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Sommerfeld and Zenneck Wave Propagation for a
Finitely Conducting One-Dimensional Rough Surface

Akira Ishimary Life Fellow, IEEE John Dexter Rockway, Yasuo Kugaenior Member, IEEEand Seung-Woo Lee

Abstract—Starting with Zenneck and Sommerfeld wave propa- rough surface scattering have also been proposed by Watson
gation over a flat finitely conducting surface has been extensively and Keller [12], [13], Ito [14] and Ishimaret al. [15]. Fur-

studied by Waitand many other authors. In this paper, we examine - yhar gty dies have been conducted recently for low grazing angle
propagation over a finitely conducting rough surface, also studied (LGA) scattering [16]—[19]

by many people including Feinberg, Bass, Fuks, and Barrick. This ; . .
paper extends the multiple scattering theories based on Dysonand ~ This paper follows and extends the multiple scattering
Bethe—Salpeter equations and their smoothing approximations. theories developed by Bass al. [8], [12]-[15]. Making use

The theory developed here applies to rough surfaces with small of the Feynman diagram method [10], [11], [21], the coherent
root-mean-square (rms) heights(o < 0.1X). We limit ourselves g4 is shown to be expressed in the form of a Sommerfeld

to the one-dimensional (1-D) rough surface with finite conduc- . ¢ | f hich the 7 K | ffecti f
tivity excited by a magnetic line source, which is equivalent to the integral irom whic € Zenneck wave pole, eliective suriace

Sommerfeld dipole problem in two dimensions £-z plane). With ~ impedance, and attenuation function for a rough conducting
the presence of finite roughness, the total field decomposes intosurface is obtained. The effective surface impedance is consis-
the coherent field and the incoherent field. The coherent (average) tent with those obtained by Feinbegtjal.in appropriate limits.

field is obtained by using Dyson’s equation, a fundamental integral - T jncoherent field and the scattering crosssections are shown

equation based on the modified perturbation method. Once the . . .
coherent field has been obtained, we determine the Sommerfeld to be similar to Watson—Keller [12], [13] and consistent with

pole, the effective surface impedance, and the Zenneck waveFuksetal.[19] in the Neumann surface limit.

for rough surfaces of small rms heights. The coherent field is  We consider a one-dimensional (1-D) finitely conducting
written in terms of the Fourier transform, which is equivalent to rough surface excited by a magnetic line source located near
the Sommerfeld integral. Numerical examples of the attenuation the surface as shown in Fig. 1. The field at the observation point

function are compared to Monte Carlo simulations and are shown ists of th h tand i h t fields. Th h i
to contrast the flat and rough surface cases. Next, we obtain the consists of ineé coherent and Incoherent fielas. e coheren

general expression for the incoherent mutual coherence functions field propagates over the flat surface with the equivalent

and scattering cross section for rough conducting surfaces. reflection coefficient, which includes the effects of rough
Index Terms—Electromagnetic (EM) scattering from rough sur- surface scattering. As the coherent field propagates over the
faces, Sommerfeld wave, Zenneck wave. rough surface, the field eventually diminishes and a part of

the field is gradually converted into the incoherent (diffused)
field. The incoherent field needs to be expressed in terms of
the mutual coherence function which satisfies the fundamental
AVE propagation over a flat conducting earth excited bBethe—Salpeter equation. The coherent field is expressed in
a dipole is a classic electromagnetic (EM) problem aral Fourier transform which is equivalent to the Sommerfeld
has been studied by Wait and many others [1], [2]. Radio wairgegral for a flat conducting surface. The pole of the reflection
propagation over a rough surface was first studied by Feinb@egfficient gives the propagation constant of the Zenneck wave
[3], who obtained an effective impedance at the interface. Bawver the rough conducting surface.
rick conducted extensive studies on HF/VHF propagation overln order to include the rough surface effects, we start with
rough seas [4], [5] and showed that the spherical earth residie modified perturbation method and Dyson’s equation [8],
series model should be used for multiple frequency-very high2]-[15], which is a fundamental integral equation for the co-
frequency (MF-VHF) propagation over a rough sea. This wéerent field. We make use of the first-order smoothing approxi-
also shown rigorously by Wait [6]. The effective impedancgation and solve Dyson’s equation. The result is represented in
of rough surfaces has been extensively studied by Bass. the Fourier integral transform. The pole in the integral provides
[7]-[9] using an extension of the small perturbation theory aritie propagation constant for the Zenneck wave. The coherent
the diagram method [10], [11]. Multiple scattering theories fdield can then be calculated using the rough surface Zenneck
wave pole. The final expression for the field over the rough sur-
face is given in terms of the “numerical distance.” We present

. . . . numerical examples of the Sommerfeld poles and the “atten-
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Z I1l. EQUIVALENT BOUNDARY CONDITION AT z = 0
In order to include the effects of the rough surface, we use the
kn(saauu) modified perturbation technique [8], [15]. Compared with the
L conventional perturbation technique, this modified technique
v lio20) h(x) has a wider range of validity and also includes surface wave
l propagation due to the presence of pole. We now consider the
~ o~ N e boundary condition (3), which is valid at the surfaeg:). We
S Y X write an equivalent boundary conditionat= 0 by expanding

the Green’s function about the surface heiggfit) and include

k(s, G, uu) only the first powers oh. First we note that
R oh o 9
Fig. 1. Magnetic line currenk,, is located a{x., z,,). Conducting medium — = Lﬁf? N - - (6)
is bounded by rough surface given by the height 2(x). an (1 + (@)2> / Oz 0x Oz
oz
a
ll. FORMULATION OF THE PROBLEM G(z,z) = G(z,0) + h(z) 87G +e (7)

Let us first consider the magnetic line soutkg located at Therefore, the equivalent boundary condition (3) for the rough
Z,, %, In free-space. The conducting half-space with permisurface is now expressed:at= 0 up to first-orderh

tivity ¢ and conductivitys is bounded by the rough surface 9
whose height, = h(z) is a random function of, Fig. 1. The 5,0 TG+ VGE=0 (8)
magnetic field has only thg-component and satisfies the WaVe€ here the random surface potentiaiis given by
equation. We let
92 oh 9 g
V=hss— o5 +has—.

Hy(z, z) = twe I, G(x, 2). Q) 9z dz Ox Oz

Then the Green'’s functio&(z, =) satisfies IV. RANDOM INTEGRAL EQUATION FOR G(7, 7,)

We now develop the integral equation for the rough surface

<_ +—+ k§> G(z,2) = —6(z — x,)8(2 — 2,). (2) Green’s function at the equivalent surface- 0. Starting with
Green’s Theorem

We next consider the boundary condition &z, z). Here, we / (uv% — UVQ) ds = j[ <u@ _ U@) dl 9)

assume the first-order boundary condition that the ratio of the s e\ 9n

tangential electric field to the tangential magnetic field is thee letu = G andv = G,. G, is the Green’s function for the flat

surface impedancg, [1]. Thus, the Green’s function satisfiesconducting surface satisfying the boundary equation=at0

the following condition on the surfadgx). 9

gGo + a,G, = 0. (10)

aiGJr a, G =0 (3) Also note that in (9),5 is the area enclosed by the pathas
" shown in Fig. 2. Equation (9) is then converted into the fol-

wherea, = ik, (Z,/Z,). Z, = \/ifes = free-space char- 10Wing random integral equation fe¥(r, )

acteristic impedance an@/on is the normal derivative. The Glrr = Golrr /G YW NG 1) dl
surface impedancg, is approximated by that of the flat con- (rsmo) olrsTo) + olrs )V (1) Glre, o) dy

ducting surface and is approximately given by [1] (12)
P 1 wherer = r(z,2),7, = r.(,, 2,), andry = r1(x1, 21 = 0).
Zo=224/1— — = Z,A Note thatG, is a deterministic function. Howevey;(r; ) and
n n G(r,r,) are random functions.
2 . g
n-=e+1 (4)
we,

V. DYSON'S EQUATION AND COHERENTFIELD {()

wheren is the refractive index of the CondUCting medium. This Once we get the integra| equation, we can obtain the Dyson’s
is an approximation as the incident field approaches grazingyuation for(G) [8], [10], [21]. The detailed derivation of
The problem is now reduced to the one medium problem (B)son’s equation using the diagram method is given in [21]

with the surface boundary condition of (3). In this paper, we Uggd is not repeated here. Dyson’s equation is, therefore
the time dependenge***. Now the surfacé:(x) is a random

function and, therefore, the fiel@(z, z) is also a random func- (G(ry70)) = Go(ry10) + / Go(r,r1)
tion and consists of the coherent figld) and the incoherent X M(r1,72)(G(rs,70)) doy dzs. (12)

(or diffuse) fieldG [10], [20]
This is Dyson’s equation which is the fundamental equation for
G ={(G)+ Gq. (5) theaverage field). The operatod (ry, ) is called the Mass
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Fig. 2. Random integral equation (11). \/
—> X
operator and in the first-order smoothing approximationisgiven .77 Ry

by [21]

M(Tl, 7’2) = <V(7’1)G0 (7‘1, 7’2)V(7‘2)> = M(Tl — 7‘2). (13)
Note that)M is a function of the difference, —r- only. We now - . ;
solve the Dyson’s equation (12) using the given Mass operator 0.04L
(13) using the spectral (Fourier transform) method. We express
(@), G, and M in Fourier transforms

1 ‘ 0.03}
(G 1)) = o [(Gliz2))e™ =) dr (14)

Fig. 4. Geometry for (25) for flat surface.

% °
1 o 2
Golrro) = 52 Go(ks 2, 2,)™ ™) dr - (15) Eo.02t
1 f ) 50 MHz
M(Tl _ 7;2) —— M(H; 21— ZQ)GM(JJI—J;Z) dr. (16) -
2m 001
The correlation function of the height ) is expressed as sz ‘“JMHZ k,
i e / \\
(Honte) = [ Wege==an - an I M T
Re (x)

where we assuméd ) is ahomogeneous random function and

W () is the power spectral density function. In this paper, wég. 5. Case 1: Zenneck wave propagation constantth k, for increasing
use the Gaussian correlation function fgt:) with root-mean- SUrface roughness = 0.0-0.3 mat5, 10, 50, and 100 MHz.

square (rms) heighit, and correlation distande

whereQ, = («a,/ik.) = (k,/k.)(Z,/Z,) andr? + k? = k2.

(z1 —wg)?
P

(h(x1)h(z)) = h2e™ 1 The Sommerfeld pole is therefore located at
h21 w212
) — o - 1 o — 0 21
W(r) 2/ (18) +Q (21)

The Gaussian spectrum is used to verify our analytical resufts

by comparing with numerical Monte Carlo simulations based Zs
on the Gaussian spectrum. It should be noted, however, that our ke ko <Z_o> =0. (22)
results can be used for any spectrum which would be used to
represent an actual problem. Note that the exact Sommerfeld pole is given by
o\ 1/2
VI. SOMMERFELD POLE AND ZENNECK WAVE FOR A FLAT k. + @ 1— < K ) -0 (23)
CONDUCTING SURFACE T on kon '

Firstlet us express the flat surface Green’s functrin the For grazing ang|$; ~ k, and, therefore, we can approximate
well-known Fourier transform [1], [22]. (23) by (22) with [1]

GO(KJ; 2720) _ (ezkzlz—zo| + RO(I{)GZk:(Z—i—ZO)) . (19) A 1 2\ 1/2

2 7, =% <1 - <—) ) . (24)
The reflection coefficienR, () is for the flat conducting sur- " "
face and is given by It is also well known that. and« are in the second and first
_1-Q, quadrant in the complex plane for the Sommerfeld problem as

Ro(r) (20)

1+Q, shown in Fig. 3. The propagation constant for the Zenneck wave
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is then given byx satisfying (21). We can now write the com- .95 : : :

plete solution in the following well-known form (Fig. 4): . Rough 100 MHz

Go(r, 7o) = Gp(Ry) + Gp(Rz) — 2P @5) .l L Flat |

where 50 MHz

1/2 ]
) sz+z7r4 (26) 0.06L |

1

1 4 _Qolh) k(e tinGeao) 2

z Z+zo (T —To dl% 27 &

2. 1 +Qo( ) 27) E 008} -

For IargekR, we can express (27) in the following well-known

form [1], [2]: o
. _ , 01f T 10MHz ]
P = G (Ry)[—i/mpe P erfe(—i/p)] (28)
wherep is the numerical distance given by the difference b¢ \
tween the total phase for the Zenneck wave and free-space  -0-12¢ 1
p=1kRy — i[r(x — z,) + k(2 + 2,)] (29) 0.'15 0_55 0.'35

with x andk, evaluated at the Sommerfeld pole. Note that fc Ret)

¢/t time dependence, we should take the complex conjugate of

. 6. Case 1: effective surface impedance for Zenneck wave in complex
the above formula.

- plane for increasing surface roughness- 0.0-0.3 m at 5, 10, 50, and 100
MHz.

VII. COHERENTFIELD, SOMMERFELD POLE AND ZENNECK
WAVE FOR CONDUCTING ROUGH SURFACES x10°

We now consider the Sommerfeld problem for the coherent
field (@) for the rough surface. We express the rough surface
Green'’s function in spectral form and we write

2F

. _ L ik |z—2o] ik (2420) | |
(G(r32,20)) = % (C + R(r)e ) (30) 15

(G(r,7,)) = Gp(R1) + Gp(Ra) — 2(P) (31) 100MHz

Im(x)

i L Q(ﬁ) eik:(z—l—z,,)—l—iﬁ,(m—m,,) dr (32)
2k, 1+ Q(k)

_1-Q(k) 05} 1 .

R(k) = IO (33) 50 MHz

First, we note that the coherent figléf) behaves in exactly the

same manner as the deterministic flat surface Green’s functio o8 s

G,. The difference is that while the surface impedatGeis 0 : Re(

given by (24) for the flat case, the surface impedance for the

rough surface is different and needs to be obtained by solviag. 7. case 2: zenneck wave propagation constanith %, for increasing

Dyson'’s equation. Once we solve Dyson’s equation, we achieszface roughness = 0.0-0.2 m at 5, 10, 50, and 100 MHz.

a new reflection coefficient, a new Sommerfeld pole and finally

the new Zenneck wave. The final form of the solution is iden- 37)

tical to that for the deterministic case, but with the difference ig,4

appearance of the Sommerfeld pole.

5& 10 MHz

z

Letus now go back to Dyson’s equation (12). The substitution ( w k) 3 [’m/ - kf] (38)

of (13)—(16) and (30) into (12) and performing the integration ,; )
with respect tar; andz, we get (Appendix A) M(r,r') = o [’ — k7] . (39)
1+ R(r) =1+ Ro(r) + (1 4 Ro(r)) Rearranging (34), we finally get the reflection coefficigi(t:)

% /Ll(ﬁ’ KW (5 — &) Lok, &) dr’ - (34) for the conducting Rough surface
_1-Qx
where i R(k) = TQ(%) (40)
Li(K k) = ya + R, () + %(1 — R,(x')) (35) where
Mk, ) Qo(r) — [ Li(w', k)W (r — &M (5, ") dr’

Lo, i) = 21+ R + A=K @8) Q) = T L W a0 D
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. which agrees with Barrick [4, eq. (24)] when converted to the
o005l ® 1MHz - Rough 1-D surface and evaluatedatE k,.
' ‘ o Fat We now consider the Sommerfeld pole given by

oot 0 \ 1 1+ Q(r) =0. (44)

1 With this new Sommerfeld pole, the coherent fiéld) is given
by the same form as that of the flat surface. For ldrée

10 MHz

-0.02f
)
E ol _ (G(r,7)) = Gp(R1) + Gyl Ra) — 2P)
100 MHz ' (P) = Gp(Ro)|—i/mpe™? erfc(—iy/p)]  (45)
-0.03} .
wherep is the numerical distance for the rough conducting sur-
-0.0351 1 face given by (29) with the new Sommerfeld pole given by (44).
ol In order to find the propagation constant for the Zenneck wave,
' we first calculatée:.. From (41) and (44), we can exprdssas
0045 0.01 002 003 0.04 0.5 oos  the following: LA
Re(x, —
°© k. = G . (46)
. . . . 1= [Li(w, k)W (K — &) [M(k, &) — o] dr’
Fig. 8. Case 2: effective surface impedance for Zenneck wave in complex .
r-plane for increasing surface roughness= 0.0-0.2 meters at 1, 5, 10, and FOr the flat surface casé. = —k,A. Therefore, the integral
100 MHz. in (46) represents the rough surface effects. Numerical calcula-

tions of k. can be done from (46) using iterations. The propa-

. : . : . . . gation constant for the Zenneck wave is then obtained by
1 '—-—.:;'j:—*‘-—%—::._:fi::“*“w\ . k= \kZ— k2 47)
0.5¢ N 1 We are mainly concerned with the propagation along the sur-
02 face and the amount of attenuation of the field owing to surface
“I " \ \ \ 1 roughness. When both the transmitter and the receiver are on the
0.tr \\ | kY \\ {1 surfacez = 0, the rough surface Green’s function reduces to
3 005) by ‘\\ oo - (G(r,m0)) = 2GH(R)F(p) (48)
- \ kY kY \«\ where I'(p) is the attenuation function of the field along the
oo "\ i \\ \ surface and is given by
o F “l\ “" \ ', a ) B )
AN \\ \ \.\ F(p) =1+ iy/mpe ? erfc(—iy/p). (49)
. Fat \ kY \\ \ Once the Sommerfeld pole for the rough surface effects has been
________ Rough \ \ Y\ \ calculated, the attenuation of the field (49) maybe calculated
00011 100MHZ  10MHz 5 Mhz iy | from the numerical distance (29). In the next section, we cal-
' ' ' ' : ' ' culate the Zenneck pole, the surface impedance, and the atten-
0.0001 001 01 1 10 100 1000 : ;
Distance(km) uation function along the rough surface and compare to a flat
surface.
Fig. 9. Case 1: attenuation functipf'(p)| for flat and rough surface height
o =03matl,5, 10, and 100 MHz. VIII. N UMERICAL EXAMPLES

. . . — We now consider two examples of conducting media. Case
We can now qbtaln the effective surface impedadce) for ;. jiclectric constante — 10, = 9 * 10~2), which is rep-
the coherent field resentive of land. Case 2¢ = 80,0 = 4), which represent
A = Z o) (42) a sea media. The media cases are chosen to compare the an-
k., ) alytical rough surface results with the flat surface model. The
surface spectrum used was Gaussian. Actual propagation over

Noting thatA = (k. /k,)Q.(x), we write land and sea require more realistic spectra and other considera-
A= E LW W (s — )M (K, k) dr tion as spherical earth models. For this discussion, we restricted
Alk) = T TL(w — ; (43)  the correlation distance to 1.24 m and allowed the rms height to

1K, k)W (k — k), di - .
range froms = 0.0 to 0.3 m. Thus, the effective range for this
where theory is between 1-100 MHz. Below these frequencies there is
, M(K', k) + @,Qo(K) very little surface disturbance and above these frequencies the
Li(k' k) = 1+ Qu(r) theory does not apply. We expect the largest deviation to occur at
100 MHz, where the rough surface contributions become appre-
anda, = ik,A. In the limit of A — 0, we get ciable. Other frequency ranges maybe considered by modifying

A(k) =A— :—Z /M(/i/, KW (k — &M (k, k") dr’

the rough surface height. We are concerned with the effects of
rough surface upon the attenuation functibiip)| as a function
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Fig.10. Case 1: Phase for attenuation funcfitip) for flat and rough surface

heightec = 0.3 mat 1, 5, 10, and 100 MHz.
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Fig. 12. Case 2: Phase for attenuation funcfiggp) for flat and rough surface
heightec = 0.3 mat 1, 5, 10, and 100 MHz.

imaginary part, which is negative (inductive) increases in mag-
nitude showing more reactive stored energy due to the rough-
ness. In Figs. 7 and 8, the Zenneck wave propagation constant
and the surface impedance for case 2 are shown for increasing
surface roughness. We now consider the attenuation function
(49). In Figs. 9 and 10, the magnitude and phase of the propaga-
tion factor (attenuation function) for case 1 as a function of the
real distance is given to contrast the effects of surface roughness
(0 = 0.3 m) against the flat surfacer(= 0.0 m). In Figs. 11

and 12, the propagation factor (attenuation function) for case 2
is shown with the effects of surface roughness<0.2 m). As

we can see at the lower frequencies, where there is very little
surface disturbance, there is almost no difference between the
flat and rough surfaces. However, at 100 MHz, the rough sur-
face contributions are significant, and the coherent field atten-
uates faster than the flat surface case. Finally, a Monte Carlo
simulation was conducted using FDTD to simulate the Zenneck
wave propagation over the rough surface. In Figs. 13 and 14,

Fig. 11. Case 2: attenuation functipfi()| for flat and rough surface height g comparison for the normalized attenuation function between
¢ =0.2matl,$5, 10, and 100 MHz. the numerical simulation and the theory is given for both case 1

and 2.
of the real distance. Therefore, we must calculate the Zenneck

pole from (46) and (47) to obtain the propagation constant IX. | NCOHERENTFIELD

Let us now consider the incoherent field. We first note that the
total field G consists of the coherent fie{d?) and the incoherent

This is done through an iterative search from (46). In Fig. §eld (or diffuse)Ga.
the Zenneck wave propagation constants are shown in the com-

plex plane for the frequencies 5, 10, 50, and 100 MHz for land.

The figures indicates the deviation of the pole away from the

flat surface(o) as the rough surface heighincreases from 0.0 In the last section, we considered the coherent field or the first
to 0.3 m; also included is the free-space wavenumber. Note, thament of the field. If the surface roughness is small, then the
the attenuation (imaginary part) increases with roughness, whilgherent field is dominant. However, as the roughness increases
the real part remains unaffected. In Fig. 6. we plot the surfaog at a larger distance from the source, the coherent field di-
impedance for case 1 with increasing roughness from the ftatnishes and the incoherent field becomes dominant. In this
surface. Note that the real part is not changing much, but tbection, we describe the first-order solution for the incoherent

K= Ky + iK;. (50)

G = (G) + Gq. (51)
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0.1+

lellF0

Fig. 15. Incoherent intensity and scattering cross section.

100MHz, 6 =0.3m

0.01H —  flat - analytical The Bethe—Salpeter’'s equation describing the propagation of
—+ flat- numerical the correlation of fields is then given by
rough - analytical
-~ ough - humerical < G(r , ) o (7” 7”))
1 10 100 1000 — - * (d
S sance ] (G )G (7))

+ / dry dr'i(G(r,r )G (', )NV (r)V (D)
x D(r,r's7,,7)) (53)

Fig. 13. Comparison between normalized attenuation function for Monte ) ) ) . o
Carlo simulations and theory for Case 1 at 100 Mhz for flat and rough surfaceder the first-order smoothing approximation. The first itera-

heights = 0.3 m. tion of this equation is then given by approximatibrin the
integrand by the coherent terms. We then rewrite the mutual co-
herence function into the sum of a coherEgt;, and an inco-
herent mutual coherence functibn

I'=Teon + Ff (54)
The coherent mutual coherence function is given by
Fcoherent = <G(T7 7)0)> <G* (Tla T:)» (55)

which was determined from earlier sections. The fluctuating
or incoherent mutual coherence function under the first-order
smoothing approximation is given by

Ly= / dry dry (G(r,r) (G (', r)NV (r)V (1))

100MHz, 6 = 0.2m

X AG(r1,r )G (11, 75)) (56)
— flat - analtical whereV (r1) is given in (8). Substituting the coherent Green’s
' :E&ér?ﬂ:gllgﬁlcal function (30) with (40) and (41), we arrive at the spatial Fourier
01k rough - numerical i trans_form representation of the incoherent mutual coherence
: : function
1 10 100 1000 1\*
Distance [m] Iy= /dwc <§>

Fig. 14. Comparison between normalized attenuation function for Monte
Carlo simulations and theory for Case 2 at 100 MHz for flat and rough surface ) , ) ,
heighte = 0.2 m. x @ Hr—r )@ il —ryJwe (57)

- (2m) / dr dr’ dry ds] A(r) A* (kYW (k,)B(r1)B*(k})

where the elements in the integral are
field. This requires the evaluation of the second moment or i
the mutual coherence function. We begin with the fundamentald(x) = o
Bethe—Salpeter’s equation. This equation describes the correla- J\;[ o
tion of fields atr and+’ due to the sources located7atand  B(x;) = [—(1 + R(k1)) + =(1 — R(ry)) | eF=reo—imzo
r! . The correlation of fields is also called the mutual coherence 2 2
function (MCF), which we describe as (Fig. 15) M

(1 _i_R(Ii))eik;z—i—im;

[Iﬁ;slﬁ — ki]
z1
K+K K+ K,
D(r,r'sro,m0) = (G(rre)G* (1!, 1))). (52) Hs = =5 T T 5 = (58)
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As a special case, we let the source points= »/, and the (h(z)h(x2)) = /W(I{//)efn”(aclfmz) di" (A.4)
observation points = 7/; this given the incoherent intensity at
- due to the point source at. We then get 1 E ke
' P " ‘ (@ara) = 5 [ g [ R
Iy = {|G(r, 7o) /

ikl (za+20) | ik (z2—z0) d ///' A5
=, [ dac|Gyr 7)o (s kDI Glres ) (59) X Je o B8
Now, we examind/ (r)

where the scattering cross section per unit length of the finitely

conducting rough surface is given by (Fig. 15 o2 oh 0 7]
g roug g y (Fig. 15) V) =higg = 55— +hias —. (A.6)
O’O(Iﬁj, Iil) Z] X1 01 Z1
_ 2 AW (K — ky)|Rsks — KT, — ik 00 Q(kL)|? (60) Noting (A.6), we recognize the following identities:
Fo T+ QMO+ Qry)P 52 on
wherek; = K — K. 92 (—ik.)? 8_1 — (i )y
For Neumann surfacey, = 0 and this is reduced to gl 1
21 AW (k5 — k)| (ki1 — E2)|? — — (i) — (—ikl).
0%k, k1) = — o, 61 ox Oz *
) = 8 i QP+ Qi Y 1 O
This agrees with Fukst al. [19]. However, we note that while
82 ik’ (20—2z ik’ (zo42
X. CONCLUSION 92 [6”“‘( 2720 Ry (K )eih= (22t 1)}
1
In this paper, we discussed the effects of surface roughness on — (—ik))? [Cik;(zrzl) +R (H/)Cik'z(zZ+z1):|
the Sommerfeld propagation problem for a conducting surface. * ?

With a rough surface, the field consists of the coherent and the get

incoherent field. The technique is based on the modified pertur-

bation method and Dyson’s equation. The expressions for the 9 [eiki(zZ—zl) + Ro(ﬁ/)eiki(zwm)}

new Sommerfeld pole, Zenneck wave, numerical distance, and 971

propagation factors are obtained and numerical examples are = (—ik!) [eik’;(@—m) _ Ro(ﬁ/)eiki(@%l)} )
conducted, and the analytical results are compared with Monte

Carlo simulations. These cases are given to compare the effétias, for(9/92; ), we need to have R, (x') instead ofR, (x').
of the rough surface to the flat surface case. It is shown that tBinilarly, for V(r2) we get

attenuation of the Zenneck wave increases with roughness and

that the surface reactance is inductive and also increasing with A — (—ik"? Ohy — (—ix")hy
roughness. The theory presented here applies to small rough sur- 973 - Ao

face heights of less theénl A. Therefore, for a given rms height, KB (K" s (—ik")

the effects of rough surface diminishes at the lower frequencies, Ozo Oz =

while at the higher frequencies, the theory is not applicable.}ﬂso we need to have R, (+"") for the term with(a/dz,).

the intermediate frequencies when the rms height is of the orid_%a” we get for (A.1), expressed in Fourier transforms
of 0.1, the rough surface effects are significant with increasing Y. 9 ), €XP

attenuation. We then considered the incoherent mutual coherent
function and gave a general expression. We also obtained the /dxl dra Py o by (A7)
expression for the scattering cross section per unit length of thﬁ
rough conducting surface. where
1 ‘
F [ sz zm(ac—am)
APPENDIX A L7 on Golr; 2, 21)e dri

Derivation of (34) from (12). Let us consider the second terng;, — 1
of (12) 2

_ N ik (m1—x2) g0
/ Go(ry r )V (1) Gy (11, r)V (r) G, 7)) dry dira. 13 / W(n")e dis
(A'l) F4 — Zi /B(Ii”, ﬁ///)eim”’(mQ—xn) dlim
vy

14([{/7 Ii”)@in,(wl_wz) dli/

Expressing in Fourier transform, we write

. and
GO(T, 7’0) _ i / L |:Cik;|z7zo| + RO(H)Cik‘(z+Z°):| A(Ii/, Ii//)
271' 2kz 'L L s
X ci@=22) g (A2) =g PR R [ g Ry (e e |
1 i ik |21 —z0 ik’ (21422 - 7 ey y
G0(7’1,7’2) — % / m |:6 k.| | +R0(I€J/)C k(=14 ):| + 2;/ [—LOéok/Z] |:C7,kz(z2—z1) _ RO(HI)CZk‘(Z2+Z1):|

x i (@1—2) g,/ (A.3) (A.8)
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(G(r)) = Go(r) + Go(r)

This can be rewritten as (34).
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