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Modeling Radio Wave Propagation in Tunnels with a
Vectorial Parabolic Equation

Alexei V. Popoy Member, IEEEand Ning Yan ZhuMember, IEEE

Abstract—To study radio wave propagation in tunnels, we case of wave packets propagating along the waveguide axis with
present a vectorial parabolic equation (PE) taking into accountthe - small Brillouin angles an approximate separation of the longitu-
cross-section shape, wall impedances, slowly varying curvature, yina)| yariable is possible for smoothly nonuniform lossy waveg-
and torsion of the tunnel axis. For rectangular cross section, two id f arbit fi Th toli vsi
polarizations are decoupled and two families of adiabatic modes uices o ar_ Iitrary Cross section. The asymp 0 '9 ana_l ySIS gen-
can be found explicitly, giving a generalization of the known €rates a discrete set of low-order vectorial “adiabatic” modes
results for a uniform tunnel. In the general case, a boundary value depending on the local value of the waveguide axis curvature.
problem arises to be solved by using finite-difference/finite-ele- | jke in rigorous modal theory, they can be superimposed to rep-
ment (FD/FE) techniques. Numerical examples demonstrate the yegent an arbitrary paraxial wave packet. In practice, only such
computational efficiency of the proposed method. . . .

o _ ~ paraxial modes survive at large distances, because the wave-
Index Terms—Adiabatic modes, radio wave propagation in 4 ije wall absorption usually has a minimum at grazing angles.
curved tunnels, three-dimensional (3-D) numerical modeling, This derivation is laid out in Section Il with lization t
vectorial parabolic equation (PE). This derivation is laid out in Section Il with a generalization to
include the case of an arbitrary three-dimensional (3-D) curved
axis when the torsion effects may be of importance.

Although adiabatic mode theory enables one to study radio
HF/UHF radio wave propagation in tunnel environmentwave propagation in realistic tunnels, it is not always conve-
has been a research subject for a long time (see [1]). Reent for practical applications because of the remaining com-

centinterests in this subject have been aroused in the wake offiléational difficulties (solving the eigenvalue problem for com-

development of mobile communication systems. Two methogBcated tunnel profiles and numerical summation of the eigen-
are mainly in use: geometrical optics (GO) [2]-[6] and moddlinctions in a multimode situation). In this respect, a straight-
analysis [7]-[9]. forward marching method, like the well-known parabolic wave
The GO analysis is complicated at long ranges due to tequation [13]-[15] would better fit the engineers’ needs. The
growing number of contributing rays and breaks down in causparabolic equation (PE) seems to be an adequate mathemat-
regions. It must be remembered that multiple caustics ocdoal model of wave propagation in tunnels due to selective wall

both in straight tunnels and especially in curved waveguidabsorption filtering out higher Brillouin angles and forming a

[10], where propagating modes of the whispering gallery typgmraxial wave packet, even if the waveguide axis is not a straight

[11] may be excited. While reasonable numerical results canloge but a smooth curve. A similar situation of scalar guided

obtained by estimating wave amplitudes via the calculated rejaves in smoothly nonuniform media has been studied in [16]

density [3], [4], [6], this approach requires excessive compw4th the parabolic equation method. In our case, additional com-

tational work and may produce artifacts due to the aforemeplications arise owing to vectorial and nonseparable character of
tioned reason. So, apart from extremely high-frequency praiie problem. So we need a 3-D vectorial PE describing paraxial
lems, a full wave solution seems to be preferable. The analoggve propagation along a smoothly curved waveguide axis and
between a tunnel and a common electromagnetic (EM) wawagmitting appropriate boundary conditions (BC’s) on the tunnel
guide suggests the application of the modal approach. Howewea|ls.

this theory is only useful in rare cases of a small number of dom-computational efficiency of the vectorial PE has been demon-
inant propagating modes in a uniform waveguide, not to megyated recently in [17], [18] where realistic problems of EM
tion the difficulty of determining the eigenfunctions for a reabropagation and scattering were solved on a modest desktop
tunnel. computer. In our case, an essential modification of the ordinary
An extension of the modal approach to a more general class@ttorial PE is required to adapt it to the curved propagation
wide (compared with the wavelength) smoothly curved wavegne A reliable way to do that is based on the rigorous asymp-
uides has been presented in [12]. It has been shown that in #§& solution [12] described in Section II. As has been pointed
out in [19], the asymptotic series of the adiabatic mode theory
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aA. V. Popc.)v is with the Institute of Terrestrial Magnetism, lonosphere an\ﬁieIdS anew two-component vectorial PE describing diffraction,
Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Mosc@tfenuation and depolarization of arbitrary paraxial EM wave

I. INTRODUCTION

142190 Russia (e-mail: popov@izmiran.rssi.r). packets in smoothly nonuniform oversized lossy waveguides,
N. Y. Zhu is with the Institut fir Hochfrequenztechnik, Universitat Stuttgart, . . . .

D-70550 Stuttgart, Germany (e-mail: zhu@ihf.uni-stuttgart.de). including exponentially small effects of nonadiabatic mode con-
Publisher Item Identifier S 0018-926X(00)09355-8. version [20]. This is the main contents of Section Ill. In order

0018-926X/00$10.00 © 2000 IEEE



1404 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 9, SEPTEMBER 2000

not to overload the paper with cumbersome derivations we as-
sume from the beginning Leontovich BC’s to be imposed on the
waveguide walls. The applicability of the impedance BC's for
curved material surfaces has been studied in [13] and [21].

For simple tunnel profiles the vectorial PE can be solved an-
alytically and the solution can be used for validation purposes
(Section IV). In the general case, numerical solution of the PE \
is obtained using the Crank—Nicolson finite-difference/finite-el- Y
ement (FD/FE) scheme with a sparse matrix solver (cf. [18],
[22]) or FD splitting techniques [22]. In the immediate vicinity
of the radiation source, the PE does not properly describe ffig@ 1. A curved tunnel
wave field distribution and is to be replaced with another ap-
proximation. In order to provide correct initial values for PE ingog1e p ~ (p/k?)Y/3 determines the boundary layer thick-

tegration, we make use of a GO based computer code [23] Gidss where the creeping waves are formied=( 27/ is the
culating geometrical reflection of the primary dipole radiatio(havenumber). Corresponding order relations= kD?/L ~
from the impedance surfaces. This combination enables oneUg%)—l/z < 1,0 = (k2D?*/L)Y/? ~ 1 allow for a simple

study radio wave propagation in the complete range of interggiy versatile field description in terms of the parabolic equa-
(Section V). Finally, Section VI summarizes the main points Qfon, A similar boundary layer arises in the case of the whis-

this work. pering gallery mode [11], [16]. In our case, due to the waveguide
boundary conditions, a more sofisticated vectorial propagation

Il. ADIABATIC MODES OFCURVED EM WAVEGUIDES mode emerges, but the above order relations still hold.
In order to construct an asymptotic solution of the considered

Consider a smoothly nonuniform waveguide (Fig. 1). Gemsopagation problem we introduce scaled varialgles s/L,
eraII_y, its axisro(s) is a space curves bemg the arc Iength. n=y/D, (= 2/D; x(€) = L/p(s) and rewrite the governing
We introduce a local Cartesian frarg =) in the Wavegl_ude Maxwell equations (time dependeneep(jwt) is used in this

p(s) = O(L)

cross sectios = Const: 7(s, y, 2) = To(s) + yey + z€. With work)
ey = mcosf — bsinf, €, = msiné + bcos # wherem and
b denote, respectively, the principal normal and binormal of the rot H = jkE, rotE = —jkH (1)

waveguide axi$,(s). Rotation anglé is related to the torsion

of the axis vig# = 6o+ f; 7(s) ds. The Lameé coefficients of the putting the electric and the magnetic fields together in a six-
systen(s, y, z) areh, 1, 1withh = 1—(y cos§+zsin6)/p(s), component vectofl = (hEe, E,, Ec, hHe, H,, H))" (cf.
wherep(s) denotes the curvature radius of the waveguide axig2]). Direct substitution yields a six-component PDE
Fo(s)—cf. [16].

Let us summarize the physical considerations mentioned in =9I — — 1 911
the Introduction. L/3La—£ +v [MO + (- hQ)Ml} E
1) We are interested in high-frequency propagation when the — 5= 1 011
wavelength) is small compared with the waveguide di- +v [NO +(1-h )Nl} aC
ameterD (oversized waveguide). =
= —johRIL (2)

2) As arule, dominant propagation modes have small Bril-

louin angles with respect to the waveguide axis. == = = —

3) Relative axis curvature [ratio between the diamé&tand Here,o = \/k2D?/L; L, Mg M1, No, and Ny, are constant

the curvature radius(s)] is usually very small; diagonal block matrices, arfd is an antidiagonal block matrix

4) Leontovich impedancBC 7 x E = —Zn x (7 x H)

can be used as an approximation of the wall electrical
properties, cf. [13], [21].

These restrictions can be formalized by introducing a small
parameterr = /D/L <« 1 and assuming\/D = O(v),
L/p(s) = O(1). Here,L » D is a characteristic scale of
the longitudinal nonuniformity (these order relations are usu-
ally satisfied for the VHF/UHF band while the precise definition
of the parameter®), L is not important as they do not appear
in the final equations). Diffraction processes in such nonuni-
form waveguides are governed by the Fresnel numiB¢i L =
O(r) « 1 and another dimensionless parameter, which can be
called the Fock numbey/D3/X2L = O(1), as it appears im- -
plicitly in Fock’s classical study of short wave diffraction by
a convex cylinder [13, chs. 7-9]. In that case, the cylinder ra- Ty =
diusp(s) stands for the longitudinal scalewhile the transverse

il
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In this concise dimensionless notation of Maxwell's equdellowing from the solvability conditions for the subsequent am-
tions, our small parameter appears explicitly, making clear plitude vectord’,, U; [12]. Here,A | = (92 /9n?)+(9? /9¢?)
the asymptotic character of the problem. Itis easily seen that é)dy(£) = ®5(&). Itisimplied thatw_; = 0, so the zero-order
represents a singularly perturbed system and cannot be solRP&E is homogeneous.
by straightforward expansion in powersaf A good guess is At the boundary contour of the waveguide cross section,
to allow the solution to oscillate along the waveguide axis @®nditions to be met by; arise from substituting the Ansatz
exp[—jo®(¢) /3] and to assume the lateral derivativd$/dn,  (3) into the impedance BGix E = —Zn x (7 x H). Equating
0I1/9¢ being of order of unity in virtue of the above agreethe terms of the same order efwe get

ment 2) to consider low-order modes with small Brillouin an- B _ — Jwo
glesp = O(v). That suggests the following asymptotic Ansatz: Wolr =0, wi|r = To GTo T (8)
T =Uexp(—jod/1?) (3) with
where the eikona®, in general, is a second-order polynomial ?0 = <”y ””) , G= <1{)Z g) .
of v and the vector amplitudg (¢, 7, ¢) is sought as an asymp- e Ty
totic series in powers af Here,7 = (n,, n.) is the unit normal tol' and Z is the
impedance, not necessarily uniform, of the tunnel walls. For a
B(E) = B+ 1Dy + 12Dy, U= Z ViU (€, n, O). (4) wall material with relative permittivity:,. and conductivityoo

there is approximately = 1/+/¢,. — j60Aao (see [13], [21]).
. . . As both components of the zero-order vector amplitude
Itis assumed that the vector amplitudésare slowly varying Wo = (uo, vo)? satisfy identical PDE (7) anBC (8), they are

functipns_—true .for low-order modes W,it‘a = O,(’/,)' After . proportional to a single scalar eigenfunction of the Dirichlet
substituting (3) into PDE (2) and equating coefficients of lik oundary value problero|r = 0. The corresponding eigen-

powers of, we get a sequence of linear algebraic equations f%lue%m( ) gives a small index-dependent correction to the

the vector amplitudes’,, zero-order eikonalPs (&) = [ ymn(§) d€. ONCeWs (s, ¥, 2)
?U —F,, i=0,1, S—h_ %@ﬁ and~,,,(s) are found [both depend on the longitudinal variable
/= s = L& via curvature radiusp(s) and torsion anglé/(s)]
F,== <Mo +N0a ) the leading term of (3) is determined but for a normalizing
g ¢ o polarization vectormwo (s, 4, z) = (A, B) wmn(s, y, 2). Its
+ [m(n cos 0+ € sin )R + @ L} Ui—z componentsd(s), B(s), from the solvability condition of the
J inhomogeneous boundary problemfor(s, ¥, z), are coupled
O_ [La—g + 2k(ncosf + £sin6) via a pair of ODE’s [12]
<M1a —i—Nlaﬂﬁi_g7 0<i<4. %:PMA-FPUB, %=P12A+P22B )
9¢ 5) coefficientsF;; being functionals of the impedance

2
The homogeneous zero-order equation has a nontrivial solution P11 = —2%/ (n2/Z +n2Z) <87;;m> dr
only if det S = 0, which glves<1>0(£) = ¢, Uy = uoa + vob, r 9
where@ = (0,1,0,0,0, 1)7,5 = (0,0, 1,0, -1, 0)Z are P :__/ nyn(1/7 — 7) <%) Jr
two annulling eigenvectors of the reduced mathix= & — r on 4
L. Solvability conditions of the next nonhomogeneous equation 1 2 2 OWmn
(i = 1) (cf.[10], [12]) resultin®, (&) = 0, U = wia@+vi1 b+ f, Pr T 2k? / (nyZ +n2/2) < an ) dr.— (10)
. T They determine attenuation and depolarization of the propa-
— J dug  Ovg dvg  Oug _ . . .
fi== <—— - —,0,0, — — —, 0, 0) (6) ogating waveguide mode due to absorption and coupling of the
¢ on ¢ on ac’ electric field components in the waveguide wall material. Equa-
Coefficientsu; (&, n, ), v:(&, n, ¢) are at this stage arbitrarytion (10) shows that generically these two effects become more
scalar functions. Clearly, the zero-order approximation yieldsgnificant with growing indicesn, n.
a purely transverse electromagnetic field, while the first-order
correction introduces a small longitudinal componefi. [ll. VECTORIAL PEFOR A CURVED TUNNEL
In order to complete constructing the leading term of the

Z‘sxrsnp:r)gch:(s)lltjél(zjr:atéaan|?12dthtg J:andng\?vi grrs:)I?tLd deer fﬁ?]:t? gnmlnlmum absorption modes of an arbitrarily shaped, smoothly
W€, n, ¢) and w(&, m, (), i = 0,1 in (6). They satisfy RBnuniform oversized waveguide. Their propagation character-
trie 7fol’lowmg dlfzfer’enilal ’equanons in vector notation for istics can be calculated explicitly for arbitrary cross-sectional
T shape and material properties. Unexpectedly simple analytical
wi = (ui, vi)": formulas (10) can be used as a basis to predict propagation
dw;_y losses in realistic tunnel environments. However, the principal
73 drawbacks of modal theory still remain. First, in an oversized
1=0,1 (7) waveguide several modes can have almost identical attenuation,

Asymptotic analysis of Section Il yields a series of low-order,

AL W; — 202y + r(ncos + Csind)|w; = 2jo



1406 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 9, SEPTEMBER 2000

so it is not easy to foresee which will be dominant. Seconghysical variablegs, y, 2), the two-component vectorial PE

in many applications, such as mobile cellular communicatiofgr paraxial EM waves in a wide smoothly curved tunnel now
one is interested in prediction of radio wave propagation nwadst |, = (E,, E.)T = W exp(—jks)

oqu over large distances but also at intermediate ranges. For oW W W Ly cos8(s) + zsinf(s) —
this purpose, too many modes would be necessary to adequateyj — = —— + —— — 2k

describe strong field variations inherited from the near field Os Oy 0z p(s)

multiray structure. Finally, practical applications require more 12)

realistic modeling including local inhomogeneities created bijhe tangential electric field componeiitg, E. are weakly cou-
traffic and technical constructions. In this case, using modsled through a matriBC

theory becomes cumbersome and impractical. This motivated o i— —— gW
us to look for an alternative description of the wave field in W|F = %TO GTy |l (13)
tunnel-like environments. e

Such an alternative approach is suggested by the recursivé his boundary value problem gives a full wave description
equations (7) reminiscent of the well-known parabolic wavef paraxial EM propagation along the curved waveguide axis.
equation [13]-[15]. Of course, (7) is not a PE; just a recursiequation (12) accounts for transversal diffusion of the vector
two-dimensional PDE, because the functions in the right- ai@ve amplitude (s, y, z) over the approximate plane wave
left-hand sides are different. However, we can derive an apprdsents s = Const [14], whereas the matrix BC (13) governs the
imate vectorial PE by considering a partial sum of the powéffects of grazing angle reflection, selective mode absorption
series (4). Having confined ourselves to the first two terms agéid depolarization in the curved waveguide walls. Depending
denoting on the spectral contents, its solution can represent a wide va-

riety of the wave fields evolving from sharp “ray-like” interfer-
w = wo + VW ence patterns inherited from GO in the vicinity of the radiation

source to a smooth “mode-like” cross-sectional field distribu-

we obtain from (7), as a linear combination of the equationg, 4t |arge ranges where a small number of modes become
governingw, andw, the following relationship: dominant (see Section V)

Inview of the approximate nature of (12) and (13), itis neces-

AL — 20% [y + r(ncos § + Csin )@ = 2jvo 38@0

¢ sary to look at the uniqueness of their solution at this stage. Gen-
By neglecting the second-order terms, this equation becon®lizing the well-known technique developed for scalar PEs
self-consistent (e.g., [24]), consider the powé?(s) passing through the tunnel

o cross sectiort

g
AW — 202y + k(ncos§ 4 (sin0)|w ~ 2jro—. -
S ) 8 P(s)z/ W dSz/(lUl“‘+|V|2>ds
To eliminate the range- and index-dependent eigenvalie s s

Ymn (€), cOnsider next a modified unknown vectdr = (U, V) Onuse of (12) and (13), its evolution with varying rangean
defined asV = wexp(—jor~t [ vd¢). Immediately, a gov- be expressed in terms of the boundary values of the transversal

erning equation fof¥ comes up field divergence and vortex
. OW — 5 R dP(s) 1 1\ |oU 8V
2‘11/08—5 ~ AW — 2k0%(ncosf + Csin )W (11) is K Re. Z) | ou + p
a partial differential equation of “parabolic” type. A remarkable U av 12
feature is its independence of the mode nunfler»), which +Re. 7 dar. (14)
T ) . . oz 8y
means that any superposition of adiabatic low-order waveguide

modes satisfies (11) to the accurdeg?). Being based on the  For passive tunnel walls there is always Re: 0 and, hence,
rigorous asymptotic analysis [12], this vectorial PE can be usB&(1/7) > 0. This implies that the poweP(s) carried by the
as a reliable tool for field calculations in smoothly nonunifornene-way propagating wave fieldf never increases. Therefore,
oversized EM wavguides. it turns out immediately that the boundary value problem (12),
In accordance with (3)—(6), vector functidl’ is related (13) is uniquely solvable. In fact, |8 = W, — W, be the
to the tangential electric field in the tunnel cross sectiadifference between two possible solutions corresponding to the
E, = (E,, E:)" viaE, = Wexp(—jo&/v®) + O(*). same initial value. Evidently¥ (s, v, z) satisfies the PE (12),
Using the terminology of radio wave propagation theorgnd P(0) = 0. Thus, in virtue of (14), its energy flow equals
[13], W (s, v, z) can be called the attenuation function whiclidentically to zeraP(s) = 0. This, in turn, shows that’ = 0,
describes the complex wave amplitude of the approximately = 0, i.e., W, = W, which means the uniqueness of the
plane wavesxp(—jks) propagating along the smoothly curvedsolution.
waveguide axis. A similar procedure transforms the recursiveWe note that (12) is a vectorial counterpart of the scalar PEs
relation (8) to an approximatBC for W to be met at the describing creeping and whispering gallery waves [13], [16] and
cross section contour. As it was stated in Section I, theincludes, as a special case [for a straight tunnel w(ith = o],
above equations do not depend on the precise definition thé vectorial version of the Leontovich—Fock PE used in [17].
the scaling paramete® and L that served just to clarify the Being asymptotically equivalent to the rigorous adiabatic mode
asymptotic character of the problem. Returning to the origintdeory of Section Il at the ranges= O(L), itopens an easy and
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reliable way to model EM wave propagation in realistic weakly Inserting (18) into (16), one obtains the following transcen-
nonuniform tunnels. For larger distances or greater waveguidiental equations:

axis curvature, PE reveals exponentially small{iparameter)

nonadiabatic effects, such as residual mode conversion after [Bi(t") + OB (#1)] [Ai(tT) — QAI(t7)] =1

having passed an analytically smooth transition between two  [Ai(t) + QAI'(t1)] [Bi(t—) — QBi'(¢7)]

regular waveguides (cf. [20]). o= a2
" jka
IV. VALIDATION , COMPARISON, APPLICABILITY [Bi(zt) + PBi'(21)] [Ai(xo) — PAI'(z0)] 1
The main purpose of this section is validation of our approach ~ [Ai(z+) + PAi'(z+)] [Bi(wo) — PBi'(20)]
by comparison with the published results on radio wave prop- P = q (19)
agation in tunnels. As most estimates have been obtained for JkaZy

rectangular tunnel profiles, we will consider this s|mplestc:ase\|l\rllIth # = to+ q, 2+ = 20 + p, t0 be solved foro, zo. They

S a0 el e el etecihe siar to s bt n s partular e 0 7, —
Let the tunnel cross sectiofi be a rectan |¢3/| <a0< "0, co) by Mahmoud and Wait [7] and become identical for the
gyl S @9 S fndamental mode thoroughly studied in [7]. Equations (19) can

z < b. In this casen, andn., two components of the out- . :
o ! . . be solved numerically, which enables one to calculate the com-
ward pointing normal o', vanish alternatively at the vertlcalplex exponent

side wallsy = =a, horizontal floory = 0 and ceilingy = b,

so the impedance matrik, G T, becomes diagonal. There- ¢ 2

fore, transversal electric field componeis, = U(s, y, 2) Pr2 = 2k \ a2 to + 35 To

andW, = V(s, y, z) in the orthogonal framéy, z) turn out 2/3 o \2/3

to be completely decoupled. This allows one to find two inde- = —jk fo(cos9) k;ff/(;m %) (20)
pendent series of adiabatic modes corresponding to horizontal (2k2p?)

or vertical £ . determining phase velocity and attenuation of the waveguide

Consider for example verticadl | polarization described by mode, as well as its cross-sectional pattern via equations (18). To
the V' component of the attenuation functiéfi. As follows jjystrate the effects of curvature and torsion we include a series
from (12), (13), it satisfies the respective scalar PE of transversal field patterns in a rectangular waveguide with the

dimensions and wall electric properties of a typical road tunnel

av 9V n 9%V o,2 Y €08 8(s) + zsinb(s)

9119V _ _ v (15) (Fig. 2).
T 85 Oy? 922 p(s) (15) It is well known that the tunnel axis curvature causes the
field concentration near the concave side wall. Surprisingly,
with the third-kindBCs even frequently encountered small values of tunnel curvature

give a very strong concentration effect forming the whispering

[Vﬂ: ﬂ ﬂ} -0 [V¢ R ﬂ} -0 gallery mode [11] completely detached from the convex
Jk 0y Jyesa JkZ1 9z ] __g, inner wall—compare Fig. 2(a) and (b). In the general case of

(16) nonplanar 3-D axis curve, its torsion causes local tilts of the
waveguide cross section, which can also change the modal field

determined, accordingly, by the characteristic impedanggs: Pattem. As one could foresee, for tunnel environments this
of the side walls an& of the the tunnel floor and ceiling (we effect is almost negligible: we can notice a difference solely for

consider them generally to be different). unrealistically high tilt angles liké = 45°—compare Fig. 2(b)
For p = Const,# = Const, low-order modes of such awave@nd (c). As this effect depends upon the cross sectional shape
guide can be obtained by separation of variables: and dimensions of the waveguide, we mention it, bearing in

mind possible applications of the proposed theory to other
oversized guiding structures.
As the dimensionless constants) /ka andp/kbZ, are usu-

) ) ) i ally small, explicit approximate formulae can be obtained using
(we choose_the notation consus’;ent Wlth Sectl_on ). Sta”d%grturbation theory. The zero-order approximation
procedure yields the corresponding eigenfunctions expressed in

V(s, y, z) = U(y)E(2) exp(L22s) 17)

terms of Airy functions [16], [25] Ai(t7)Bi(tt) — Bi(t7)Ai(tt) =0
Ai(z0)Bi(zT) — Bi(xo)Ai(zT) =0 (21)
\I_/(y) = ClAl_(t) + CQBI(_t) agrees with the results of Section Il (cross-sectional field distri-
E(z) = D1 Ai(z) + D> Bi(z). (18)  pution in the leading term of the asymptotic solution is found

from a Dirichlet boundary value problem while the effects of
Here, new variables = to + qy/a, © = xo + pz/b are in- the wallimpedances appear only in the higher-order terms). Fur-
troduced;qy = (2k?cos@/p)Y3a, p = (2k?sin@/p)/3b are thermore, it+ > 1 (actually,t™ > 3) the firstterm in the upper
dimensionless parameters, whileandz, are constant eigen- line of (21), containing Bit*), dominates and it simplifies to
values to be found fromBC (16). Ai(t™) = 0. Its evident solution i3~ = —t,,, to = ¢ —



1408 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 9, SEPTEMBER 2000

Num. solution (19)

10 - + Asymptotics (29)
[ o v,, [7]
I ® Vy [71
e s 2
—;10° .
K4
\3 A

10"

e v v e e

0 0.02 0.04 0.06 0.08 0.1 0.12
alp

z [m]

Fig. 3. Attenuation rate fob';, and V2o modes in a rectangular tunnel with
electrically perfectly conducting ceiling and floof (= 1000 MHz, tunnel
width 2a = 2.133 m; wall parameters:, = 10, 0 = 0.01 S/m) as a function

of relative curvature:/p. Solid lines: numerical solution of the transcendental
equation (19), crosses: asymptotic formulas (29); circles: numerical results of
[7] for LSMy 1 = Vip and LSMy, 2 = Vo modes.

with 7 = (2/3)(—t)%/2, 7+ = (2/3)(—tT)>/2. Evidently, func-
tion (23) vanishes & = a. Imposing similaBC ¥(—a) = 0

at the left-side wally = —a, one obtains instead of (21) a sim-
plified transcendental equation

sin | 2q(—to)Y? (1 — 1q¢ -2V =o (24)
24 3 32t3

with the approximate solution

z [m]

rm\° g\t 1 ¢t
o~ — (2 +5(—) oL =12 ..
0 2q T™m 3 m2m?2
-4 2 0 2 4
y [m] (25)
(©) Substitution into (23) yields
Fig. 2. |V(y, z)| of the2 x 1 mode in rectangular tunnels with = 5.5 and . [mm Yy
oo = 0.03 S/m at 950 MHz with the brightness proportional to the normalized \I/(U) ~ sin [7 (1 - _ﬂ + O(Q) (26)
amplitude. (@Qp = com, 8 = 0°. (b) p = 800 m,6 = 0°. (c)p = 800 m, a
6 = 45°. a simple straight waveguide mode with a small correction pro-

portional to the axis curvature to the power 1/3. A similar ap-
wheret,,,m = 1, 2, ... are the negative roots of the Airy func-proximation is valid for the vertical eigenfunctions
tion—see [16], [25]. In this case, the horizontal eigenfunction is
proportional to To R —

72n?

2 7

E(z) = sin %z, n=12,... (27)

U(y) ~ Al [—tm +4q (1 + g)} . (22) asthe torsion effects are usually very small. Perturbation theory
_ T applied to the exact transcendental equation (19) yields small
Physically, that means that the wave field is detached from t@grections to the eigenvalues =, due to the surface imped-

convex right waveguide walj = a due to strong curvature ancesZ)|, Z., which results in the following approximate for-
effects and a purely whispering gallery wave [11] is formed neg{ -

the concave wally = —a. -
In the opposite case of very small axis curvature, parameter Pyy 7o — ﬂ dto _ A'n (28)
to becomes large and, after replacing in (18) the Airy functions p dg 2037,

with their WKB asymptotics (see [16], [25]), an approximaigeing in full agreement with the straightforward evaluation of
solution arises the contour integral (10) of Section II. In the above mentioned
. 5 limiting cases of the whispering gallery or of the almost straight
~J _ + —_— . . .
U(y) ~ sin [(T ) <1 + 727—7—+>:| (23) waveguide modes, the corresponding approximate formulae for
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y Im] N
S [m] 95 195 -30 y [m]
@ (b)

Distance to dipole 130 m Distance to dipole 230 m
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-1 1

0
y [m]
(e)

Fig.4. |V(y, z)| inarectangular tunnel with traffic obstructions at different distances to a vertical half-wavelength dipole placed 30 m outside the tuneel entranc
(f = 1.8 GHz,p = 1000 m, ¢, = 5.5, andoy = 0.03 S/m). (a) Geometry. (b) GO field at the tunnel entrance=(0 m). (c) PE field ats = 100 m. (d) PE
field ats = 200 m. (e) PE field ats = 300 m.

to(g) can be used to give a practical estimate of the mode attdines depict the attenuation of the two lowest order modes of the
uation per unit lengtlv, [dB/km] = —8686 Re. Paq curved rectangular waveguide considered in [7], and the crosses
represent the asymptotic estimates (29) for the two respective

o?""[dB /km] , limits. A comparison with Mahmoud and Wait's numerical re-
~ 43430%Re. [ — Y = 1 4343)\2Re. Z sults taken from [7, fig. 3] (white and black cwclgs) shows a
Z,) b good agreement for moderate values of the relative tunnel cur-
2 A+ 1 vaturea/p.
A2p 0o > In the validity region of (22) [first line of (29)], the main
2 3(1r _ 42,2 (29) part of the whispering gallery mode attenuation is caused by
m” | 8Qa) (S —mm) | e oy hmic and refraction losses in th ide wakt
(2073 5r2(mA)tp? A ohmic and refraction losses in the concave side watt —a

and rapidly tends, with increasing tunnel height and carrier fre-
(effects of torsion are neglected). A similar formula holds fajuency, to its limit 8686 ReZ) /o depending only on the tunnel
the horizontally polarized modes #, Z, are replaced with axis curvature and wall impedance. In the opposite case of an
the corresponding admittanc®&s= 1/Z. The accuracy of the almost straight tunnel [second line of (29)] this formula gives a
practical formulae can be inferred from Fig. 3, where the sol&mall (proportional to the second power of curvature) additional
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Fig. 5. |V(y, z)| in an arched tunnel at different distances to a vertical half-wavelength dipole placed 30 m outside the tunnel entrance and 3.6 m above the

ground (f = 900 MHz, p = 800 m, e, = 5.5, ando, = 0.03 S/m). The tunnel cross section consists of a half-circle of radius 4.8 m and a trapezoid of widths 9.6
m and 8.8 m and of height 2.5 m. (a) GO field at the tunnel entranee§ m). (b) PE field ats = 200 m. (c) PE field ats = 600 m. (d) PE field ats = 1000 m.

frequency- and index-dependent damping, compared with theA rough a priori applicability condition of the PE method
generally used approximation follows from expanding the mode propagation wavenumber in
powers of its transversal wavenumbers:

o 1\ n? m2 B2 4+ k2 (k24 k2)?
o [db/km] & 4343\ [Re. <Z> = —i—Re.Z”W} ko = k2= k2 — k2 =k — y% ! ys/& ) +(31)
(30) As is well known (e.g., [15], [26]), the “parabolic” approxima-
tion corresponds to the first two terms of this series. Therefore,

Asymptotic estimate (29), coinciding with the direct numericahe phase-error accumulation, limiting the applicability of the
solution of the rigorous PE eigenvalue problem (19) to thHeg, hasthe orderofmagnitudéc§+k§)2/8k3. Estimating the
accuracy of about 1%, agrees with the published results pansversal wave numbers by their explicit values for a perfectly
low-order mode attenuation in rectangular waveguides (¢fssless rectangular waveguide, one comes to the following PE
[71-[9]), which validates the proposed approximate solutiowalidity criterion (cf. [26])
Our approach can also simplify testing the approximate prac- \3 ) 072
tical estimates of the propagation losses in arched tunnels. So, §0 s 7 {(ﬂ) + (ﬁ) } < (32)
in the case of a circular cross section of diameteinserting 64 2a b
Bessel functionw(r) = Jo(jo,12r/d) into the integrals (10) Taken together with the above estimates of the waveguide mode
gives immediatelya [db/km] = 5090(Z + Y)A%/d® which attenuation (29), it enables one to find the rasgethin which
was the starting point for Yamaguchi's “equiarea” formula [9]PE accurately describes all essentially contributing modes.
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V. MODELING RADIO WAVE PROPAGATION IN TUNNELS tric field produced by the source and an appropriate number of
its reflections from the earth surface or tunnel walls. This com-
The advantages of the vectorial PE derived in Section Il mahination enables one to study numerically the complete propa-
ifest themselves when solving practical problems of radiowagation range of interest, a task which can be performed neither
propagation in tunnel environments. Not being able to exteby GO nor by modal analysis. An example of field calulations
sively describe here all possible applications, we confine oun-an arched tunnel is given in Fig. 5.
selves with two realistic examples demonstrating its versatility
and computational efficiency. VI. CONCLUSION
Even in the simplest case of a rectangular tunnel cross secy . . .
. ) o . ) y rearranging the asymptotic solution of the Maxwell equa-
tion, the straightforward numerical integration of the vecton:i\l ; . .
; - . . . igns for lossy oversized nonuniform waveguides [12], a two-
PE is usually more efficient than semianalytical solutions basgé
a

. . . mponent vectorial PE governing TE fields in the tunnel cross

on separation of variables. Apart from the purely computational . . . X
. .. ...section is derived. Two field components are coupled weakly
advantag_es demonstrated, e.g., in [15], [17], [26], theerX|b|I|t%{n the tunnel walls via a Leontovich-type matrix impedance
Zg: ptr;%/fc;(:;:‘fz(rjgr?tuizy Zf ;ﬁ?oﬁggég;r%g] :!O;’\r']se?(r;intolga(f'céndition. After having proved the uniqueness of the solution
id pth ¢ F} P gt | dt ' Lillumi fd’f Wthis boundary value problem, the eigenfunctions for tunnels
siderine entrance of a rectanguiar road tunnet fiuminated Irqja,,, rectangular cross section have been studied for valida-
outside by a vertical dipole. To predict the field strength msmheon purposes. The approximate mode attentuation constants in
the tunnel, the diffraction by the edges of the entrance aper- :

ture as well as the blockage by passing-by vehicles must %uch tunnels obtained through asymptotic analysis agree in spe-

. : ) USt Bfic cases with published results. In the general case, the vecto-
taken into account. In a rigorous formulation, such a diffrac-

) . . _Tial PE is solved using either a Crank—Nicolson FD/FE scheme
tion problem can hardly be solved with modest computationa . - :

means. However, in the framework of physical optics, the Kircr\{wth a sparse matrix solver or FD-splitting techniques. Asymp-

' L Lo Phy PUCS, totic analysis demonstrates the influence of the waveguide cur-

hoff approximation readily yields a simple and sufficiently ac- . . .

: . ) . vature and wall impedances on radio wave propagation char-

curate solution [27]. As PE is equivalent to the paraxial phys-, " . . . : A .

. ; . : . acteristics. Numerical examples show 3-D field distributions in

ical optics [14], [26], the aforementioned diffraction effects Can. . listic tunnels

be simulated numerically with a minimum modification of the To our knowledge, this method gives a more complete and ac-

standard computational scheme (for example, the vehicles %ar%;te description of radio wave propagation than other existing

. u
be represented as opaque screens of t_he co_rres_pondmg Sh% oaches. Not only is a deeper understanding of the propaga-
The results of such modeling are depicted in Fig. 4 showin ) : s .

) . S . .{on processes in tunnels gained, but also the realistic design and
cross-sectional field distributions in a rectangular tunnel Wltth L . e X -

. . ! . optimization of radio communication systems in such environ-
a car in the left lane and a truck in the right lane obstructmr%f ; . . .

: . L ents are made possible without excessive computational work.
the dipole radiation coming into the tunnel entrance aperture.
Although the Kirchhoff approximation does not describe cor-
rectly higher diffraction angles, the resulting discrepancy dies
out rapidly with range due to the selective absorption in the The authors would like to thank Prof. F. M. Landstorfer, Uni-
tunnel walls (see Introduction and Section II). versitat Stuttgart, Germany, and V. A. Vinogradov, IZMIRAN,

Generally, to solve the boundary value problem, namelyoitsk, Russia, for their support. They would also like to thank
the vectorial PE (12) subject tBC (13), we use either the two reviewers for their constructive comments, which helped
Crank-Nicolson FD/FE scheme with a sparse matrix solver rem to improve this paper essentially.
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