement-while-drilling (MWD) resistivity log-
ging, Sommerfeld integrals, water saturation.

I. INTRODUCTION

M EASUREMENT-while-drilling (MWD) resistivity log
data is acquired as the hole is drilled. Modern drilling

practice often positions the bore-hole horizontally in the oil
bearing formation. The earth conductivity in the vertical direc-
tion and horizontal direction are almost always different.
With the more mature technology of wireline logging, the loop
sources are in more nearly vertical boreholes, where only the
horizontal component is measured. It can be shown that the
galvanic resistivity in the same environment measured by lat-
erologs [1] also essentially measures .

When an MWD resistivity tool enters a new bed, the response
can be compared with precomputed logs to aid in the determi-
nation of the location of the drill bit. Therefore, comparison of
wireline logs in vertical holes, with nearby MWD highly devi-
ated holes is important. The MWD tool response, if in a more
deviated hole, is sensitive to the resistivity anisotropy.

A paper on the effects of formation anisotropy on resistivity
logs by Moran and Gianzero [2] is classic. The book by Wait [3]
covers some of the same material in a more direct fashion. Re-
cently, Hagiwara has published several papers on the interpre-
tation of wireline and MWD logs in anisotropic layered media
(an example containing other references is [4]).

The earth’s conductivity may be anisotropic because in
sedimentary rocks gravity differentiates the direction normal
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to the earth’s surface. Sedimentary sequences under vertical
stress produce as a consequence pore space geometries and
often vertical fractures that differentiate horizontal and vertical
permeability.

Klein and Allen [5] develop an interpretation of thinly lam-
inated oil-saturated pay zones. Considered as a bulk medium,
such zones are anisotropic. In particular, water wet oil-saturated
formations with large variability in grain size can be highly
anisotropic. Thus, significant anisotropy in porous sediments
may be an indicator of hydrocarbon.

II. THEORY

A common model for the earth’s conductivity and dielectric
anisotropy assumes that the vertical and horizontal components
of conductivity are different. In this case, the conductivity de-
pendence in Maxwell’s equations enters as the tensor

(1)

where is the complex conductivity in the hori-
zontal direction and a similar definition applies to the complex
vertical conductivity . For a magnetic dipole source density

and a time dependence , Maxwell’s equations in SI
units [6] for anisotropic conductivity take the form

(2)

In (2), the earth’s magnetic permeability is constant,
isotropic, and equal to the vacuum value H/m.
Because of conservation of total current and
the vector identity for any vector field

, it follows that

(3)

where the Hertz vector is yet to be determined, and the
horizontal and vertical wavenumbers and are given by

(4)

The branch cut of the wave numbers in (4) is chosen such that
Im , Im . Substitution of (3) into Ampere’s law,
i.e., the first equation of (2) defines the magnetic intensity
as

(5)
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for any scalar potential . Because (3) only defines the curl
of the vector potential , it is possible to invoke the gauge
condition

(6)

From (3), it follows that

(7)

where the anisotropic index is given by

(8)

Similarly, the magnetic intensity from (5) and (6) is
defined as

(9)

Now substitute (7) and (9) into Faraday’s law defined by the
second of (2). After simplification, the three Cartesian compo-
nent equations for the determination of the Hertz potential
are found to be

(10)

In (10), , and is the usual
Laplacian operator in Cartesian coordinates. The next section
gives a solution of (10).

III. H OMOGENEOUSMEDIUM SOLUTION

The and components of (10), except for a rescaling of the
axis have a simple solution, i.e., let

(11)

then (10) for is

(12)

where . For point magnetic dipoles

(13)

and similarly for and , where is the three-
dimensional (3-D) Dirac delta function and for a
small loop of area and current . For point source dipoles
then

(14)

where , and
is the location of the magnetic dipole source.

To model a resistivity log traversing an anisotropic medium
at an angle with respect to the verticalaxis (the direction as-
sociated with ), it is sufficient to consider two problems. One
with source only, the other with source . A linear com-
bination of these solutions gives the solution at an inclination
angle . In the following, the tool axis is in the plane .

The source problem is elementary, but the source
for is more difficult because of the coupling term involving

and . In the literature ([2] and [3]), the approach uses
Fourier–Bessel transforms to reduce the third (10) to an ordinary
differential equation. Then a homogenous solution is added to
the particular solution such that in the limit asapproaches one,
the potential vanishes if . The problem with this is
that there are many homogeneous solutions with this property,
each with different factors of having a common limit when
approaches one. Thus, such solutions are not unique.

To insure uniqueness, note that from (10c) for, when
, the formal solution via potential theory is

(15)

where

(16)

The integral on the right-hand side of (15) is a 3-D convolu-
tion, so that by the convolution theorem, has the alternative
representation

(17)

where the spectral form is

(18)

Compare (14) and (16) and note the transform of (16) is (18).
This leads to the representation

(19)

where is the magnetic dipole location and in (17)–(19) the
wave number notation is

Im

Im

(20)

Substitute representations (19) and (18) into (17) to obtain

(21)
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where

(22)

In cylindrical coordinates, the wave number elemental volume
in (22) is . The integration in (22) is
a residue calculation resulting in

(23)

The angle integration is

(24)

where

(25)

Combining results (23) and (24) determines

(26)

Let the transmitter magnetic dipole be rotated about theaxis
by an angle and without loss of generality, assume the tool is
in the plane , with transmitter at the origin so that .
Then in (27), , , and the magnetic
dipole density is

(27)

Thus, by superposition, the Hertz vector is

(28)

and from (9), the resulting magnetic intensity components are

(29)

In (29)

(30)

Note as a check on the results, when , ,
as it should. In the tool coordinate system, the axial magnetic
intensity is thus

(31)

The complex receiver voltage for a two-coil magnetic dipole
sonde with an inclination angle in an anisotropic medium is
thus

(32)

where

(33)

and is the number of turns in the receiver coil with cross-
sectional area . In (33), is the distance between transmitter
and receiver coils. The Appendix contains numerical details for
computing voltage given by (33).

IV. CONDUCTIVITY TENSOR AT AN OBLIQUE ANGLE

An oblique angle with respect to the anisotropy axis is
common in MWD resistivity logs. In this case the tool axis in
direction , and the axis defining the direction of form
an angle . For a rotation of angle about the axis (i.e. such
that ), we have

(34)

where the rotation matrix is defined as

(35)

We can use the rotation matrix defined by (35) to deter-
mine the effective anisotropy matrix in the tool coordinate
system as follows. Ohm’s law applies equally in either coordi-
nate system, i.e.,

(36)

In the primed axis, the conductivity anisotropy tensoris de-
fined by (1). To determine the form of the anisotropy tensorin
the tool coordinate system, note that the vector fields obey the
same transform law as the coordinate vectors in (34). Thus,

(37)

It follows from (36) and (37) that

(38)
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Rotation matrices are special in the sense that

(39)

Thus, from (38) and (39), the tool coordinate system anisotropy
tensor is

(40)

As a check, note that .

V. LINEARIZED APPARENTRESISTIVITY

In the tool system of coordinates, with tool axis inclined at
an angle with respect to the axis of the anisotropy, the con-
ductivity tensor is given by (40). This tensor enables us to deter-
mine the apparent resistivity for borehole with inclination angle

in an anisotropic medium. The transmitter loop induces an az-
imuthal current component in the formation. Now

(41)

and similarly

(42)

In the tool coordinate system, Ohm’s law is

(43)

Substitution of (41) and (42) into (43) determines

(44)

where from (40)

(45)

and where

(46)

Equation (44) shows that the conductivity tensor is a function
of the azimuthal angle. The resistivity measurement averages
over . Taking the average value of the 22 conductivity tensor
in (44) gives

(47)

Fig. 1. RatioR =R versus� in degrees and anisotropic ratio�.

Result (47) yields the azimuthally averaged formation conduc-
tivity

(48)

Conductivity is an equivalent isotropic medium conduc-
tivity for given parameters and . By definition, the real part
of the receiver voltage in a conductivity measuring tool is pro-
portional to the apparent conductivity . The constant of pro-
portionality, called the tool constant, is independent of forma-
tion conductivity. It depends only on tool parameter. Because of
this, it follows from (48) that the linearized apparent resistivity

for an anisotropic medium is given by

(49)

where is the apparent resistivity in a homogenous isotropic
conducting medium with resistivity . Note the lim-
iting value . Note also this formula for is
different from Hagiwara’s [4] and that of Moran and Gianzero
[2]. Because details of the linearized computation are not in
[2] and [4], I cannot account for the differences. A more fun-
damental and complete MWD apparent resistivity in given the
next section. Fig. 1 is a two-dimensional (2-D) plot of the ratio

versus in degrees and anisotropic ratio.

VI. MWD A PPARENTRESISTIVITY

MWD tools typically derive formation resistivity from ratios
of received voltage from two adjacent receivers. Thus, consider
one transmitter and two receivers spaced distancesand
from the transmitter along the tool axis. Then the voltage ratio

is

(50)

This is a complex number with magnitude and phase angle. The
ratio of measurements removes some of the sensitivity to the
borehole environment and thus is an improvement over inter-
pretation based upon a simple two-coil measurement.
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Fig. 2. Phase apparent resistivityR defined by (57) for parameters in list
(59).

Fig. 3. Amplitude apparent resistivityR defined by (57) for parameters in
list (59).

For purposes of tool calibration, an MWD tool reading is
taken in the air not near conductors. This results in the air-hang
correction

(51)

The air-hang corrected voltage ratio is thus defined as

(52)

Note has unity magnitude and zero phase in the limit as
tends to zero. In terms of phase and amplitude, i.e,

in degrees

in dB (53)

Fig. 4. Phase apparent resistivityR defined by (57) for parameters in list
(59).

the ratio has a phase and amplitude apparent resistivity. To
determine the equivalent apparent resistivities, compute a look
up table of as a function of formation conductivity where

(54)

In (54), is the equivalent homogeneous medium response

(55)

Define homogeneous phase and amplitude as

in degrees

in dB (56)

Given tables of [ ] and [A ], the apparent phase
and amplitude resistivities and are determined by
interpolation, i.e.,

interp

interp (57)

In (57), the functioninterp, given a lookup table [ ], com-
putes an interpolated ordinate, given an index value , i.e.,

interp (58)

Because electromagnetic resistivity tools are sensitive to con-
ductivity, interpolation is done in conductivity units and then
converted to resistivity.

Experience with log interpretation and modeling of MWD re-
sistivity supports the notion that the phase resistivity curve has
a slightly more shallow depth of investigation than the corre-
sponding amplitude curve. In a vertical well, separation of the
two curves can be interpreted as invasion of borehole fluid into
the formation.
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For numerical results, use the following parameters:

m in

m in

Degrees

m

turns

turns

H/m

MHz (59)

For the air-hang correction, use S/m, and
. Figs. 2–5 plot apparent resistivity as defined

by (57) versus the anisotropic ratiofor seven inclination an-
gles in degrees as displayed in the legend. Figs. 2 and 3 are,
respectively, the phase and amplitude apparent resistivities for

S/m. Similarly, Figs. 4 and 5 are, respectively, the
phase and amplitude apparent resistivities for S/m.
Note that in Figs. 2–5, for , the medium is isotropic, and
the family of curves cross the point , as is necessary.
In general, the apparent resistivity depends upon bothand
and the phase and amplitude apparent resistivities are not the
same.

VII. A NISOTROPY OFTHINLY LAMINATED FORMATIONS

A long time ago, Conrad and Marcel Schlumberger showed
[7] that fine laminations or sequences of shale and sand bed-
ding give rise to an equivalent anisotropic medium when the
bed thicknesses are small compared to the distancebetween
source and receiver loops of a conductivity sonde. Such layering
is common in sedimentary reservoir rock. Let the volume frac-
tions of shale and sand be and . In the case of horizontal
resistivity, the resistivities add in parallel. Recall that resistance

in ohms is defined in terms of the bulk medium resistivity
as , where is a cross-sectional area perpendicular
to the direction of current flow, and is the dimension of the
bulk resistor in the direction of current flow. It follows that the
bulk horizontal resistivity is

(60)

or

(61)

Converting to conductivity gives

(62)

Similarly, vertical resistivity is computed as resistors in series,
hence

(63)

Fig. 5. Amplitude apparent resistivityR defined by (57) for parameters in
list (59).

or, in conductivity

(64)

The anisotropic ratio for this sandstone shale se-
quence is thus

(65)

or in more compact form

(66)

where and are the relative shale and sand volumes

(67)

Fig. 6 is a 2-D plot of the anisotropic indexversus the ratio
and the fractional shale volume .

VIII. A NISOTROPY OFLAMINATED FORMATIONS AS A

FUNCTION OF WATER SATURATION

Klein et al. in [5] demonstrates the sensitivity of the
anisotropic index on the effective water saturation of
finely laminated sequences. They use pore-space capillary
pressure as a parameter to relate the water saturation of shale

and water saturation of the sandstone member .
To study this effect, use (66), but where nowis defined as a
function of water saturation, i.e.,

(68)
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Fig. 6. Anisotropy ratio� versus fractional shale volumeV and shale to
sandstone conductivity ratio
.

Here, of course, in a shale, an Archie relationship [1, pp. 57–65]
between resistivity and saturation is not appropriate. Because
of this in [5], the bimodal constituents are referred to as micro-
porous (shale-like) and macroporous (sandstone-like). A good
choice for independent variable is the total water saturation
of the bimodal formation, i.e.,

(69)

For the purpose of plotting, defineto be

(70)

then the anisotropic index is given by

(71)

Note from (71), the minimum value of is . In terms
of the parameter and the porosity ratio

(72)

the total water saturation takes the form

(73)

Fig. 7 plots versus . The plot uses three values of frac-
tional shale volume of 0.1, 0.3, and 0.5. The parameter

defined by (73) is used as the indepen-
dent variable to generate the plot. The range ofis between

, resulting in a minimum value of, to obtained
by solving (69) for , for . Fig. 7 uses

and .

IX. CONCLUSION

The voltage response for MWD loop antennas, located behind
the drill bit in a borehole, is sensitive to the electrical anisotropy
index , and the angle the borehole makes with
respect to the axes of the anisotropy.

Fig. 7. Anisotropy ratio� versus total water saturationS .

The index is a function of the water saturation for finely
laminated formations. Numerical results (in units of apparent
resistivity) of derived analytical expressions for typical MWD
array measurements show the dependence onand .

APPENDIX

Computation of the receiver voltage as defined by (32), from
(31) and (29), depends upon the following partial derivatives:

(74)
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In (74), without loss of generality, it is assumed that the coils
are in the plane and

(75)

where is the number of turns in the transmitter coil of cross-
sectional area . As a check on results (74), in the limiting case
when , the medium is isotropic and the results should be
independent of. To verify this, substitute results (74) into (32),
and then (29), and (31). This gives

(76)

Equation (76) is well known for two-coil magnetic dipole
sondes in a homogeneous and isotropic medium.

When approaches , the numerical integrals in (74) can
be highly oscillatory and difficult to evaluate. To overcome this,
move the integration path into the complex plane to obtain

(77)

Results of (77) follow from properties of Hankel functions of
the first kind of integer order , [8]

(78)

Integrands in (77) are analytic in the upperhalf-plane ex-
cept for branch points and and their associated
branch cuts. The radiation condition branch cuts in the upper
half-plane defined by (20) are on hyperbolic segments begin-
ning at and respectively, with asymptotes on the posi-
tive imaginary axis. Because has asymptotic behavior
when [8]

(79)
the Hankel functions in (77) have exponential convergence
when . The contour in integrals of (77), consists of
three straight-line segments and in terms of a real parameteris

if

real axis, if

if

(80)

In (80), and the ray-path angle are

(81)

Because the integrands on the first and last line segments
defining path in [8] decay exponentially, they are truncated
when the exponent is suitably large.
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