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Petrophysics of Magnetic Dipole Fields in an
Anisotropic Earth

Allen Q. Howard, JrFellow, IEEE

Abstract—Measurement-while-drilling (MWD) resistivity  to the earth’s surface. Sedimentary sequences under vertical
log data are often acquired in highly deviated or horizontal stress produce as a consequence pore space geometries and

holes. The loop sensors are located on the drill collar and are an yertical fractures that differentiate horizontal and vertical
approximated as magnetic dipoles. The conductivity of the earth permeability

in the vertical direction o, and horizontal direction o}, are almost - ) . .
always different. When an MWD resistivity tool enters a new  Klein and Allen [5] develop an interpretation of thinly lam-
bed, the response is compared with the precomputed logs to aid inated oil-saturated pay zones. Considered as a bulk medium,
in the determination of the location of the drill bit. The MWD  such zones are anisotropic. In particular, water wet oil-saturated
tool response, however, is sensitive to resistivity anisotropy. An formations with large variability in grain size can be highly

alternative method is used to derive analytical expressions for the _ . . o . . .
Sommerfeld-type integrals. Numerical results give typical MWD anisotropic. Thus, significant anisotropy in porous sediments

tool response as a function of the inclination angled the tool May be an indicator of hydrocarbon.
makes with respect to the axes of anisotropy and also as a function
of the anisotropy indexx = (a3, /a,)/2. II. THEORY

Index Terms—Apparent rﬁﬁist(;v-ifﬁ/ i”t("?\; |\oAr/¢|aDt§1tion,_ ‘?"?C":C&' A common model for the earth’s conductivity and dielectric
anisotropy, measurement-while-drilling resistivity log- . : .
ging, Sommerfeld integrals, water saturation. anlsotropy.a.ssumes .that the vertlt_:al and horizontal co'm'ponents
of conductivity are different. In this case, the conductivity de-
pendence in Maxwell’'s equations enters as the tensor

|. INTRODUCTION ~ 0 o
Tn
EASUREMENT-while-drilling (MWD) resistivity log 5= 0} 6, 0 1)
data is acquired as the hole is drilled. Modern drilling 0 0 &,

practice often positions the bore-hole horizontally in the oil

bearing formation. The earth conductivity in the vertical diredvheres;, = oy, — iwe, is the complex conductivity in the hori-

tion &,, and horizontal direction;, are almost always different. zontal direction and a similar definition applies to the complex

With the more mature technology of wireline logging, the loopertical conductivitys,,. For a magnetic dipole source density

sources are in more nearly vertical boreholes, where only thé and a time dependenee*~*, Maxwell’'s equations in Sl

horizontal component;, is measured. It can be shown that thélnits [6] for anisotropic conductivity take the form

galvanic resistivity in tr_le same enwroEment measured by lat- ¥ x H(x) = 6E(x),

erologs [1] also essentially measuies = 1/0y,.
When an MWD resistivity tool enters a new bed, the response V x E(x) = iwpo[H(x) + M(x)]. (2)

can be compared with precomputed logs to aid in the determi- , . S

nation of the location of the drill bit. Therefore, comparison of I (2), the earth’s magnetic permeability is _constant,

S . . . . _isotropic, and equal to the vacuum vajue= 47 x 10~7 H/m.
wireline Iog_s n vertical holes, with nearby MWD hl_ghly deV"Because of conservation of total currént (6E(x)) = 0 and
ated holes is important. The MWD tool response, if in a mo

r : : .
deviated hole, is sensitive to the resistivity anisotropy. thie vector identityVy - v x A(x) = 0 for any vector field

A paper on the effects of formation anisotropy on resistivit;é(x)’ it follows that

logs by Moran and Gianzero [2] is classic. The book by Wait [3] 6E(x) = k2V x TI(x) ()
covers some of the same material in a more direct fashion. Re-
cently, Hagiwara has published several papers on the interpiéiere the Hertz vectdlI(x) is yet to be determined, and the
tation of wireline and MWD logs in anisotropic layered medi&orizontal and vertical wavenumbéts andk,, are given by
(an example containing other references is [4]).

The earth’s conductivity may be anisotropic because in
sedimentary rocks gravity differentiates the direction normal ke = (iwpo&,) 2. (4)

Ky, = (iwpion, )/

The branch cut of the wave numbers in (4) is chosen such that
Manuscript received August 11, 1999; revised April 5, 2000. This work wdsn(ky, ) > 0, Im(k,) > 0. Substitution of (3) into Ampere’s law,

supported by the Laboratério de Engenharia de Exploraco de Petr6leo (LENER), : ; : in
Universidade Estadual do Norte Fluminense (UENF), Macaé/RJ-Brasil. Eié’ the first equation of (2) defines the magnetic interlify)
The author is with the Department of Physics, Utah State University, Logaﬁ'\,s
UT 84322 USA (e-mail: terragraf@aol.com).
Publisher Item Identifier S 0018-926X(00)09345-5. H(x) = ki T1(x) + V&(x) (5)

0018-926X/00$10.00 © 2000 IEEE



HOWARD: PETROPHYSICS OF MAGNETIC DIPOLE FIELDS

for any scalar potentiab(x). Because (3) only defines the curlwhereR =

1377

((x—27)? +(y—yr)? + £%(2 — 20)*)*/?, andxy

of the vector potentiall(x), it is possible to invoke the gaugeis the location of the magnetic dipole source.

condition
V- oll(x) = 6, P(x). (6)

From (3), it follows that

1 0 0
E(x)=twpo |0 1 0 |V xIIx) 7
0 0 x2

where the anisotropic indexis given by

®)

Similarly, the magnetic intensit¥(x) from (5) and (6) is
defined as

k2 0 0
H(x) = kI(x)+VV-| 0 &% 0|I(x). (9)
0 0 1

Now substitute (7) and (9) into Faraday’s law defined by the
second of (2). After simplification, the three Cartesian compo-

nent equations for the determination of the Hertz poteifiat)
are found to be

V21, + 3211 + kX1, =—M,. /K2,

V3L, +— 8211 + 21, =—M, /r”
VQHZ + B, =M, + (1 + &%)

L 0.[0,11, + 9,1, (10)

In (10), Vi = 92 + 97, andV? = V7 + &2 is the usual

To model a resistivity log traversing an anisotropic medium
at an anglé with respect to the vertical axis (the direction as-
sociated witho,,), it is sufficient to consider two problems. One
with sourceM.. only, the other with sourcé/,.. A linear com-
bination of these solutions gives the solution at an inclination
angled. In the following, the tool axis is in the plang= 0.

The M. source problem is elementary, but thé, source
for 11, is more difficult because of the coupling term involving
I, andll,. In the literature ([2] and [3]), the approach uses
Fourier—Bessel transforms to reduce the third (10) to an ordinary
differential equation. Then a homogenous solution is added to
the particular solution such that in the limit@aapproaches one,
the potentialll, vanishes ifAZ, = 0. The problem with this is
that there are many homogeneous solutions with this property,
each with different factors of having a common limit wher
approaches one. Thus, such solutions are not unique.

To insure uniqueness, note that from (10c¢)ifior whenM =
(M., 0, 0), the formal solutior1., via potential theory is

.o(x) = (k? — 1)02 /goxx (x') d®z’ (15)
where

/ Gk R / 6

go(x,x)_m, =[x —x/|. (16)

The integral on the right-hand side of (15) is a 3-D convolu-
tion, so that by the convolution theorenh,, has the alternative
representation

Laplacian operator in Cartesian coordinates. The next section

gives a solution of (10).

I1l. HOMOGENEOUSMEDIUM SOLUTION

Thex andy components of (10), except for a rescaling of the

z axis have a simple solution, i.e., let
Z =Kz

then (10) forIl,, is

A M,
V2, + k20, = ——%

- (12)

whereV?2 = 92 + 92 + 92. For point magnetic dipoles

M, =m,6®(x — x7) (13)

and similarly forM,, and M., wheres® (x — xr) is the three-
dimensional (3-D) Dirac delta function amd,, = I, dA for a

small loop of arealA and currently. For point source dipoles

then
My C7k R
Ma(x) = %5 —
TK R
m C7kUR
I, (x) = % S (14)

2 2 K-x dgK
Mo(x)=(k"=—1)0Z, | e GO(K)Hm(K)—(2W)3 a7)
where the spectral forr is
1
Go(K) = K2 (18)

zh

Compare (14) and (16) and note the transform of (16) is (18).
This leads to the representation

—1K-x7

k2

Mg €

I1.(K) = K K2

(19)

wherexr is the magnetic dipole location and in (17)—-(19) the
wave number notation is

K =K,i, + K,i, + K.i.
Kx=Kx+K,y+ K.z
@K =dK, dK, dK.

kzh = (k}QL - )‘2)1/27 lm(kZh) >0
koo = (K — £2X%)Y2, Im(k,) > 0
N =K? K2 (20)

Substitute representations (19) and (18) into (17) to obtain

ILa(x) = “2(x* = 132, L(x) (21)
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where Note as a check on the results, when= 1, Il.»(x) = 0,
o as it should. In the tool coordinate system, the axial magnetic
CZK (x—x71) d3K ) . .
I(x) = / . (22) intensity H. is thus
(K2 = k2,) (K2 = k2,) (2m)3

Fron .
In cylindrical coordinates, the wave number elemental volume H.(x) = cos  H(x) + sinf Hx(x). (31)

in (22) isd®K = AdAd¢x dK.. The K, integration in (22) is

. . e The complex receiver voltage for a two-coil magnetic dipole
a residue calculation resulting in

sonde with an inclination angkin an anisotropic medium is

oo oK (z—27) thus
L. e mm
- i = i i U(Lv 97 Ky O—h) = iqumRH;(xR) (32)
i eik;h|z—;:7~| eik:1,|z—;:7~|
= — 23
(K2 —1)A2 [ k. Ew (23) where
The angle integration is Xg =Lsinfi, + Lcosfi,
o mpr =NrAR (33)
/ B CemxT) gy = 27 Jo(Mr) (24)
0 and Nz is the number of turns in the receiver coil with cross-
where sectional areal . In (33), L is the distance between transmitter
and receiver coils. The Appendix contains numerical details for
r=((z—2r)’+(y - yT)2)1/2 computing voltages given by (33).
K, = K,i, + K,iy
A= (K24 Ki)l/Q' (25) IV. CONDUCTIVITY TENSOR AT AN OBLIQUE ANGLE
An oblique angle with respect to the anisotropy axis is
Combining results (23) and (24) determines common in MWD resistivity logs. In this case the tool axis in
oy [ direction z, and thez’ axis defining the direction of., form
ILo(x) = = 2F / I () an angled. For a rotation of anglé about they axis (i.e. such
dmr Oz Jo thaty = ¢'), we have
3 |:eik:h,|7«/—ZT| _ eikzv|Z—ZT|:| d)\ (26) )
A X
Let the transmitter magnetic dipole be rotated aboutsties ?J: =R(0) |y (34)
by an anglé and without loss of generality, assume the tool is z z

in the planey = 0, with transmitter at the origin so that- = 0.
Then in (27),0r/0x = cos¢ = 1, r = |z|, and the magnetic
dipole densityM is

where the rotation matri&(#) is defined as

cosf 0 —sind
M = msinfi, +mcosfi,. 27) R#)= |0 ) (1) 0 e (35)
Sin COs

Thus, by superposition, the Hertz vector is ) _
y superp We can use the rotation matri2(¢) defined by (35) to deter-

I(x) = I (x)i, + 1L (x)i. (28) Mmine the effective anisotropy matrix in the tool coordinate
system as follows. Ohm’s law applies equally in either coordi-
and from (9), the resulting magnetic intensity components argate system, i.e.,

Hy (%) = kIl (%) + 1202, 11,(x) + 97,11 (x) J=6E
H.(x) = KIL(x) + 202,11, (x) + 92 1L (x).  (29) J =0'E (36)
In (29) In the primed axis, the conductivity anisotropy tengbrs de-
i fined by (1). To determine the form of the anisotropy terisor
m, kv the tool coordinate system, note that the vector fields obey the
1L, (x) = ark? R same transform law as the coordinate vectors in (34). Thus,
I (x) =7,1(x) + m.0(x
. mz( 2”‘1 R . J'=R(6)J
Lax) =7 —F% E' = R())E. (37)
my [
ILa(x) = — /0 J1(A0) It follows from (36) and (37) that

el gibederl] p(30) & = R™H(0)5' R(9). (38)
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Rotation matrices are special in the sense that Apparent Resistivity versus « and

cosf@ 0 sind

s
-1 — R(—8) = ZEZ
R7(6) = R(-6)=| 0 10 - (39) : Gr
—sind 0 cosf 2. S
. . SRR
Thus, from (38) and (39), the tool coordinate system anisotro 15 """"?:”'f‘::if.‘f:‘:‘:g:‘ ’
~ IS TS
tensors is .
cos? 05), +sin®6, 0  sinfcos 6(5, — on) 5,, 1
sinfcosf(G, —G5) 0  sin’ 5y, + cos? 05, ' s
10 .
As a check, note thdtmg_.o & = &. e 100
\\\
V. LINEARIZED APPARENTRESISTIVITY x=(0/0 )" \0/«0/ 9 in Deg

In the tool system of coordinates, with tool axis inclined a.
an anglef with respect to the axis of the anisotropy, the con-gig 1 Ratior. /R, versust in degrees and anisotropic ratio
ductivity tensor is given by (40). This tensor enables us to deter-
mine the apparent resistivity for borehole with inclination anglgag it (47) yields the azimuthally averaged formation conduc-
@ in an anisotropic medium. The transmitter loop induces an Wity (50)
imuthal current component, in the formation. Now

. - ~oN On <2 2 2
A C.OS¢ —sing | [J, 1) (G4) = 5.3 (sin® 6 4+ £*(1+ cos® 6)) . (48)
Iy sing  cosp| | Jg o : : . .
o - Conductivity{s,) is an equivalent isotropic medium conduc-
and similarly tivity for given parameterg and«. By definition, the real part
E cosd —sing] [E,] of the receiver voltage in a conductivity measuring tool is pro-
{ Ell = Lin ¢ cos (A { E” . (42) portional to the apparent conductivity,. The constant of pro-
Y @ portionality, called the tool constant, is independent of forma-
In the tool coordinate system, Ohm'’s law is tion conductivity. It depends only on tool parameter. Because of
7 . . E this, it follows from (48) that the linearized apparent resistivity
[' ’”} = F” U”y} [ “} (43) R, for an anisotropic medium is given by
Jy Oyz  Oyy E, ,
Substitution of (41) and (42) into (43) determines "= —3 Ran2t: (49)
sin® 8 + x2(1 + cos? 6)
J, o o FE
[Jﬂ = [J; Jiﬂ {Eﬂ (44)  whereR,,, is the apparent resistivity in a homogenous isotropic
conducting medium with resistivit®;, = 1/0},. Note the lim-
where from (40) iting valuelimg_,o R, = R.y. Note also this formula foR, is

different from Hagiwara’s [4] and that of Moran and Gianzero

_ 2 4~ 02 g~
T11 = COS” POy +SINT GGy [2]. Because details of the linearizét], computation are not in

o12 = sin g cos ¢(Gyy — Gza) [2] and [4], | cannot account for the differences. A more fun-
091 = singcos P(Gyy — Tun) damental and complete MWD apparent resistivity in given the
032 = sin? ¢4y + cos? $5,, (45) hextsection. Fig. 1 is a two-dimensional (2-D) plot of the ratio

R, /R, versusd in degrees and anisotropic rato
and where

. 2, Lo VI. MWD A PPARENTRESISTIVITY
Orr = COS” 00 +sin” 05,
(46) MWD tools typically derive formation resistivity from ratios
of received voltage from two adjacent receivers. Thus, consider
Equation (44) shows that the conductivity tensor is a functigme transmitter and two receivers spaced distahgeand L
of the azimuthal angle. The resistivity measurement averageom the transmitter along the tool axis. Then the voltage ratio

over¢. Taking the average value of the<2 conductivity tensor R is

O'yy =ay.

in (44) gives
, R =wv(l1, 0, &, op)/v(Ls, 8, &, o). (50)
1 d Jg11 O12 - . .
Gy Og1 O3z This is a complex number with magnitude and phase angle. The
0 L ) ratio of measurements removes some of the sensitivity to the
_ 3(Gaa + Oyy) 0 (47) borehole environment and thus is an improvement over inter-
N 0 (60w + Gyy) pretation based upon a simple two-coil measurement.
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Phase Apparent Resistivity vs Anisotropic Ratio

10° 1 Phase Apparent Resistivity vs Anisotropic Ratio
S S —e=0 |
''''' — 4 [
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e - — 90
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° <
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"os ! 13 2 1% 1 15 2
KforRhf—1Oandsh-1 KforRhf=2andeh=1
Fig. 2. Phase apparent resistiviy,,;, defined by (57) for parameters in list _ L ) -
(59). Fig. 4. Phase apparent resistivi, ;. defined by (57) for parameters in list
(59).

the ratioR . has a phase and amplitude apparent resistivity. To
determine the equivalent apparent resistivities, compute a look
up table ofR .o as a function of formation conductivity, where

Amplitude Apparent Resistivity vs Anisotropic Ratio
10 T :

RCO = RO/Rah- (54)

In (54), Ry is the equivalent homogeneous medium response

RO = U(le 97 17 UIL)/U(L27 97 17 O—h)- (55)

R_(Ohm m)
=)

Define homogeneous phase and amplitude as

¢o = arg(R.o), (indegreey
Agso =20 10g10 |Rc0|, (In dB) (56)

| | |
100.5 15 2

,c1f°, R,=10ands, =1 Given tables of §o, o1] and [Aqso, on], the apparent phase
and amplitude resistivitie&,;, and R, are determined by

interpolation, i.e.,
Fig. 3. Amplitude apparent resistivif§..,,,, defined by (57) for parameters in
list (59). .
Raph = 1/|nterq¢07 Th,y d))

Ryom =1/interp(Agso, o1, Aas). 57
For purposes of tool calibration, an MWD tool reading is / MAdpo, 71, Adp) 7)
taken in the air not near conductors. This results in the air-hapg(57) the functiorinterp, given a lookup tabled[

: y], com-
correction

putes an interpolated ordinagg given an index value;, i.e.,
Ran = U(le 97 Ky 0)/U(L27 97 Ky 0) (51) Y = il’]te[‘[x,z'7 Y, -Tz) (58)
The air-hang corrected voltage rafi®. is thus defined as Because electromagnetic resistivity tools are sensitive to con-
ductivity, interpolation is done in conductivity units and then
Re=R/Ran- (52)  converted to resistivity.

. . ] o Experience with log interpretation and modeling of MWD re-
Note R. has unity magnitude and zero phase in the limié@s gjstivity supports the notion that the phase resistivity curve has

tends to zero. In terms of phase and amplitude, i.e, a slightly more shallow depth of investigation than the corre-
] sponding amplitude curve. In a vertical well, separation of the
¢ = arg(R.), (indegreep two curves can be interpreted as invasion of borehole fluid into

Ay =20log;o |R.|, (indB) (53) the formation.
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For numerical results, use the following parameters:
Amplitude Apparent Resistivity vs Anisotropic Ratio

10’ -
e, = 1.0, H—e8=0
L = 06350m, (25in) S
L, = 0.7874m, (31in) D
¢ = [0:15:90], Degrees R - ;g
k = [0:5:005: 2 g I
ar = 0.086360m s
Nr = 1turns x”
Ng = 1lturns —
pw = po=4710"7 H/m
f = 2MHz. (59) ‘
. . 10° ‘
For the air-hang correction, use = 5.0 x 10~* S/m, and 0.5 llforRm=28nd gh=1-15 2

e = 1.01. Figs. 2-5 plot apparent resistiviti, as defined
by (57) versus the anisotropic ratiofor seven inclination an-
glesé in degrees as displayed in the legend. Figs. 2 and 3 aFig, 5. Amplitude apparent resistivify., .. defined by (57) for parameters in

respectively, the phase and amplitude apparent resistivities f&r(59)-

on, = 0.1 S/Im. Similarly, Figs. 4 and 5 are, respectively, the

phase and amplitude apparent resistivitiesdpr= 0.5 S/m. or, in conductivity

Note that in Figs. 2-5, for = 1, the medium is isotropic, and

the family of# curves cross the poidt, = R;, as is necessary. v = OsnOsa(VUsh + Vsa)/(VehOsa + UsaTan).  (64)

In general, the apparent resistivity depends upon hand 4

and the phase and amplitude apparent resistivities are not Ti¢ anisotropic ratia:> = o, /o, for this sandstone shale se-
same. quence is thus

VII. ANISOTROPY OFTHINLY LAMINATED FORMATIONS 2 (TenVen + TuaVsa)(TsaVsn + TonVsa) (65)
(Ush + Usa)QasiLasa

A long time ago, Conrad and Marcel Schlumberger showed
[7] that fine laminations or sequences of shale and sand bedin more compact form
ding give rise to an equivalent anisotropic medium when the
bed thicknesses are small compared to the distanoetween k= [(Wan + Vaa) (Vi /7 + Vi)Y (66)
source and receiver loops of a conductivity sonde. Such layering
is common in sedimentary reservoir rock. Let the volume fragshereV,,;, andV,, are the relative shale and sand volumes
tions of shale and sand bg;, andv,,. In the case of horizontal

resistivity, the resistivities add in parallel. Recall that resistance Vi, = _ Uk
R in ohms is defined in terms of the bulk medium resistiyity ”S’LUJF Usa
asRkR = pL/A, whereA is a cross-sectional area perpendicular Vig = ———
to the direction of current flow, and is the dimension of the gfs’;b—i_ Usa
bulk resistor in the direction of current flow. It follows that the T=o (67)

bulk horizontal resistivityp,, is
Fig. 6 is a 2-D plot of the anisotropic indexversus the ratio
—1 —1 —1 .
< Pn ) _ <psh> 4 <psa> 60) 7= 0s1/0.a and the fractional shale volumi&;,.

Vst + Vsaq Usl, sa

VIIl. A NISOTROPY OFLAMINATED FORMATIONS AS A

or FUNCTION OF WATER SATURATION S,
O = PsnpPsa(Vsh + Vsa)/(VsnPsa + Usapsr).  (61)  Klein et al. in [5] demonstrates the sensitivity of the
anisotropic indexx on the effective water saturatiofi,, of
Converting to conductivity gives finely laminated sequences. They use pore-space capillary
pressure as a parameter to relate the water saturation of shale
a1 = (TsiVst, + TsaVsa) [ (Vsh + Usa)- (62) (S.s) and water saturation of the sandstone mentgr,,).

To study this effect, use (66), but where news defined as a
Similarly, vertical resistivity is computed as resistors in seriejnction of water saturation, i.e.,

hence ( )2
_ Swshd)sh
Pv = (pshvsh + psavsa)/(vsh + Usa) (63) T= (S'wsa¢sa)2 : (68)
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Sand-Shale Sequence Aqisotropic Ratio x Sand-Shaie Sequence Anisotropic Ratio x

— ’ 4
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6 4 ’
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. .
’ .
350 e
44 - R 3
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€925 RPN i N
e . td N
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< Naaastiies 2 e
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. ":".::::‘:‘Q‘g;‘ A - 1 .(—‘.':,’ .
50 = / 5 ot
y=o_lo ~ 05 Phd
sh - sa L

0.6 0.7 0.8 0.9 1
Total water Saturation S ot for Swsa =0.2

Fractional Shale Volume \, 8.

Fig. 6. Anisotropy ratios versus fractional shale volunié,,, and shale to

sandstone conductivity ratip.
yrate Fig. 7. Anisotropy ratio: versus total water saturatidf, .

Here, of course, in a shale, an Archie relationship [1, pp. 57—65] ) ] ] . .
between resistivity and saturation is not appropriate. Becausd N€ indexs is a function of the water saturatidh, for finely

of this in [5], the bimodal constituents are referred to as micré2minated formations. Numerical results (in units of apparent
porous (shale-like) and macroporous (sandstone-like). A QO%ISUVIW) of derived analytical expressions for typical MWD
choice for independent variable is the total water saturafign &ay measurements show the dependenoe érand5,,.

of the bimodal formation, i.e.,

S _ V;}LS’IUS}Ld)Sh + V;G,Swsad)sa (69) APPENDIX
vt Vsrndsi + VsaPsa ' Computation of the receiver voltage as defined by (32), from
For the purpose of plotting, defineto be (31) and (29), depends upon the following partial derivatives:
2 (Swshd)sh)2 k? ikUR
= - - 70 2 _ mac v c
(Swsad)sa)Q ( ) aﬂmﬂw(X) o 1‘52 47ré
then the anisotropic index is given b 2gin? -
P given by . [L s (<1 i/ (kR + 3/ (ko R)?)
K= (14 VanVaa(0® + 1/p° — 2))'/2. (71) R
>, )2
Note from (71), the minimum value @fis x,;, = 1. In terms +1C J(koB) = 1/(ko ) }
of the parametep and the porosity ratio myk2sinfcos@ L2 cikeR
92 I,(x) = — - =
b — Psh (72) K R? 4R
" bea : [_1 — 3i/(k,R) + 3/(k,vfz)2]
the total water saturatiofi,,; takes the form ik L
Vap + V. MLy (x) =maki S
St = Swsau- (73) 247TL . 2
Vindr + Via - [cos® 6(—=1 = 3i/(knL) + 3/(knL)?)

Fig. 7 plotsx versusS,,;. The plot uses three values of frac- +if(kpL) — 1/(khL)2]
tional shale volumé/,;, of 0.1, 0.3, and 0.5. The parameter cikn L

p = (0un/0.0)Y? defined by (73) is used as the indepen- 92.1L.1(x) =m.kj, sinf cos § il
dent variable to generate the plot. The range» & between : 2
97 .. . - |=1—=3¢/(kpL 3/(kpL
Pmin = 1, resulting in a minimum value of, to p,,,.x Obtained [ OOL/( wL) +3/(knl) ]
by solving (69) forpmax, fOr £ = Kmax = 20%/2. Fig. 7 uses 92 I (x) = ;m*‘ / J1 (M)
Swsa, =02 and¢1 = 0.1. TR 0
) |:kghdik;h|Lcos(9| _ kgveik;vwcoseq A,

IX. CONCLUSION

imy [ Ji(A
The voltage response for MWD loop antennas, located behingizr[z?(x) = dnr /0 A [JO()‘p) - %pp)}

the drill bitin a borehole, is sensitive to the electrical anisotropy ihn| L cos 6| ikeu| L cos 6]

indexr = (07, /0,,)'/2, and the anglé the borehole makes with : [kzhe = kave } dA.

respect to the axes of the anisotropy. (74)
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In (74), without loss of generality, it is assumed that the coils (80), k,,, and the ray-path anglg, are
are in the plangy = 0 and

R = L(sin® § + x? cos? §)*/?

. _1 { Im(ky, — Ky
m, =msinf $o =Tan * <%) . (81)

km = min(Re(kz), Re(k,))

m, =mcost
Because the integrands on the first and last line segments

m = I()NTAT .. . .
) defining pathI in [8] decay exponentially, they are truncated

p=|Lsind| (75)  when the exponent is suitably large.
whereNt is the number of turns in the transmitter coil of cross-
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