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Electromagnetic Induction and Surface Impedance
In a Half-Space from an Overhead Moving Current
System

Hsueh-Yuan Padsenior Member, IEEEBNnd James R. Wait

Abstract—How does an overhead current system having a ve- .
locity » influence the electromagnetic (EM) fields and the surface Jx
impedance as measured on the ground? We attempt to answer this
question in this paper. A formulation is given for the fields pro-
duced by a current system having a uniform translational velocity. jy
The numerical results that reflect the influence of velocity on the
surface impedance at the air/earth boundary are presented. The
relativity effect is not considered.

Z=-70|

Index Terms—Electromagnetic (EM) induction, geological mea-
surements, geophysics, surface impedance. X

I. INTRODUCTION

. : : . . g
HE nondestructive testing of underlying media often uti- ;K0

lizes the interaction of electromagnetic (EM) fields with
the specimen. However, the source of the fields may vary both
in space and time so that the interaction mechanism betweer G, & |
EM waves and the underlying media cannot always be simply
described. A particularly good example is an aircraft carrying
probe instruments, which flies at a finite height with a uni-
form velocity v over the earth. Another example is the mag-
netotelluric method used in geophysics [1]. It is the purpose of
this paper to examine the effect of the motional velocity on the
nature of the EM fields excited by a uniform moving current

v
~

system.

Avery convenient and physically meaningful conceptin radio L
propagation theory is the surface impedance [2]. In its simplest \
form, it is the ratio of the tangential electric field and the cor- Z

responding orthogonal tangential magnetic field at the air/earth
boundary. The surface impedance depends only on the progéy-1. An overhead uniform moving current excitation of a half-space.
ties of the underlying media and is only weakly influenced by

the source field configuration [3]. cording to the derived formula, the numerical results give the

Here we present a fairly general formulation of the EM f|eldsnﬂuence of the velocity of the moving current system on the

on the air/earth surface due to a moving current system. T Srface impedance at the airfearth boundary.
current system can be thought of as an airborne platform, flying
at a finite height over a horizontal medium that can be con-

sidered at rest and the sources of the natural currents located

in the earth, which generate magetotelluric fields [1]. The sur-
face impedance is defined by the EM fields on the ground. Ac-\y/e shall formulate the problem in as simple a manner as pos-
sible, but without restricting its utility. We neglect earth curva-
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A uniformly moving current source, which flows in thedi- It is convenient to describe the fields in terms of the electric
rection with a velocity in the positivey-direction, is located at and magnetic Hertz vectors that have only verticalz{ocom-
z = —zp. Itis expressed as ponents. These are denotedldyandII*, respectively,
Jules y ) = RILS@OG — )] () e = Iy (z)e™ e el et ®)
HZ — Hé(z)cfi,ﬁxcfi)\yci(wf)\v)t'

wherel, is a constant amplitude of the current source arisl
the angular frequency as seen by an observer in the rest fram®/ithin any of the homogeneous regions (say, a conductivity
(z, v, 2). The rest frame can be thought of a coordinate system permittivity ¢, and permeability:), we can write [4]
fixed to the ground. Similarly, in thg direction the spatial com-
ponent of the current is E=V xVxI—iyw— )V x IT*
‘ H=V><VxH*—i—[a—i—ic(w—)\v)]VxH} ®)
Jy(z, y, t) = R[L,6(x)6(y — vt)e™?] (2)
which yield the fields
wherel, is a constant amplitude of the current sourgeand
Jy are current densities with dimension of amperes/meter and, OlIL, 3

for simplicity, are always on the = 0 plane.f? is the real By =—iff 9, Apw = Mo)IIz,
part operator. For mathematical convenience we will only pay oI,
attention to the content inside of the brackets of equations (1) By = —ird—7—=+ fu{w — Al
and (2). 2
. a
In the spectral domain E. == —-+?)1L
922 (10)
. o0 poo ‘ ‘ ‘ Lolr .
JT()\? CU) = / / I,T(S(x)é(y—vt)e“‘te_”'@’”e_”‘y d.’L' dy H’” = _[Lﬁ az - Z)‘[O— + ILG(w - )‘U)]Hz
I I1*
= [t (3) H,= —i)\aa 2 4 iffo + de(w — M)IL
4
and o2
. ) H, = —~2 )11
Jy()\a w) :[yez(w—)\'v)t (4) <822 v ) z )

wheref and\ are wave numbers that describe the spatial vari- | '€ partial fields associated with tii potential are usually
ation of the source field. Equations (3) and (4) imply spectrdfSignated TM and those with thi#" potential as TE. _
broadening of temporal variations from moving sources relative!n Order to determine the fields, we need to first determine
to their stationary counterpart. This broadening demonstratée(#) andll5(z). For the source regionzo < z < 0

temporal contraction of ground-based observations relative to

the true morphology. It also introduces significant phase lags Ho(z) = ac"® 4 be™"0* 1
or leads between local field maxima observed on the ground. II5(2) = a*e'o® 4 bremo=, (11)
Consequently, the geophysical measurements will be affected
by this movement. For the source-free region< —z
It is obvious that the angular frequency becomes v in-
stead ofv in the rest frame. Any field componefifound in the o(z) = ce¥o?
homogeneous region should satisfy the D’Alembertian equation 1% (2) = ¢ o= } (12)
(2) =

9 9 9 9 o where = /A24+ 3 +42 is the eigenvalue and

catastas —ovg —ckz =0 (5 U = f 20 g

Oz dy Oz at at 8 = —eopo(w — M),

. Applying boundary conditions at= —z; andz = 0
therefore, the spectral counterpgfitsatisfies the Helmhotz
equation \
q EY i =0
Z=—Z0 Z=—Z0
o ; o @
[8 5 — A= B2 —i(w — M)op + ep(w — )\U)Q:| f=0. £y Ly =0
z z=—2z z=—2z
(6) ° o (13)

_ g o2 ,

We rewrite (6) as S O i P
o ~ T LA
_ )\2 _ /32 _ 72 f -0 (7) z=—2zg z=—zq
022

where;”, BV, HY, Hy" andEs” | E}Y, H.?, H,” are
wherey? = i(w — Av)ulo + ie(w — Av)]. the electric and magnetic field components above and below
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Fig. 2. Normalized surface impedance as a function of velocity for frequency
f = 0.1 Hz. Fig. 3. Normalized surface impedance as a function of velocity for frequency
f = 1kHz.
the source at = —z. To solve these equations, the “source” ) _
coefficientsh andb* are obtained are the TM wave impedance and TE wave admittance, respec-
tively. If the earth were homogeneous with electrical constants
Bz + My . o, €, andu, we would have
— —Ug 20
T 2e0(w = AV)(A2 + 32
of . X +i ) ' (14) "
* Az — /31y —ugZo Zo = ﬁ (17)
= —me g telw v
0 and
The other coefficients are related to the source coefficients Yo = Tl — o) (18)
andb* as follows: ip(w = Av)
a=Rb respectively, where = /A2 + 32 4 ~2,
o — R*D* We define the simple scalar surface impedance and admit-

15 tance as
c = (R — ¢?uo0)p (15)

ot = (R* + e?ug;:g)b* aHO
. . Z:& :_Ey — _ Oz (19)

whereR and R* are the reflection coefficients Hy |y H, | ico(w — M)

_Ko—-2 and -

T Ko+ Z Ol

16 H, H
- No+Y Eylre Eylrg tho(w — Av)II
z=0
where
respectively.
Ko = U0 and N = U0 We introduce the “wave tilts” concept to get further insight

ico(w — Av)’ ipo(w — \v) of the basic wave impedance and admittazicandY”. We first
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set\ = 0 so that the excitation is uniform in thedirection. It § A=2nX1.000 (radiansim)
is not difficult to show that the electric wave tilt is given by \\
EJ; (7)) 1-R cow \
W=-— =———=—7Z. (21)
E.|._, #B1+R Jéi A=2x%10,000 {radiansim)
Similarly, the magnetic wave tilt is 08
H, 1-R*
Wr=_ 2= M =%y 22)
H.|._, ipl+R 15}

These wave tilt ratios are measurable quantities, and they are
simply related to the basic wave impedance and admittance. In
general, however, the field ratios do not have a simple relation-
ship toZ andY’.

Furthermore, the surface impedance, in general form, is pos-
tulated as

whereZ,,, etc., are the elements of the surface impedance ma-
trix [Z] that relates the tangential electric fielland the tan-
gential magnetic fieldH.
As a further step, we need to exhibit the field components in
the regionz > 0 as follows:
0
) o

{ Eo. } _ (Bje + Ajy)iuo
Eoy | 2¢o(w — Mv)(A\2 + 32)
. |:e—u0(f«/+f«’0) _ Re—'u0(2+f"0):|
()‘ja} + ﬁjy)ﬂo(w - )‘U) { }

2iuo(A\2 + 32)

0.6

[ZoI11Za(0)]

©
~

1=21X100,000 (radians/m)

S

E, = ZyoH, + Zyy H,

(23)
By =ZyH: + ZyyHy

\
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Fig. 4. Normalized surface impedance as a function of velocity for frequency

A # = 300 kHz.

-8

: [6_”0 (+420) 4 Rrem0 (ZJ’ZO)} (24)  Using wave tilt equations (21) and (22), we obtain the elements
and of the surface impedance matrix by solving (27)
Ho, 2002 +52) | A Ly = — yy:m(Y— — Z)
(Bio i) [N D=1 (28)
2(X2 + %) { —/3} N Z gyt
. [C*UO(Z-FZO) + RC*UO(Z'FZO)} . (25) yr _W J

In order to determine the elements of the surface impedance

matrix, we examine the fields at the air/earth boundary 0)

next, which are
Eoz|._o = Zee Hoel.—g + Zey Hoyl._o

-

E0y|z=0 = Zya H0w|z:o + Zyy H0y|z=0

IIl. NUMERICAL RESULTS

It is interesting to examine the influence of velocity of an
overhead moving current system on the surface impedance. We

(26) .
assume that the earth is homogeneous. The parameters we use

Equation (26) must hold for any linear combinationjpfand aréo = 0.01 S/m,e. = 10co, andp = pio. F.urt'herr.norej we
4, and we can write a set of linear equations after a detailé@nsiders = 0 for simplicity so that the excitation is uniform

mathematical manipulation

'LﬁuO .
ooyt B = [Zed = ZoAlA+ R)
MO(%OM)AG + R) = ~[Zewfp + Z2yN|(1 — RY)
i)\uo _
alo— oy L B = [Zd = 2y, P10+ B)

in the x-direction.
\ The numerical results derived from these assumptions show
the normalized impedandeZy(v)|/|Zo(0)| varied by the ve-
locity v, whereZ,(0) is the surface impedance of the stationary
case. The relativity effect is not considered here. Figs. 2 and
Fig. 3 illustrate the normalized surface impedance at the fre-
guencies 0.1 Hz and 1 kHz, which bound the frequencies used
in most magnetotelluric surveys. Fig. 4 and Fig. 5 present the
normalized impedances at frequencies 300 kHz and 300 MHz,
) respectively. These frequencies are adequate for shallow geo-
(27) physical surveys performed on airborne platforms.
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1 A=22X1,000 (radians/m) The numerical results demonstrate the influence of the ve-
FMW’OOOW locity on an overhead moving current system to the simplest
09 surface impedance on the air/earth boundary. Two frequency
\ ranges are examined: the first is a very low frequency range as
08 would be considered in magnetotelluric surveys; the secqnd isa
\\ A=2nX10 mdm) higher frequency range adequate for controlled source airborne
surveys. The velocity of the moving source makes the source
07 frequency shift. When the source fields change rapidly, this shift
effect cannot be neglected. Since the velocity affects the mea-
_ 06 sured value, the curves developed can be used to determine the
% effects of the velocity on the measured data.
S 05 These curves can, therefore, give the appropriate correction
\:7 factors for the EM fields induced on the ground. From the curves
= 04 obtained, it can be concluded that the surface impedance are
more greatly influenced at high-source velocity.
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