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Abstract—The electromagnetic properties of a current on a thin
horizontal wire above a flat lossy earth is reviewed. Attention is
given to the historical development of the topic, starting with the
seminal work of Carson. Particularly, the importance of Professor
Wait’s contribution to the initial understanding of the modal and
radiative behaviors of the current, as described in his influential
paper [1], is discussed in detail. A description of Wait’s full wave
analysis is provided to show how that analysis justified many of
the assumptions embedded in Carson’s result and how that same
analysis later led to a fuller understanding of the current’s spatial
spectrum. Although no rigorous proof is known to exist with re-
spect to the completeness of this spectrum, a necessary condition
for completeness is offered; the basis of this condition is the mea-
surable input conductance of the wire. The paper concludes with
a short discussion on the various extensions of Wait’s classic work
that have been provided over the last two decades.

Index Terms—Ground wave propagation, multimode transmis-
sion lines.

I. INTRODUCTION

CALCULATION of the interaction between electromag-
netic fields and an electrically thin horizontal infinitely

long wire in free-space above a homogeneous conducting earth
is an important canonical problem in electromagnetics. This
problem and its numerous extensions have spawned an enor-
mous number of contributions to the scientific literature since a
solution was first attempted in the early part of the 20th century.
One of the important contributors to the solution of this problem
was Prof. J. R. Wait. His contributions will be emphasized here.

Consider the problem shown in Fig. 1. Here, an electrically
thin wire of radius is located in a medium characterized by
permittivity , permeability , and conduc-
tivity , where and are, respectively, the permittivity and
permeability of free-space. In the special case that this medium
is free-space, , and . The wire is parallel
to and a height above an interface between its host medium
and a homogeneous conducting earth. The earth is characterized
by permittivity , permeability and con-
ductivity . Here, the wire is assumed to be a perfect conductor
but might also be characterized by a surface impedanceas
described below.
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Fig. 1. A thin wire over a homogeneous half-space.

Wait’s “exact” modal equation for this geometry from his
influential paper on this subject will be the starting point [1].
The classic low-frequency Carson equation and the quasistatic
analysis of Kikuchi will be discussed as a special cases. The
works of Wait, Carson, and Kikuchi are valid, provided the wire
is electrically thin; exact conditions on what constitutes a thin
wire will be provided. Wait’s complex image theory will also be
used to identify a more physically intuitive, alternative interpre-
tation of Carson’s equation. To complete the single wire prop-
agation problem, sections on the excitation problem, the spatial
spectrum of the current and the physical interpretation of that
spectrum will be discussed. Finally, several problems which are
extensions to the single wire propagation problem will be pre-
sented.

II. BACKGROUND

Originally, the “wire over earth” problem was of interest be-
cause of its applications to electric power transmission and tele-
phone communication systems. These systems operated at fre-
quencies low enough that the wire height was a small fraction of
a wavelength. In this case, almost all energy from a voltage or
current source driving the wire is coupled into and propagates in
the quasi-TEM mode. Thus, early work was restricted to finding
the distributed parameters of an equivalent transmission line for
this mode.

Carson reported the earliest solution to this problem in 1926
[2]. In that work, he calculated values for the distributed param-
eters of a quasi-TEM transmission line. In doing so, he made
several approximations. They are the following:

1) the propagation constant does not differ significantly
from that found in the dielectric and, therefore, Laplace’s
equation can be substituted for the two-dimensional
wave equation in air;

2) the displacement current in the earth can be neglected;
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3) the effect of earth conductivity on the parallel admittance
per unit length is negligible.

These assumptions restrict the solution to low frequencies.
Later, a more explicit statement of what is meant by “low fre-
quency” will be given.

Aside from some small improvements, such as the inclusion
of displacement currents in earth by Wise [3], the equivalent
transmission line approach remained unchanged until the early
1950s [3]. A good summary of this early work can be found in
the book by Sunde [4].

Despite the development of a satisfactory low-frequency so-
lution, researchers remained interested in the high-frequency
behavior of such systems. Both curiosity and potential appli-
cations such as antennas above earth, lightning and electromag-
netic pulse effects on power lines and geologic remote sensing
drove research in this area. Kikuchi, for example, in the mid
1950s derived an exact modal equation for very thin wires above
earth, which, although published in English, was not widely
known at the time [5], [6]. In this work, he used quasi-static and
asymptotic expansions of the exact modal equation to investi-
gate the transition from quasi-TEM to surface wave propagation
During the same time period, there was some activity in Russia
concerning this problem [7]–[9]. Although an exact solution to
the problem was reported, this work never appeared in English
and, hence, was unknown outside of Russia until the 1970s. A
discussion of this work can be found in Kuesteret al. [9], [10].

About this time, Prof. Wait became interested in the problem
and published an exact modal equation for a thin wire above
earth that was an extension of Kikuchi’s equation [1]. This work
was widely distributed and through such exposure became well
known. It is repeated here as the starting point for our develop-
ment.

III. EXACT MODAL EQUATION

A full wave analysis of the propagation characteristics of
an electromagnetic wave on a thin wire over a homogeneous
half-space is conveniently accomplished by means of potential
vectors of which Wait chose the Hertz scalar potentialsand

[1]. The geometry of the problem under consideration is
depicted in Fig. 1. The vector potentials allow one to separate
Maxwell’s equations into TM and TE sets and to cast the elec-
tric field and magnetic field in terms and . After es-
tablishing solutions for and and satisfying the requisite
boundary conditions for the same, Wait showed that the prop-
agation constant (i.e., ) for the wave on the wire could be
couched in terms of the standard transmission line modal equa-
tion

(1)

where
equivalent series transmission line
impedance;

equivalent shunt transmission line admit-
tance;

and functions of .

In equation form

(2)

and

(3)

The modal equation is based upon the assumption that the wire’s
radius is small, which, for now, will not be rigorously quantified.
The other terms in the previous two equations are given by

(4)

(5)

and

(6)

The symbols employed above are ascribed the following mean-
ings or definitions: is the modified Bessel function of
order zero; and ,
with the additional assumption that the real part of these
quantities is positive; and

, with the additional assump-
tion that the imaginary part of these quantities is negative.

IV. REDUCTION TO CARSON’S RESULTS

As Wait pointed out, the earlier work of Carson represents
a special case of the general result of (1). Specifically, if

, , , ,
and , then the small argument approximation of
the Bessel function can be invoked, can be simplified,
and can be neglected [1]. With these approximations
in place, the modal equation for the equivalent transmission
line mode can be solved in closed-form; the final equation is
identical to that first reported by Carson

(7)

where is the approximate integral of and is given
by

(8)

with . For these same approximations

(9)

and

(10)

where the subscript denotes a Carson result.
From the previous assumptions, the transmission line mode is

essentially a quasi-TEM mode. The prefixquasiindicates that a
true TEM mode is not possible with a lossy earth, since Ohm’s
law requires a longitudinal electric field if current is to return
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through the earth. When the earth is a perfect conductor, how-
ever, the current returns on the earth’s surface and the longitu-
dinal electric field vanishes; only then is the mode truly TEM.

Carson’s integral in (8) can also be expressed as a series that
was given by Carson. This series can be found in [2] and in the
more accessible reference [11]. Unfortunately, Carson, himself
said about this series, “It is to be regretted that the foregoing for-
mulas appear so complicated.” However, he also noted that only
the leading terms of the series are of importance for many prac-
tical cases [2], [4]. By considering this leading term it will be
possible to first find a simpler solution and then, by comparison
with Wait’s work on complex image theory, to identify a simple
equivalent problem that can provide some physical insight into
Carson’s result.

Consider the first term of the expansion of Carson’s series
for the integral . Using this in (9), an approximation for the
equivalent series impedance of the wire over earth (valid for

) is [4]

(11)

where is the skin depth of the earth. This
same series impedance can be calculated using the “complex
image theory,” which (although apparently developed earlier in
Russia [12] and published in Russian) was independently devel-
oped by Wait and Spies in 1969 [13]. In this paper, the quasi-
static electromagnetic fields of a line source in free-space above
earth were found to be equivalent to those of the line source plus
a “complex image” in free-space. The complex image is a line
source with a “complex depth” equal to , as shown
in Fig. 2. Using this idea plus one additional term of the series
developed by Wait and Spies, the series impedance becomes

(12)

which is almost identical to the result from Carson’s series.

V. RELATION TO KIKUCHI’S WORK

The earlier results of Kikuchi [5] are embedded in the
Wait’s full wave solution. Specifically, if is vanishingly
small, then the small argument approximation may be invoked
for and the term in the integrals

and may be set to unity. Based upon these
assumptions, the result of Wait and the result of Kikuchi are
one and the same.

While Carson’s result is essentially a low frequency approx-
imation of the transmission line mode, Kikuchi’s result is asso-
ciated with the entire frequency spectrum of this same mode.
Specifically, he showed theoretically and experimentally that
the transmission line quasi-TEM mode reverts to a TM mode as
frequency increases [14]. This result emphasizes that Carson’s
low-frequency quasi-TEM mode is more correctly a TM mode
with a relatively small longitudinal electric field. This longitu-
dinal component is essential to the satisfaction of all tangential
boundary conditions at the air–earth interface and is responsible

Fig. 2. Geometry of the complex image.

for returning longitudinal currents flowing in the earth. As fre-
quency increases there exists a high field concentration about
the wire and large longitudinal displacement currents that act as
return currents in the air, thus minimizing the role of the earth
as a current return path.

It is seen from the previous paragraph that the transmission
line modal behaviors of a current on a wire above earth were
well understood before Wait. However, as a later section will
further elaborate, the transmission line mode is only one part of
the current’s spatial spectrum and is insufficient in character-
izing the measurable electromagnetic properties of the wire (for
various heights, conductivities, frequencies, etc.).

VI. BOUNDARY CONDITIONS ON THEWIRE

We note that the aforementioned modal equation was derived
by assuming that the wires are perfect conductors. Such an
assumption is not strictly needed since nonperfectly conducting
wires can be characterized by an axial impedance, which in
turn, is invoked in an axial impedance boundary condition. The
condition is a relationship between the axial current (or the
azimuthal external magnetic field) and the longitudinal electric
field of the wire. As Waitet al. showed in many papers, such
as [15], a more general modal equation for wave propagation
along wires or coated cables can be derived that includes axial
impedance effects. In fact, the axial impedance operator is
not restricted to cross sectionally homogeneous wires. Axial
impedance operators can be developed for insulated wires,
coaxial cables, and the like (provided, of course, that the
outermost dimension is small so that the cable can be regarded
as thin). For example, in the paper by Chang and Wait, it was
shown suing the axial impedance concept that the propagation
constant associated with a buried insulated wire operating in
the ELF frequency range is highly insensitive to depth [16].

What rigorously constituted a thin wire was not entirely
obvious, even at the time of Wait’s 1972 paper. However, an
argument can be made that equations like (1) are exact if the
azimuthal variation of the fields about the vicinity of a wire
is zero. To understand the true field structure about the wire,
Pogorzelski and Chang expanded the current into azimuthal
modes and deduced the modal equation associated with the
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Fig. 3. An infinite horizontal wire of radiusa and of heighth driven by a voltage source of amplitudeV and gap lengthb.

first three modes. The precise condition for the thin wire
approximation can be found in [17, eq. (69)]. However, in
terms of a “back-of-the-envelope” formula, one may wish to
employ [17, eq. (72)], which states that the azimuthal current
modes can be neglected if .

VII. CURRENT SPECTRUM:MATHEMATICS AND HISTORY

In [1, eq. (19)], Wait presented a calculation of the current
induced on the wire by a voltage source of gap length(i.e., wire
gap length) inserted in series with the wire [1]. The geometry
for this problem is shown in Fig. 3. The total current was
written as an inverse spatial Fourier transform. In the limit as

, the result became

(13)

where . For the integral of (13) can be
evaluated by closing the integration contour on the lower half
of the complex plane. To keep the integrand single-valued (or
analytic) within and on the contour, the integral along the real
axis is equal to the sum of several integrals, each with its own
physical significance. There are three types of integrals: Inte-
grals about the various poles of (i.e., modal integrals),
integrals along the various branch cuts of (i.e., radiation
integrals) and an integral about the lower, infinitely extended
semi-circle. This latter contribution is zero by virtue of the ra-
diation condition and the branch-cut definitions, which specify
that the real parts of the various multivalued functions be greater
than zero. This specification defines the proper Riemann sheet.
(See Fig. 4 for a detailed depiction of the integration contour.)
The existence of each integral and its relative importance to the
spectral description of the current are discussed next.

As mentioned earlier, the transmission line solution was first
given by Carson and further explained by Kikuchi. Both of these
solutions are manifestations of the residue calculation about the
pole at . Wait surmised that the current spectrum is made
complete by evaluating the integral along the two branch cuts
emanating from the branch-points at and at , re-
spectively. However, while Wait’s claim that, “beyond a wave-
length it (the quasi-TEM modal current) completely dominates

(the continuous spectrum currents) so it is of prime physical
interest,” is valid at high frequencies under some conditions, it
is also valid under less restrictive conditions at low frequencies.

Fig. 4. The integration path on the complex� plane. HereR!1 andk =
k k = (k + k ).

Specifically, the quasi-TEM modal current dominates the con-
tinuous spectrum currents over the entire wire if: 1) the wire
height is small relative to free-space wavelength and 2) the earth
is a reasonably good conductor at the frequencies of interest.
Since these conditions hold for many low-frequency systems,
the quasi-TEM current can be, and has been assumed to be, the
total (or complete) current.

Wait’s belief that the current spectrum consisted of one dis-
crete mode (i.e., transmission line mode) and two radiation in-
tegrals seemed reasonable based upon an informal inspection of

. Yet a rigorous proof was not provided at that time and the
question of completeness was raised by Olsenet al. [18], [19].
They argued that a necessary condition for completeness (suf-
ficiency will discussed later) could be found by examining the
input conductance of the wire. Specifically, if a voltage source
is inserted into a gap within the wire and the total current is mea-
sured at that gap, then the input conductance Re
of the wire should approach the known input conductance of
a wire in free-space as the wire height becomes infinite [20].
Based upon Wait’s description of the current’s spectrum, the
theoretical experiment failed to predict the free-space result.

Further examination of the poles and branch cuts of
by Olsenet al. revealed that at least two terms were missing
from Wait’s spectral description. In addition to the pole asso-
ciated with , a second pole was also found, labeledsurface
attachedand denoted as . Moreover, in addition to the two
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branch-points at , a third branch point was discov-
ered at , where Im . The
physical interpretation of these pole and branch-cut contribu-
tions is provided in a subsequent section.

With the current spectrum consisting of these five terms
(i.e., integrals associated with these two poles and three branch
cuts), the input conductance problem was revisited and the
corresponding results agreed with the expected outcome. See
Fig. 5 for a typical scenario. In that figure, the conductivities
associated with , , and the combined effects of two
of the three branch-cut integrals (the integral aboutwas
ignored due to its overall insignificance to radiation in the upper
half-space) are shown; the total and free-space conductivities
are also shown. As expected, the total input conductance oscil-
lates about 3.1 milli-mhos [20]. Clearly, for small heights, the
transmission line component is dominant, which agrees with
the common assertion that the total current can be approximated
as just the quasi-TEM current. More importantly, based upon
this figure and for the parameters considered, an argument can
be made that all significant spectral current terms have been
identified.

Unfortunately, no rigorous proof for sufficiency (to the au-
thors’ knowledge) has been provided that states that these five
terms represent the complete spectrum of the current. After con-
ducting numerical searches for additional poles and branch cuts,
none have been found to exist. Hence, we conclude that these
five terms adequately describe the important phenomenological
aspects of the current. Any additional terms that may arise are
anticipated to yield minute effects on the current’s mathemat-
ical description. (We add parenthetically that dos Santos [21]
did find a pole on the improper Riemann sheet, which repre-
sents a mode that violates the radiation condition. Experiments
indicate that this mode might be a useful approximation to the
total current for higher frequencies. If so, the mode would be
analogous to a leaky wave on a structure such as a dielectric rod
or a microstrip printed antenna [22].)

VIII. C URRENTSPECTRUM:PHYSICAL INTERPRETATION

With the spectrum of the current assumed to be made com-
plete with the five aforementioned terms, the physical interpre-
tation of these terms is now provided. Consider first the inte-
gration along the branch cut associated with the branch point
at ; the integration path is designated as, where

(see Fig. 1). In general, all contributions of
play an important role in ascertaining the near and far field

behavior of the field in region one. Between the wire and the
earth, the contributions of and give rise to incoming
and outgoing waves, respectively. Obviously, both wave species
are admissible solutions to Maxwell’s equations in free-space.
More importantly and per the addition theorem of Hankel func-
tions, both wave species must exist due to the displacement of
the wire from the origin of the coordinate system. In the far field,
however, the contribution of is negligible in comparison to
the contribution of . For this situation, only outgoing spher-
ical waves that vary in both azimuth and elevation (i.e., waves
that have two degrees of freedom) contribute to the solution,
as required by the radiation condition [23]. Note: Whether the

Fig. 5. Input conductance of the infinitely long wire. The individual
contributions of modal and radiation terms are shown.

waves are incoming or outgoing as observed in the near field
or far field, their propagation characteristics are dependent only
on . That is, the existence of these waves is independent of
the existence of the interface; they exist solely as solutions to
Maxwell’s equations in unbounded media. (Similar arguments
may be stated, but will be omitted, for the radiation mechanism
into region two; the mechanism is due to the branch cut associ-
ated with .)

When a lossy interface is included in the boundary value
problem, Maxwell’s equations admit an additional wave
species: The cylindrical Zenneck surface wave. This wave is
bound to the interface and propagates only along the horizontal
plane. Unlike the previously mentioned spherical waves which
have two degrees of propagation freedom, the Zenneck surface
wave is thus seen to have one (i.e., azimuth). Since the branch
cuts associated with and give rise to spherical waves in
regions one and two, respectively, the branch-cut associated
with must predict the Zenneck wave.
This indeed is the case as an asymptotic saddle-point analysis
reveals [23]

(14)

Here, is an unspecified function, Im and
are cylindrical coordinates in the -plane (i.e. ).

(Further information on the Zenneck wave and its contribution
to the total solution is found in [24].)

The aforementioned wave species (i.e., the spherical wave in
region one, the spherical wave in region two and the Zenneck
wave) exist independently of the wire. When a wire is intro-
duced, some directional preference will affect the field structure
by redirecting some of the electromagnetic energy of the spher-
ical and Zenneck waves into the direction of the wire. Thus, the
solution is augmented with two additional guided wave modes.
One mode will serve to redirect the energy from the spherical
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wave; the other will serve to redirect the energy from the Zen-
neck wave.

The first of these discrete modes is the aforementioned
quasi-TEM mode. As , this mode reduces to the pure
TEM mode of a wire over a perfect conductor. As shown in
[25], the field associated with this mode decays rapidly away
from the wire in the transverse plane and thus is bound to
the wire. That is, there are no directional degrees of freedom
of this mode, in contrast to the spherical or Zenneck waves.
The redirection of energy from the spherical wave into the
quasi-TEM wave is due to the close proximity of the TEM zero
to the branch point . For this reason, this mode can be labeled
as a “guided radiation” mode.

The second of the discrete modes is the surface attached mode
as described in the previous section. For typical earth param-
eter values, the zero of associated with surface attached
mode is in close proximity to . Hence, like the relationship
between quasi-TEM mode and the spherical wave, the prox-
imity of this zero to will redirect some of the energy from the
cylindrical Zenneck surface wave into the direction of the wire.
For this reason, this mode may be labeled as a “guided Zenneck
wave” mode. Again, the fields are bound to the wire (but not
so tightly bound as those fields associated with the quasi-static
TEM mode) and, hence, the directional degrees of freedom have
been reduced to zero.

IX. EXTENSIONS TO THETHEORY

In 1977, Wait generalized his work on the full wave analysis
of propagation along a single wire above a homogeneous half-
space to an arbitrary number of wires above an earth with an
arbitrary number of layers [26]. This, along with [1], provided
the foundation for a host of analyzes associated with multiple
wires, stratified media, and external sources.

The first paper using full wave theory to solve the problem of
external source excitation of a wire above earth was published
by Olsen and Chang [27]. In this work, the source was a plane
wave. Shortly thereafter, Wait [28] as well as Olsen and Usta
[29] published papers on the excitation of the wire by a ver-
tical dipole. This work has since been followed up by numerous
studies of currents induced on wires above earth by lightning
and high altitude nuclear electromagnetic pulses [30], [31]. A
general theory for wire excitation by arbitrary sources is given
in [10].

The first work on noninfinite wires above earth using the com-
plete spectrum was presented in [32]. Again, the results were
found to be in agreement with the expected asymptotic behavior
of the input conductance as .

The first use of full wave theory for a wire above a two-
layer medium was presented by Kuester and Chang [29]. By
considering a wire at the surface of a grounded dielectric slab,
they studied the modes, which might propagate on a narrow mi-
crostrip [33]. This work was later extended to a more realistic
microstrip by modeling the conductor as a set of closely spaced
parallel wires [34].

Rather than placing the wires parallel to one another, Young
and Wait provided the formal solution for the crossed wire case
and couched that solution in terms of two integral equations; the

equations manifested both the self and mutual coupling imped-
ances of the wires [35]. A TEM closed-form approximation for
the coupling was provided in a followup paper [36].

Although the Carson approximation is satisfactory for most
propagation problems in power engineering, the full wave theory
is necessary for a complete analysis of corona-generated electro-
magnetic interference, which is detectable at frequencies up to 1
GHz. Olsen and several of his students analyzed this by modeling
corona as spatial distribution of randomly excited dipoles on a
multiconductor power line and solving for the associated electro-
magnetic noise fields surrounding the power line [37], [38]. The
fullwave theorywasnecessary toexplain the observeddecay rate
of thesefieldsawayfromthepower line.

It is perhaps fitting that this paper concludes with a mention
of an extension to Prof. Wait’s work, which is an application to
power systems. This is because Prof. Wait’s first paper [39] was
entitled, “Detection of overheated transmission line joints by
means of a bolometer,” and was written while he was employed
at Hydro-Electric Power Commission of Ontario, Toronto,
Canada. Although Prof. Wait’s career was largely outside of the
field of power engineering, his work in electromagnetic theory
has led to some fundamental advances in the same area where
he made his first contribution to the professional literature.
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