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Abstract—In this paper, we address the problem of detecting
low-dielectric contrast cavities buried deep in lossy ground
by using the finite-difference time-domain (FDTD) method in
conjunction with signal processing techniques for extrapolation
and object identification. It is well known that very low frequency
probing is needed for deep penetration into the lossy ground,
owing to a rapid decay of electromagnetic (EM) waves at higher
frequencies. It is also recognized that numerical modeling using
the FDTD method becomes very difficult, if not impossible, when
the operating frequency becomes as low as 1 Hz. To circumvent
this difficulty, we propose a hybrid approach in this paper that
combines the FDTD method with signal processing techniques,
e.g., rational function approximation and neural networks (NNs).
Apart from the forward problem of modeling buried cavities, we
also study the inverse scattering problem—that of estimating the
depth of a buried object from the measured field values at the
surface of the earth or above. Numerical results for a buried prism
are given to illustrate the application of the proposed technique.

Index Terms—Electromagnetic detection of buried objects,
finite-difference time-domain (FDTD) methods, underground
radar.

I. INTRODUCTION

L OCATION of inhomogeneities buried within a stratified
medium is a very important problem because it finds wide-

spread applications in remote sensing, geophysical prospecting
and nondestructive testing [1]. This has prompted the devel-
opment of techniques for the analysis of the electromagnetic
scattering by buried objects, a problem that is complicated by
the presence of the air–earth interface [2], [3]. In this paper,
we address the specific problem of electromagnetic sounding
of a buried cavity filled with material such as air ( ),
whose conductivity is negligibly small. To detect such targets,
which may be buried tens of meters underground, it is neces-
sary to use fairly low frequencies (on the order of 1 Hz) for the
sensing, because the penetration of the electromagnetic waves is
extremely shallow at higher frequencies [1], [4], [5] in the kilo
or megahertz range. Although the finite-difference time-domain
(FDTD) method has been successfully used for simulating the
probing of underground metallic targets at ultrahigh frequencies
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(UHF) [6], the algorithm runs into formidable difficulties when
the frequency is lowered to 1 Hz. These difficulties stem from
the fact that, at lower frequencies, it becomes necessary to run
the FDTD code for a very large number of time steps that con-
sume an inordinately long central processing unit (CPU) time.
This is because the choice of the time step in FDTD is governed
by the spatial resolution required to accurately model the given
geometry. Consequently, for objects that have dimensions in the
range of tens of meters, i.e., are very small (0 ) compared to
the wavelength, the time step dictated by the Courant condition
is a very small fraction of the period of the sensing signal.

To circumvent this difficulty, we propose a hybrid approach
in this paper that combines the FDTD method with signal pro-
cessing techniques as explained below. We begin by carrying out
the FDTD simulation at relatively high frequencies, somewhere
in the range of 1–10 kHz, for which the run times are 10to 10
times smaller than that for 1 Hz. Next, we employ extrapolation
techniques based on neural networks (NNs) and rational func-
tion approximations to derive the fields at the desired operating
low frequency, greatly reducing the FDTD computation time in
the process.

Following the solution of the forward problem, we move on
to investigate the companion and practical problem of inverse
scattering by buried objects,viz. that of estimating the depth of
the object from the observed scattered field components above
the ground [7]. The inverse scattering problem usually requires
the solution of a nonlinear equation that relates the sensed fields
with the electromagnetic parameters of the buried object and
the host medium. In this paper, we use a neural network to map
this nonlinear relationship between the depth and observed field
values and then use it to predict the depth of the buried object.

The NN approach has recently gained attention as a fast and
flexible technique for microwave circuit modeling, simulation
and optimization [8]–[10]. For function approximation, most
of its applications have been limited to interpolation. Other re-
cent applications include the estimation of the conductivity of
a prism buried under seawater in sedimentary layers by sensing
the electric field just above the layer [11], and the calculation
of equivalent circuit parameters in microwave computer-aided
design (CAD) applications [9], [10]. In this paper, we apply the
NN not only for both function interpolation and extrapolation,
but for addressing the inverse scattering problem as well.

The paper is organized as follows. The FDTD simulation
and the problem of extrapolating the time signature are pre-
sented in Section II. Numerical validations of the extrapolation
scheme and the simulation results for an underground buried
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Fig. 1. Buried cavity excited by a pair of dipoles fed 180out of phase.

prism cavity appear in Sections III and IV, respectively. The in-
verse scattering problem, pertaining to the buried cavity, is dis-
cussed in Section V. Finally, a summary and some conclusions
are included in Section VI.

II. FDTD SIMULATION AND LOW-FREQUENCY

EXTRAPOLATION

A. FDTD Model

We use the total field type of FDTD formulation to model the
buried cavity problem shown in Fig. 1. The cavity, whose di-
mensions are , is buried at a depth underneath the
ground. Two dipole antennas, that are fed 180out of phase, are
positioned parallel to the ground–air interface, and are located at
a height of above the ground. The parameters of the air, ground
and cavity interiors are , and , re-
spectively. The advantage of the two-dipole arrangement is that
there is a null field at the center of the two-dipole when fed in
opposition [3], [12]. By moving the antennas along the-direc-
tion, we can obtain the sweep response of the electric field
at the observation point (see Fig. 6). The null point of this
sweep response helps us to locate the cavity buried underneath
the ground.

B. Extrapolation using Function Approximation Technique

In this section, we examine the problem of using the function
approximation technique to extrapolate the frequency-domain
response to low frequencies. The function approximation tech-
nique is described as follows.

Let there be a functional relationship between and
where , , is -dimen-

sional real or complex space. Then, given a finite data set
we assume

that . The objective of the function approxima-
tion is to approximate the unknown functionfrom the set of
samples from the data set.

1) Rational Function Approximation:The rational function
approximation attempts [13], [14] to approximate the unknown
function in the form

(1)

where

(2)

and

(3)

The coefficients s and s in (2) and (3) can be obtained from
the sampled values of the function, which, in our work, repre-
sents the electric field values obtained from FDTD calculation
and is the frequency variable.

We use the Neville type of extrapolation algorithm [13], [15]
in this work. It is a recurrence scheme that starts at the nearest
point, and then adds a sequence of decreasing corrections as in-
formation from other points is incorporated. When the function
is well behaved, the last correction is the smallest one and it can
be used as an informal bound on the error. The advantages of
this algorithm are that the extrapolation process provides an im-
proved estimate in a step-by-step manner and that it returns an
estimate of its own error, which help us assess the accuracy of
the estimated results.

2) Neural Network Approximation:An alternative approach
to accomplishing the same goal is to use a multilayer NN.
Generally speaking, the two-layer network (a nonlinear transfer
function in the hidden layer and a linear transfer function in
the output layer) with appropriate biases is capable of approxi-
mating functions with a finite number of discontinuities if the
hidden layer has a sufficient number of neurons [8], [16].

Let the network-approximated function be . It maps the
relationship of two sets of variables in space and space ,
i.e.,

The function depends on the network parameters called
weight vector and bias vector . These are determined from
the sampled data through a process called training, during
which the network learns the relationship betweenand .

The procedure for applying the NN approach is as follows.
We prepare a training set, which is a finite subset of the set,
select an appropriate adaptation algorithm or a learning rule and
begin training the NN. During this learning phase, the weight
vector and the bias vector of the network are changed by
using the adaptation algorithm such that approxi-
mately equals , implying that the network has learned
the relationship between the function variables. Usually a per-
formance test with the test set is carried out after
the training. If the performance is not good enough to be ac-
ceptable, it is necessary to go back to check if the sample data is
insufficient or the network has less hidden neurons. If this is the
case, then we implement appropriate changes and train it again.
Finally, when this exercise is over, the network is deemed ready
for generalization so that it can yield the output for an
input , which was not included in the known data set.

Appropriate architecture of the NN and the choice of a suit-
able training algorithm are two of the major issues that need
to be addressed in developing NN models for approximating a
function. In our application, we have used a two-layer feed for-
ward NN architecture and the Levenberg–Marquardt backprop-
agation training algorithm in conjunction with Bayesian regula-
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Fig. 2. Air-filled sphere surrounded by uniform medium and illuminated by a
plane wave.

Fig. 3. Electric field inside the air-filled sphere versus frequency (r = 5 m).

tion [16]. We have found that the network, thus developed, pos-
sesses good generalization characteristics, which is obviously
very desirable.

III. V ALIDATION OF EXTRAPOLATION ALGORITHMS

To validate the function approximation algorithms proposed
above, we choose two simple examples that have analytical
solutions. The first of these examples demonstrates the ef-
fectiveness of combined FDTD and function approximation
approach. We compute the frequency behavior of the electro-
magnetic (EM) field in the interior of an air-filled sphere of
10-m radius, which is surrounded by an uniform lossy dielectric
medium, and illuminated by a plane wave (see Fig. 2). The
observation point is located inside the sphere at 5 m from the
center as shown in the figure. The surrounding medium has
a relative permittivity of three, its conductivity is 1.0e-004,
and its relative permeability is one. We compute the field at
the observation point as a function of frequency, using both
the analytical solutions expressed in a series form and the
FDTD code. We observe from Fig. 3 that the FDTD result
deviates from the analytical one at low frequencies. Next, we
turn to extrapolating the FDTD results via the rational function

Fig. 4. Mircostrip line structure.

Fig. 5. Width of microstrip line determined by the NN to yield desired
characteristic impedance;f = 15 GHz," = 10, h = 1:35 mm, t = 0:002

mm.

approximation to derive the field values at low frequencies.
Fig. 3 shows that the extrapolated FDTD values are in good
agreement with the analytical results.

The second example, though it has little to do with the
buried cavity problem, nevertheless serves to demonstrate
the effectiveness of the NN type of mapping in solving an
inverse problem. The problem at hand is to find the width
of a microstrip line (see Fig. 4) that would yield a specified
characteristic impedance (when the substrate height, dielectric
permittivity, strip thickness, and the frequency are held con-
stant). The result of the exercise (see Fig. 5) shows that the NN
output agrees well with the training data and that generalization
achieved is good when new input data are presented to the
network.

IV. SCATTERING FROMBURIED CAVITY —FORWARD PROBLEM

In this section, we return to the buried cavity problem, whose
geometry was displayed in Fig. 1. The dimensions of the cavity
are m, m, m, m. The
material parameters are , for the earth, and

, for the cavity. When we move the antenna in
the -direction, we obtain a curve of the type shown in Fig. 6,
computed directly with the FDTD, with frequency parameter
ranging from 1 to 10 kHz. Fig. 7 shows how the observed field
varies as a function of the frequency and it is evident from this
figure that this function has a very smooth behavior. Next, we
employ the rational function approximation scheme to derive
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Fig. 6. Variation ofE at pointP (in between the dipoles) as a function of the
location when the sensing dipole moves along the longitudinal(y) direction.

the fields at the desired frequencies that are in the range of 1
Hz. Fig. 8 shows the extrapolated results when the offset in the
-direction equals 30 m, with the overlap region of 1–2 kHz

for the original and the rational approximation results. A similar
extrapolation procedure can be employed for other offset values
along the -axis, to obtain the spatial variation of the field at low
frequency at the corresponding location.

Next, we carry out the extrapolation routine by using the NN
approach and find that the results, shown in Fig. 9, compare very
well with those in Fig. 8 that were derived by using the rational
function approximation.

However, a closer examination reveals that the NN extrapo-
lation is much less sensitive than the rational function approx-
imation to the increments of the input variable and the number
of sample points. One consequence of this is that the results
derived by the rational function approximation are not always
very smooth everywhere and may generate unstable results with
discontinuous behaviors. In contrast, a well-trained NN always
generated smooth and stable approximations in our numerical
experiments. Fig. 10 serves to illustrate these performance char-
acteristics of the above two schemes.

V. DEPTH ESTIMATION OF BURIED OBJECTS—INVERSE

PROBLEM

We now discuss how the NN can be used to estimate the depth
of a buried object by processing the electric field data above
the ground. The network is used, as a first step, to establish the
relationship between the sensed field and the depth of the buried
object and to predict, subsequently, the depth of the object when
new field values are presented to the network.

We begin by collecting sufficient data as sample points to
train the network. Here, we regard the depth and the associated
maximum sensed field value of as one point in the con-
text of the NN. Toward this end, we simulate the buried prism
problem for a sequence of depths varying from 5 to 100 m.
Fig. 11 shows the dependence of field values on the depth.

The next step is to establish a feedforward backpropagation
NN, with one hidden layer of 22 neurons using nonlinear

Fig. 7. Variation ofE (p) as a function of frequency.

Fig. 8. Numerical extrapolation to a low frequency of 1 Hz. Rational function
approach.

Fig. 9. Numerical extrapolation to a low frequency of 1 Hz. NN approach.
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Fig. 10. Numerical extrapolation to a low frequency of 1 Hz. Comparison of
NN and rational function approaches.

Fig. 11. Dependence ofE (p) on depth (1–5 kHz).

transfer functions and one layer of a single neuron using a
linear transfer function. We regard the computed field values
and the corresponding depths as the input and output variables,
respectively. During the training phase, the depth is viewed as
the target. The NN is trained with the known samples.

In Fig. 12, we show the training and generalization results
when nine points are used as training samples. Levenberg–Mar-
quardt backpropagation with Bayesian Regulation is used as the
training algorithm, and the limit for the training is set to 2000
epochs. The Bayesian regulation minimizes a linear combina-
tion of squared errors and weights. In addition, it modifies the
linear combination so that the resulting network has good gener-
alization characteristics at the end of the training. Fig. 12 shows
that the network generalization results compare reasonably well
to the input data profile. This figure also shows that the training
output does not fall exactly on the training target. The reason for
this is that the sampled data exhibits a large change in the field

Fig. 12. Estimating the depth of the buried prism using a NN. The NN output
is derived after training with nine points.

Fig. 13. Estimating the depth of the buried prism using a NN. The NN output
is derived after training with eight points.

value as the depth is varied from 5 to 10 m. This problem could
be mitigated by including additional sample points for the depth
between 5–10 m. In fact, when we discard the data point for the
depth of 5 m and only use the remaining eight points to train
the NN, the result improves as shown in Fig. 13. However, the
above figure also shows that the prediction for the depth is not
very satisfactory when it is less than 10 m, because this depth
value is outside the range of the training data. Specifically, this
type of prediction entails an extrapolation, which, in turn, re-
quires additional sample points.

VI. CONCLUSION

We have shown that the FDTD method can be used to sim-
ulate scattering problems in the very low frequency regime by
extrapolating the results derived at higher frequencies. We have
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investigated both the NN approach as well as the rational func-
tion approximation for the purpose of extrapolation and have
found that, comparatively speaking, the former is smoother and
more stable.

The inverse scattering problem associated with the buried ob-
ject has also been investigated via the NN approach. We have
found that the NN is good at approximating the relationship be-
tween the field scattered by the object and its depth. This is
borne out by the fact that it can predict the depth quite accu-
rately when new field values, not used previously for the training
process, are presented to the network.
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