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Abstract—In this paper, we address the problem of detecting (UHF) [6], the algorithm runs into formidable difficulties when
low-dielectric contrast cavities buried deep in lossy ground the frequency is lowered to 1 Hz. These difficulties stem from
by using the finite-difference time-domain (FDTD) method in e fact that, at lower frequencies, it becomes necessary to run

conjunction with signal processing techniques for extrapolation .
and object identification. It is well known that very low frequency the FDTD code for a very large number of time steps that con-

probing is needed for deep penetration into the lossy ground, Sume an inordinately long central processing unit (CPU) time.
owing to a rapid decay of electromagnetic (EM) waves at higher This is because the choice of the time step in FDTD is governed
frequencies. It is also recognized that numerical modeling using py the spatial resolution required to accurately model the given
the FDTD method becomes very difficult, if notimpossible, when 4q4metry. Consequently, for objects that have dimensions in the
the operating frequency becomes as low as 1 Hz. To circumvent . 7
this difficulty, we propose a hybrid approach in this paper that range of tens of mete,rs' 1.€., arg very small( ) compared to' )
combines the FDTD method with signal processing techniques, the wavelength, the time step dictated by the Courant condition
e.g., rational function approximation and neural networks (NNs). is a very small fraction of the period of the sensing signal.
Apart from the forward problem of modeling buried cavities, we To circumvent this difficulty, we propose a hybrid approach
also study the inverse scattering problem—that of estimating the i, this paper that combines the FDTD method with signal pro-
depth of a buried object from the measured field values at the . . . . .
surface of the earth or above. Numerical results for a buried prism  C€SSing techniques as explained below. We begin by carrying out
are given to illustrate the application of the proposed technique.  the FDTD simulation at relatively high frequencies, somewhere

. . . . in the range of 1-10 kHz, for which the run times aré ®10*

Index Terms—Electromagnetic detection of buried objects, .. .
finite-difference time-domain (FDTD) methods, underground tlmes_smallerthan that for 1 Hz. Next, we employ extr_apolatlon
radar. techniques based on neural networks (NNs) and rational func-
tion approximations to derive the fields at the desired operating
low frequency, greatly reducing the FDTD computation time in
the process.

OCATION of inhomogeneities buried within a stratified Following the solution of the forward problem, we move on
medium is a very important problem because it finds widée investigate the companion and practical problem of inverse
spread applications in remote sensing, geophysical prospectiggttering by buried objecteiz. that of estimating the depth of
and nondestructive testing [1]. This has prompted the deviie object from the observed scattered field components above
opment of techniques for the analysis of the electromagnetite ground [7]. The inverse scattering problem usually requires
scattering by buried objects, a problem that is complicated Hye solution of a nonlinear equation that relates the sensed fields
the presence of the air—earth interface [2], [3]. In this papavjth the electromagnetic parameters of the buried object and
we address the specific problem of electromagnetic soundithg host medium. In this paper, we use a neural network to map
of a buried cavity filled with material such as ai.(~ 1), this nonlinear relationship between the depth and observed field
whose conductivity is negligibly small. To detect such targetgalues and then use it to predict the depth of the buried object.
which may be buried tens of meters underground, it is neces-The NN approach has recently gained attention as a fast and
sary to use fairly low frequencies (on the order of 1 Hz) for théexible technique for microwave circuit modeling, simulation
sensing, because the penetration of the electromagnetic wavesig optimization [8]-[10]. For function approximation, most
extremely shallow at higher frequencies [1], [4], [5] in the kil®f its applications have been limited to interpolation. Other re-
or megahertz range. Although the finite-difference time-doma@ient applications include the estimation of the conductivity of
(FDTD) method has been successfully used for simulating thgprism buried under seawater in sedimentary layers by sensing
probing of underground metallic targets at ultrahigh frequenciti®e electric field just above the layer [11], and the calculation
of equivalent circuit parameters in microwave computer-aided
design (CAD) applications [9], [10]. In this paper, we apply the
NN not only for both function interpolation and extrapolation,
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7 I where
I/ 4'/ / N(‘T):N0+N1-T+N2-T2+"'+Nn$nv (2)
// éP air and
b (05 o) D(z) = Do + Dyz + Dyz’® + - -- + Dga®. 3)
: y The coefficientsVs andDs in (2) and (3) can be obtained from
d | earth the sampled values of the functighwhich, in our work, repre-
. | (6:14,0) sents the electric field values obtained from FDTD calculation
E ' andz is the frequency variable.
e c | A F==> We use the Neville type of extrapolation algorithm [13], [15]
< in this work. It is a recurrence scheme that starts at the nearest

point, and then adds a sequence of decreasing corrections as in-
formation from other points is incorporated. When the function
is well behaved, the last correction is the smallest one and it can
be used as an informal bound on the error. The advantages of
prism cavity appear in Sections Il and IV, respectively. The inthis algorithm are that the extrapolation process provides an im-
verse scattering problem, pertaining to the buried cavity, is disroved estimate in a step-by-step manner and that it returns an
cussed in Section V. Finally, a summary and some conclusiafigimate of its own error, which help us assess the accuracy of
are included in Section VI. the estimated results.

2) Neural Network ApproximationAn alternative approach
to accomplishing the same goal is to use a multilayer NN.
Generally speaking, the two-layer network (a nonlinear transfer
function in the hidden layer and a linear transfer function in
A. FDTD Model the output layer) with appropriate biases is capable of approxi-

We use the total field type of FDTD formulation to model thénating functions with a finite number of discontinuities if the
buried cavity problem shown in Fig. 1. The cavity, whose dPidden layer has a sufficient number of neurons [8], [16].
mensions are x b x ¢, is buried at a depth underneath the L€t the network-approximated function lfg. It maps the
ground. Two dipole antennas, that are fed°180t of phase, are 'elationship of two sets of variables in spaée and spacéi™,
positioned parallel to the ground-air interface, and are located-&t:

a height ofhabove the ground. The parameters of the air, ground fu: R"— > R™

and cavity interiors arée, o), (¢, po, o) and (o, o), re- v ’

spectively. The advantage of the two-dipole arrangement is tiide function f,, depends on the network parameters called

there is a null field at the center of the two-dipole when fed iweight vectorw and bias vector. These are determined from

opposition [3], [12]. By moving the antennas along thdirec- the sampled data through a process called training, during

tion, we can obtain the sweep response of the electric figld which the network learns the relationship betwéghand ™.

at the observation poin® (see Fig. 6). The null point of this  The procedure for applying the NN approach is as follows.

sweep response helps us to locate the cavity buried undernaathprepare a training sét which is a finite subset of the sét,

the ground. select an appropriate adaptation algorithm or a learning rule and
begin training the NN. During this learning phase, the weight

B. Extrapolation using Function Approximation Technique vectorw and the bias vectar of the network are changed by

In this section, we examine the problem of using the functiot 9 the adaptation algorithm such thaf, f.,(z;)] approxi-

o ) mately equalge;, t(x;)], implying that the network has learned
approximation technique to extrapolate the frequency-domajn : : . .
. : o e relationship between the function variables. Usually a per-
response to low frequencies. The function approximation te

nique is described as follows.

ormance test with the test s&t= D — L is carried out after
Let there be a functional relationship betweenX and the training. If the performance is not good enough to be ac-
Y whereX ¢ R* Y C R™, R*/R™ is n/m-dimen-

ceptable, itis necessary to go back to check if the sample data is
sional real or complex space. Then, given a finite data sjg§ufﬁcient or the network has less hidden neurons. If this is the
(D = {[zs, t(z:), 75 € X, t(z:) €Y, i € [1, N]} we assume case, then we implement appropriate changes and train it again.
that¢(x;) = f(z;). The objective of the function approxima-

Finally, when this exercise is over, the network is deemed ready
tion is to approximate the unknown functignfrom the set of for generalization so that it can yield the outgft(x;) for an
samples from the data séx.

inputz;, which was not included in the known data $&t
1) Rational Function ApproximationThe rational function Apprqp_rlate archltecture of the NN and Fhe .ch0|ce of a suit-
S . able training algorithm are two of the major issues that need
approximation attempts [13], [14] to approximate the unknown . . L
. . to be addressed in developing NN models for approximating a
function f(x) in the form : .
function. In our application, we have used a two-layer feed for-
ward NN architecture and the Levenberg—Marquardt backprop-

f(z) = N(z)/D(x) (1) agation training algorithm in conjunction with Bayesian regula-

Fig. 1. Buried cavity excited by a pair of dipoles fed 288ut of phase.

Il. FDTD SIMULATION AND LOwW-FREQUENCY
EXTRAPOLATION
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Fig. 3 shows that the extrapolated FDTD values are in good
agreement with the analytical results.

The second example, though it has little to do with the
buried cavity problem, nevertheless serves to demonstrate
tion [16]. We have found that the network, thus developed, patie effectiveness of the NN type of mapping in solving an
sesses good generalization characteristics, which is obviouiglyerse problem. The problem at hand is to find the width

Fig. 3. Electric field inside the air-filled sphere versus frequemcy:(5 m).

very desirable. of a microstrip line (see Fig. 4) that would yield a specified
characteristic impedance (when the substrate height, dielectric
lll. V ALIDATION OF EXTRAPOLATION ALGORITHMS permittivity, strip thickness, and the frequency are held con-

séant). The result of the exercise (see Fig. 5) shows that the NN

To validate the function approximation algorithms propose tput agrees well with the training data and that generalization
above, we choose two simple examples that have analytigg put agr ing 9
ieved is good when new input data are presented to the

solutions. The first of these examples demonstrates the ar
fectiveness of combined FDTD and function approximatioﬁetwork'
approach. We compute the frequency behavior of the electro-

mpapgnetic (EM) fielg in the inte?ior ofyan air-filled sphere ofI - SCATTERING FROMBURIED CAVITY —FORWARD PROBLEM
10-m radius, which is surrounded by an uniform lossy dielectric In this section, we return to the buried cavity problem, whose
medium, and illuminated by a plane wave (see Fig. 2). Thiometry was displayed in Fig. 1. The dimensions of the cavity
observation point is located inside the sphere at 5 m from theea = 30 m,b = ¢ = 10 m,d = 10 m, h = 5 m. The
center as shown in the figure. The surrounding medium hagterial parameters atg = 2, & = 0.001 for the earth, and

a relative permittivity of three, its conductivity is 1.0e-004¢,, = 1, 0 = 0 for the cavity. When we move the antenna in
and its relative permeability is one. We compute the field #e y-direction, we obtain a curve of the type shown in Fig. 6,
the observation point as a function of frequency, using bottomputed directly with the FDTD, with frequency parameter
the analytical solutions expressed in a series form and ttenging from 1 to 10 kHz. Fig. 7 shows how the observed field
FDTD code. We observe from Fig. 3 that the FDTD resultaries as a function of the frequency and it is evident from this
deviates from the analytical one at low frequencies. Next, viigure that this function has a very smooth behavior. Next, we
turn to extrapolating the FDTD results via the rational functioeamploy the rational function approximation scheme to derive
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the fields at the desired frequencies that are in the range of : 7"“’\‘s
Hz. Fig. 8 shows the extrapolated results when the offset in the
y-direction(dy) equals 30 m, with the overlap region of 1-2 kHz
for the original and the rational approximation results. A similar 6 P e e eee o
extrapolation procedure can be employed for other offset value: /
along they-axis, to obtain the spatial variation of the field at low f
frequency at the corresponding location. S

—— rational function approximation use 9pts [1:0.5:5]

4 s FDMdama

Next, we carry out the extrapolation routine by using the NN
approach and find that the results, shown in Fig. 9, compare ver
well with those in Fig. 8 that were derived by using the rational
function approximation.

However, a closer examination reveals that the NN extrapo- ~ 5
lation is much less sensitive than the rational function approx-
imation to the increments of the input variable and the numbel
of sample points. One consequence of this is that the result 2
derived by the rational function approximation are not always f ()
very smooth everywhere and may generate unstable results with
discontinuous behaviors. In contrast, a well-trained NN alwaygy. 8. Numerical extrapolation to a low frequency of 1 Hz. Rational function
generated smooth and stable approximations in our numerig@groach.
experiments. Fig. 10 serves to illustrate these performance char-

acteristics of the above two schemes. x10°
7

nomalized magnitude of Ex(p)

V. DEPTH ESTIMATION OF BURIED OBJECTS—INVERSE

PROBLEM 6 P SR SR - S W
We now discuss how the NN can be used to estimate the dep /
of a buried object by processing the electric field data abovt _,..-P'f
the ground. The network is used, as a first step, to establish tr g Sk

relationship between the sensed field and the depth of the burie
object and to predict, subsequently, the depth of the object whe
new field values are presented to the network.

We begin by collecting sufficient data as sample points tc
train the network. Here, we regard the depth and the associatt ~ 4
maximum sensed field value @z(p) as one point in the con-
text of the NN. Toward this end, we simulate the buried prism
problem for a sequence of depths varying from 5 to 100 m 2}
Fig. 11 shows the dependence of field values on the depth. f (kHz)

The next step is to establish a feedforward backpropagation
NN, with one hidden layer of 22 neurons using nonlineatig. 9. Numerical extrapolation to a low frequency of 1 Hz. NN approach.

—+— neural network approximation use 9pts [1:0.5:5]
—o— FDTD data o r

normalized magnitude of Ex(p)
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Fig. 13. Estimating the depth of the buried prism using a NN. The NN output
is derived after training with eight points.

transfer functions and one layer of a single neuron using a

linear transfer funct'lon. We regard the computed field vglueglue as the depth is varied from 5 to 10 m. This problem could
and the corresponding depths as the input and output variables

. . o A € mitigated by including additional sample points for the depth
respectively. Durmg the _tralnm_g phase, the depth is viewed B&tween 5-10 m. In fact, when we discard the data point for the
the target. The NN is trained W't.h the known sarr_\ple_s. epth of 5 m and only use the remaining eight points to train
In F'g' 12, we show the tralnllng and generalization resul Re NN, the result improves as shown in Fig. 13. However, the

when nine points are'used.as trammg samples..Le\{enberg— ﬁiﬂbve figure also shows that the prediction for the depth is not
qugr_d t backpr_opagatlon Wlth B_a yesian Regu_lathn Is used asdery satisfactory when it is less than 10 m, because this depth
gal)néﬂg a_lll_%(;rlér;m,e;r;(ri] trr;e Lzllg':;{o:)rrr:?neir;riizslng Ili?\ess: f:%ri%? vazli_lue is outside the range of the training data. Specifically, this
P ) y gutal P o ntgpe of prediction entails an extrapolation, which, in turn, re-
tion of squared errors and weights. In addition, it modifies th ires additional sample points

linear combination so that the resulting network has good gengr— plep '

alization characteristics at the end of the training. Fig. 12 shows VI C

that the network generalization results compare reasonably well - CONCLUSION

to the input data profile. This figure also shows that the training We have shown that the FDTD method can be used to sim-

output does not fall exactly on the training target. The reason falate scattering problems in the very low frequency regime by

this is that the sampled data exhibits a large change in the fieltrapolating the results derived at higher frequencies. We have
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investigated both the NN approach as well as the rational fur
tion approximation for the purpose of extrapolation and ha
found that, comparatively speaking, the former is smoother a

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 9, SEPTEMBER 2000

Ji-Fu Ma was born in GanSu, China, on October
23, 1969. He received the B.S. and M.S. degrees,
both in electrical engineering, from Beijing Institute
of Technology (BIT), Beijing, China, in 1992 and

more stable. e 1995, respectively, and the Ph.D. degree in electrical
The inverse scattering problem associated with the buried ¢~ | —— engineering from the Institute of Electronics,

. . . . Chinese Academy of Sciences (IECAS), Beijing,

ject has also been investigated via the NN approach. We hi _— China. in 1998.

found that the NN is good at approximating the relationship b From 1993 to 1995, he was a Research Assistant

tween the field scattered by the object and its depth. This with the Computational Eelctromagnetic Laboratory

of the Electrical Engineering Department of BIT,

borne out by the.faCt that it can predlct the depth quite "?quyﬁere he worked on numerical computation of radar cross section of complex
rately when new field values, not used previously for the trainingjects. From 1995 to 1998, he was a Research Assistant with the High Power
process, are presented to the network. Microwave and EM Radiation Laboratory at IECAS, where he worked on

computer-aided analysis of resonant characteristics of multiport resonator.
Since 1998, he has been a Postdoctoral Research Fellow at the Electromagnetic
Communication Laboratory, Pennsylvania State University, University Park.
His current research interests include modeling, simulation and optimization of
complex electromagnetic systems using various numerical techniques including

ACKNOWLEDGMENT the FDTD and MOM methods, numerical/signal processing algorithms, and
neural networks.

The authors would like to thank Dr. V. Veremey for many

helpful discussions.

Wenhua Yu (M’99-SM’'00) received the B.S. degree
in physics from Henan Normal University, XingX-
iang, China, in 1984, the M.S. degree in electrical en-
gineering from Beijing Broadcasting Institute, Bei-
jing, China, in 1989, and the Ph.D. degree in elec-

REFERENCES tr_ical engineering _from Southwest Jiaotong Univer-
sity, Chengdu, China, in 1994.
- He s currently a Research Associate in the Depart-

[1] V. Veremey, J.-F. Ma, W. Yu, and R. Mittra, “Electromagnetic Sounding 4 ment of Electrical Engineering’ Pennsyh/ania State

of cavities in layered lossy media,” WSNC/URSI Nat. Radio Sci. Meget. <9 University, University Park. He was with the Beijing

Orlando, FL, 1999. ‘ Institute of Technology as a Postdoctoral Research
[2] S.F. Mahmound, S. M. Ali, and J. R. Wait, “Electromagnetic scatteringssociate from February 1995 to August 1996. From September 1996 to April

from a buried cylindrical inhomogeneity inside a lossy earRddio 1999, he was with the Department of Electrical Engineering, Pennsylvania State

Sci, vol. 16, pp. 1285-1298, 1981. University, as a Postdoctoral Research Associate. He has published 30 technical
[3] D. A. Hill, “Near-field detection of buried dielectric objectsIEEE  papers and 20 proceeding articles. He has also developed two software packages

Trans. Geosci. Remote Sensingl. 27, pp. 364-368, July 1989. for modeling monolithic microwave integrated circuits (MMIC), RF antennas,
[4] R. Mittra, W. Yu, and J.-f. Ma, “Some recent advances in the FDTRind microstrip circuit components, waveguides, and cavities. His research in-

method,” inProc. Int. Conf. Electromagn. Adv. ApplicaTorino, Italy,  terests include the areas of RF circuit design, packaged software development,
Sept. 1999, pp. 661-664. analysis of interconnects in computer chips, computational electromagnetics,

[5] W.L. Ko and R. Mittra, “Extremely low frequency modeling in lossy electromagnetic modeling and simulation of electronic packages, electromag-

(6]

(7]

(8]

El

(10]

(11]
(12]
(13]

(14]

(15]

[16]

media using FDTD with application in seafloor characterizati@gt-  netic compatibility analysis, frequency selective surfaces, microwave and mil-

tromagn, vol. 15, pp. 587-602, 1995. ' _ limeter-wave integrated circuits, and satellite antennas.
P. Luneau and G. Y. Delisle, “Underground target probing using FDTD,”

in 1996 IEEE AP-S Int. Symp. Dig.Baltimore, MD, 1996, vol. 3, pp.

1664-1667.

R. Mittra, J.-F. Ma, and W. Yu, “ldentifying buried objects using the

neural network approach,” itEEE AP-S Int. Symp. DigJuly 1999,

vol. 2, pp. 1860-1863. Raj Mittra (S'54-M'57-SM'69—-F'71-LF’96) is a Professor in the Electrical

F. Wang, V. K. Devabhaktuni, C. Xi, and Q. Zhang, “Neural networkEngineering Department, Pennsylvania State University, University Park. He is
structures and training algorithms for RF and microwave applicationsalso the Director of the Electromagnetic Communication Laboratory, which is
Int. J. RF Microwave CAE, to be published. affiliated with the Communication and Space Sciences Laboratory of the Elec-
G.L.Creech,B.J.Paul, C.D. Lesniak, T. J. Jenkins, and M. C. Calcatetacal Engineering Department. Prior to joining Penn State, he was a Professor
“Artificial neural networks for fast and accurate EM-CAD of microwaveof electrical and computer engineering at the University of lllinois—Urbana
circuits,” IEEE Trans. Microwave Theory Teclvol. 45, pp. 794-802, Champaign. He has been a Visiting Professor at Oxford University, Oxford,
May 1997. England and at the Technical University of Denmark, Lyngby, Denmark. Cur-
Veluswami, M. S. Nakhla, and Q.-J. Zhang, “The application of neurakntly, he serves as the North American editor of the journal AEU. He is the Pres-
networks to EM simulation and optimization of interconnects in highident of RM Associates, which is a consulting organization that provides ser-
speed VLSI circuits,1EEE Trans. Microwave Theory Techol. 45, pp.  vices to industrial and governmental organizations, both in the U.S. and abroad.

713-722, May 1997. He has published over 500 journal papers and 30 books or book chapters on
W. L. Ko and R. Mittra, “Conductivity estimation by neural network,” various topics related to electromagnetics, antennas, microwaves, and electronic
IEEE AP-S Int. Symp. Digvol. 2, pp. 1860-1863, July 1995. packaging. He also has three patents on communication antennas to his credit.
D. A. Hill, “Field of horizontal currents located above the earltEE ~ For the last 15 years he has directed, as well as lectured in, numerous short
Trans. Geosci. Remote Sensiugl. 26, pp. 726-732, Nov. 1988. courses on electronic packaging, wireless antennas and computational electro-
J. Stoer and R. Bulirschntroduction to Numerical Analysis New magnetics, both nationally and internationally. His professional interests include

York: Springer-Verlag, 1980, ch. 2.2. the areas of RF circuit design, computational electromagnetics, electromagnetic

E. K. Miller, “Model-based parameters estimation in electromagneticeodeling and simulation of electronic packages, communication antenna de-
I—Background and theoretical developmertppl. Computat. Electro- sign including global positioning system, broad-band antennas, electromagnetic
magn. Soc. Newlettevol. 10, no. 3, pp. 40-63, 1995. compatibility analysis, radar scattering, frequency selective surfaces, microwave
W. H. Press, B. P. Flannery, S. A. Teakosky, and W. T. Vetterlig, and millimeter wave integrated circuits, and satellite antennas.

merical Recipes Cambridge, U.K.: Cambridge Univ. Press, 1986, ch. Dr. Mittra is Past-President of the Antennas and Propagation Society and has
3. served as the Editor of RANSACTIONS OF THEANTENNAS AND PROPAGATION.

H. Demuth and M. Beaeural Network Toolbox: User's Guide for Use He won the Guggenheim Fellowship Award in 1965, the IEEE Centennial Medal
with MATLAB Natick, MA: MathWorks, July 1997. in 1984, and the IEEE Millennium Medal in 2000.



