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Modeling Radio Wave Propagation in Tunnels with a
Vectorial Parabolic Equation

Alexei V. Popov, Member, IEEE,and Ning Yan Zhu, Member, IEEE

Abstract—To study radio wave propagation in tunnels, we
present a vectorial parabolic equation (PE) taking into account the
cross-section shape, wall impedances, slowly varying curvature,
and torsion of the tunnel axis. For rectangular cross section, two
polarizations are decoupled and two families of adiabatic modes
can be found explicitly, giving a generalization of the known
results for a uniform tunnel. In the general case, a boundary value
problem arises to be solved by using finite-difference/finite-ele-
ment (FD/FE) techniques. Numerical examples demonstrate the
computational efficiency of the proposed method.

Index Terms—Adiabatic modes, radio wave propagation in
curved tunnels, three-dimensional (3-D) numerical modeling,
vectorial parabolic equation (PE).

I. INTRODUCTION

V HF/UHF radio wave propagation in tunnel environments
has been a research subject for a long time (see [1]). Re-

cent interests in this subject have been aroused in the wake of the
development of mobile communication systems. Two methods
are mainly in use: geometrical optics (GO) [2]–[6] and modal
analysis [7]–[9].

The GO analysis is complicated at long ranges due to the
growing number of contributing rays and breaks down in caustic
regions. It must be remembered that multiple caustics occur
both in straight tunnels and especially in curved waveguides
[10], where propagating modes of the whispering gallery type
[11] may be excited. While reasonable numerical results can be
obtained by estimating wave amplitudes via the calculated ray
density [3], [4], [6], this approach requires excessive compu-
tational work and may produce artifacts due to the aforemen-
tioned reason. So, apart from extremely high-frequency prob-
lems, a full wave solution seems to be preferable. The analogy
between a tunnel and a common electromagnetic (EM) wave-
guide suggests the application of the modal approach. However,
this theory is only useful in rare cases of a small number of dom-
inant propagating modes in a uniform waveguide, not to men-
tion the difficulty of determining the eigenfunctions for a real
tunnel.

An extension of the modal approach to a more general class of
wide (compared with the wavelength) smoothly curved waveg-
uides has been presented in [12]. It has been shown that in the
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case of wave packets propagating along the waveguide axis with
small Brillouin angles an approximate separation of the longitu-
dinal variable is possible for smoothly nonuniform lossy waveg-
uides of arbitrary cross section. The asymptotic analysis gen-
erates a discrete set of low-order vectorial “adiabatic” modes
depending on the local value of the waveguide axis curvature.
Like in rigorous modal theory, they can be superimposed to rep-
resent an arbitrary paraxial wave packet. In practice, only such
paraxial modes survive at large distances, because the wave-
guide wall absorption usually has a minimum at grazing angles.
This derivation is laid out in Section II with a generalization to
include the case of an arbitrary three-dimensional (3-D) curved
axis when the torsion effects may be of importance.

Although adiabatic mode theory enables one to study radio
wave propagation in realistic tunnels, it is not always conve-
nient for practical applications because of the remaining com-
putational difficulties (solving the eigenvalue problem for com-
plicated tunnel profiles and numerical summation of the eigen-
functions in a multimode situation). In this respect, a straight-
forward marching method, like the well-known parabolic wave
equation [13]–[15] would better fit the engineers’ needs. The
parabolic equation (PE) seems to be an adequate mathemat-
ical model of wave propagation in tunnels due to selective wall
absorption filtering out higher Brillouin angles and forming a
paraxial wave packet, even if the waveguide axis is not a straight
line but a smooth curve. A similar situation of scalar guided
waves in smoothly nonuniform media has been studied in [16]
with the parabolic equation method. In our case, additional com-
plications arise owing to vectorial and nonseparable character of
the problem. So we need a 3-D vectorial PE describing paraxial
wave propagation along a smoothly curved waveguide axis and
admitting appropriate boundary conditions (BC’s) on the tunnel
walls.

Computational efficiency of the vectorial PE has been demon-
strated recently in [17], [18] where realistic problems of EM
propagation and scattering were solved on a modest desktop
computer. In our case, an essential modification of the ordinary
vectorial PE is required to adapt it to the curved propagation
line. A reliable way to do that is based on the rigorous asymp-
totic solution [12] described in Section II. As has been pointed
out in [19], the asymptotic series of the adiabatic mode theory
can be rearranged by including the first-order correction into the
leading term of the asymptotic expansion. Such a rearrangement
yields a new two-component vectorial PE describing diffraction,
attenuation and depolarization of arbitrary paraxial EM wave
packets in smoothly nonuniform oversized lossy waveguides,
including exponentially small effects of nonadiabatic mode con-
version [20]. This is the main contents of Section III. In order
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not to overload the paper with cumbersome derivations we as-
sume from the beginning Leontovich BC’s to be imposed on the
waveguide walls. The applicability of the impedance BC’s for
curved material surfaces has been studied in [13] and [21].

For simple tunnel profiles the vectorial PE can be solved an-
alytically and the solution can be used for validation purposes
(Section IV). In the general case, numerical solution of the PE
is obtained using the Crank–Nicolson finite-difference/finite-el-
ement (FD/FE) scheme with a sparse matrix solver (cf. [18],
[22]) or FD splitting techniques [22]. In the immediate vicinity
of the radiation source, the PE does not properly describe the
wave field distribution and is to be replaced with another ap-
proximation. In order to provide correct initial values for PE in-
tegration, we make use of a GO based computer code [23] cal-
culating geometrical reflection of the primary dipole radiation
from the impedance surfaces. This combination enables one to
study radio wave propagation in the complete range of interest
(Section V). Finally, Section VI summarizes the main points of
this work.

II. A DIABATIC MODES OFCURVED EM WAVEGUIDES

Consider a smoothly nonuniform waveguide (Fig. 1). Gen-
erally, its axis is a space curve, being the arc length.
We introduce a local Cartesian frame in the waveguide
cross section : with

, where and
denote, respectively, the principal normal and binormal of the

waveguide axis . Rotation angle is related to the torsion
of the axis via . The Lamé coefficients of the
system are , 1, 1 with ,
where denotes the curvature radius of the waveguide axis

—cf. [16].
Let us summarize the physical considerations mentioned in

the Introduction.

1) We are interested in high-frequency propagation when the
wavelength is small compared with the waveguide di-
ameter (oversized waveguide).

2) As a rule, dominant propagation modes have small Bril-
louin angles with respect to the waveguide axis.

3) Relative axis curvature [ratio between the diameterand
the curvature radius ] is usually very small;

4) Leontovich impedance
can be used as an approximation of the wall electrical
properties, cf. [13], [21].

These restrictions can be formalized by introducing a small
parameter and assuming ,

. Here, is a characteristic scale of
the longitudinal nonuniformity (these order relations are usu-
ally satisfied for the VHF/UHF band while the precise definition
of the parameters , is not important as they do not appear
in the final equations). Diffraction processes in such nonuni-
form waveguides are governed by the Fresnel number

and another dimensionless parameter, which can be
called the Fock number , as it appears im-
plicitly in Fock’s classical study of short wave diffraction by
a convex cylinder [13, chs. 7-9]. In that case, the cylinder ra-
dius stands for the longitudinal scalewhile the transverse

Fig. 1. A curved tunnel

scale determines the boundary layer thick-
ness where the creeping waves are formed ( is the
wavenumber). Corresponding order relations

, allow for a simple
and versatile field description in terms of the parabolic equa-
tion. A similar boundary layer arises in the case of the whis-
pering gallery mode [11], [16]. In our case, due to the waveguide
boundary conditions, a more sofisticated vectorial propagation
mode emerges, but the above order relations still hold.

In order to construct an asymptotic solution of the considered
propagation problem we introduce scaled variables ,

, ; and rewrite the governing
Maxwell equations (time dependence is used in this
work)

(1)

putting the electric and the magnetic fields together in a six-
component vector (cf.
[12]). Direct substitution yields a six-component PDE

(2)

Here, ; , , , , and , are constant
diagonal block matrices, and is an antidiagonal block matrix
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In this concise dimensionless notation of Maxwell’s equa-
tions, our small parameter appears explicitly, making clear
the asymptotic character of the problem. It is easily seen that (2)
represents a singularly perturbed system and cannot be solved
by straightforward expansion in powers of. A good guess is
to allow the solution to oscillate along the waveguide axis as

and to assume the lateral derivatives ,
being of order of unity in virtue of the above agree-

ment 2) to consider low-order modes with small Brillouin an-
gles . That suggests the following asymptotic Ansatz:

(3)

where the eikonal , in general, is a second-order polynomial
of and the vector amplitude is sought as an asymp-
totic series in powers of

(4)

It is assumed that the vector amplitudesare slowly varying
functions—true for low-order modes with . After
substituting (3) into PDE (2) and equating coefficients of like
powers of , we get a sequence of linear algebraic equations for
the vector amplitudes

(5)

The homogeneous zero-order equation has a nontrivial solution
only if , which gives , ,
where , are
two annulling eigenvectors of the reduced matrix

. Solvability conditions of the next nonhomogeneous equation
(cf. [10], [12]) result in ,

(6)

Coefficients , are at this stage arbitrary
scalar functions. Clearly, the zero-order approximation yields
a purely transverse electromagnetic field, while the first-order
correction introduces a small longitudinal component.

In order to complete constructing the leading term of the
asymptotic solution (3) and to find the first-order correc-
tions, one has to determine the unknown amplitude functions

and , in (6). They satisfy
the following differential equations in vector notation for

:

(7)

following from the solvability conditions for the subsequent am-
plitude vectors , [12]. Here,
and . It is implied that , so the zero-order
PDE is homogeneous.

At the boundary contour of the waveguide cross section,
conditions to be met by arise from substituting the Ansatz
(3) into the impedance BC: . Equating
the terms of the same order ofwe get

(8)

with

Here, is the unit normal to and is the
impedance, not necessarily uniform, of the tunnel walls. For a
wall material with relative permittivity and conductivity
there is approximately (see [13], [21]).

As both components of the zero-order vector amplitude
satisfy identical PDE (7) and (8), they are

proportional to a single scalar eigenfunction of the Dirichlet
boundary value problem . The corresponding eigen-
value gives a small index-dependent correction to the
zero-order eikonal: . Once
and are found [both depend on the longitudinal variable

via curvature radius and torsion angle ]
the leading term of (3) is determined but for a normalizing
polarization vector: . Its
components , , from the solvability condition of the
inhomogeneous boundary problem for , are coupled
via a pair of ODE’s [12]

(9)

coefficients being functionals of the impedance

(10)

They determine attenuation and depolarization of the propa-
gating waveguide mode due to absorption and coupling of the
electric field components in the waveguide wall material. Equa-
tion (10) shows that generically these two effects become more
significant with growing indices , .

III. V ECTORIAL PEFOR A CURVED TUNNEL

Asymptotic analysis of Section II yields a series of low-order,
minimum absorption modes of an arbitrarily shaped, smoothly
nonuniform oversized waveguide. Their propagation character-
istics can be calculated explicitly for arbitrary cross-sectional
shape and material properties. Unexpectedly simple analytical
formulas (10) can be used as a basis to predict propagation
losses in realistic tunnel environments. However, the principal
drawbacks of modal theory still remain. First, in an oversized
waveguide several modes can have almost identical attenuation,
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so it is not easy to foresee which will be dominant. Second,
in many applications, such as mobile cellular communication,
one is interested in prediction of radio wave propagation not
only over large distances but also at intermediate ranges. For
this purpose, too many modes would be necessary to adequately
describe strong field variations inherited from the near field
multiray structure. Finally, practical applications require more
realistic modeling including local inhomogeneities created by
traffic and technical constructions. In this case, using modal
theory becomes cumbersome and impractical. This motivated
us to look for an alternative description of the wave field in
tunnel-like environments.

Such an alternative approach is suggested by the recursive
equations (7) reminiscent of the well-known parabolic wave
equation [13]–[15]. Of course, (7) is not a PE; just a recursive
two-dimensional PDE, because the functions in the right- and
left-hand sides are different. However, we can derive an approx-
imate vectorial PE by considering a partial sum of the power
series (4). Having confined ourselves to the first two terms and
denoting

we obtain from (7), as a linear combination of the equations
governing and , the following relationship:

By neglecting the second-order terms, this equation becomes
self-consistent

To eliminate the range- and index-dependent eigenvalue
, consider next a modified unknown vector

defined as . Immediately, a gov-
erning equation for comes up

(11)

a partial differential equation of “parabolic” type. A remarkable
feature is its independence of the mode number , which
means that any superposition of adiabatic low-order waveguide
modes satisfies (11) to the accuracy . Being based on the
rigorous asymptotic analysis [12], this vectorial PE can be used
as a reliable tool for field calculations in smoothly nonuniform
oversized EM wavguides.

In accordance with (3)–(6), vector function is related
to the tangential electric field in the tunnel cross section

via .
Using the terminology of radio wave propagation theory
[13], can be called the attenuation function which
describes the complex wave amplitude of the approximately
plane wave propagating along the smoothly curved
waveguide axis. A similar procedure transforms the recursive
relation (8) to an approximate for to be met at the
cross section contour . As it was stated in Section II, the
above equations do not depend on the precise definition of
the scaling parameters and that served just to clarify the
asymptotic character of the problem. Returning to the original

physical variables , the two-component vectorial PE
for paraxial EM waves in a wide smoothly curved tunnel now
reads

(12)

The tangential electric field components, are weakly cou-
pled through a matrix

(13)

This boundary value problem gives a full wave description
of paraxial EM propagation along the curved waveguide axis.
Equation (12) accounts for transversal diffusion of the vector
wave amplitude over the approximate plane wave
fronts Const [14], whereas the matrix BC (13) governs the
effects of grazing angle reflection, selective mode absorption
and depolarization in the curved waveguide walls. Depending
on the spectral contents, its solution can represent a wide va-
riety of the wave fields evolving from sharp “ray-like” interfer-
ence patterns inherited from GO in the vicinity of the radiation
source to a smooth “mode-like” cross-sectional field distribu-
tion at large ranges where a small number of modes become
dominant (see Section V).

In view of the approximate nature of (12) and (13), it is neces-
sary to look at the uniqueness of their solution at this stage. Gen-
eralizing the well-known technique developed for scalar PEs
(e.g., [24]), consider the power passing through the tunnel
cross section

On use of (12) and (13), its evolution with varying rangecan
be expressed in terms of the boundary values of the transversal
field divergence and vortex

(14)

For passive tunnel walls there is always Re. and, hence,
Re. . This implies that the power carried by the
one-way propagating wave field never increases. Therefore,
it turns out immediately that the boundary value problem (12),
(13) is uniquely solvable. In fact, let be the
difference between two possible solutions corresponding to the
same initial value. Evidently, satisfies the PE (12),
and . Thus, in virtue of (14), its energy flow equals
identically to zero . This, in turn, shows that ,

, i.e., , which means the uniqueness of the
solution.

We note that (12) is a vectorial counterpart of the scalar PEs
describing creeping and whispering gallery waves [13], [16] and
includes, as a special case [for a straight tunnel with ],
the vectorial version of the Leontovich–Fock PE used in [17].
Being asymptotically equivalent to the rigorous adiabatic mode
theory of Section II at the ranges , it opens an easy and
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reliable way to model EM wave propagation in realistic weakly
nonuniform tunnels. For larger distances or greater waveguide
axis curvature, PE reveals exponentially small (inparameter)
nonadiabatic effects, such as residual mode conversion after
having passed an analytically smooth transition between two
regular waveguides (cf. [20]).

IV. V ALIDATION , COMPARISON, APPLICABILITY

The main purpose of this section is validation of our approach
by comparison with the published results on radio wave prop-
agation in tunnels. As most estimates have been obtained for
rectangular tunnel profiles, we will consider this simplest case in
more detail. This analysis will also clarify the relation between
the vectorial PE and the adiabatic mode theory of Section II.

Let the tunnel cross section be a rectangle ,
. In this case, and , two components of the out-

ward pointing normal on , vanish alternatively at the vertical
side walls , horizontal floor and ceiling ,
so the impedance matrix becomes diagonal. There-
fore, transversal electric field components
and in the orthogonal frame turn out
to be completely decoupled. This allows one to find two inde-
pendent series of adiabatic modes corresponding to horizontal
or vertical .

Consider for example vertical polarization described by
the component of the attenuation function . As follows
from (12), (13), it satisfies the respective scalar PE

(15)

with the third-kind s

(16)

determined, accordingly, by the characteristic impedances:
of the side walls and of the the tunnel floor and ceiling (we
consider them generally to be different).

For Const, Const, low-order modes of such a wave-
guide can be obtained by separation of variables:

(17)

(we choose the notation consistent with Section II). Standard
procedure yields the corresponding eigenfunctions expressed in
terms of Airy functions [16], [25]

(18)

Here, new variables , are in-
troduced; , are
dimensionless parameters, whileand are constant eigen-
values to be found from (16).

Inserting (18) into (16), one obtains the following transcen-
dental equations:

(19)

with , , to be solved for , . They
are similar to those obtained in a particular case

by Mahmoud and Wait [7] and become identical for the
fundamental mode thoroughly studied in [7]. Equations (19) can
be solved numerically, which enables one to calculate the com-
plex exponent

(20)

determining phase velocity and attenuation of the waveguide
mode, as well as its cross-sectional pattern via equations (18). To
illustrate the effects of curvature and torsion we include a series
of transversal field patterns in a rectangular waveguide with the
dimensions and wall electric properties of a typical road tunnel
(Fig. 2).

It is well known that the tunnel axis curvature causes the
field concentration near the concave side wall. Surprisingly,
even frequently encountered small values of tunnel curvature
give a very strong concentration effect forming the whispering
gallery mode [11] completely detached from the convex
inner wall—compare Fig. 2(a) and (b). In the general case of
nonplanar 3-D axis curve, its torsion causes local tilts of the
waveguide cross section, which can also change the modal field
pattern. As one could foresee, for tunnel environments this
effect is almost negligible: we can notice a difference solely for
unrealistically high tilt angles like —compare Fig. 2(b)
and (c). As this effect depends upon the cross sectional shape
and dimensions of the waveguide, we mention it, bearing in
mind possible applications of the proposed theory to other
oversized guiding structures.

As the dimensionless constants and are usu-
ally small, explicit approximate formulae can be obtained using
perturbation theory. The zero-order approximation

(21)

agrees with the results of Section II (cross-sectional field distri-
bution in the leading term of the asymptotic solution is found
from a Dirichlet boundary value problem while the effects of
the wall impedances appear only in the higher-order terms). Fur-
thermore, if (actually, ) the first term in the upper
line of (21), containing Bi , dominates and it simplifies to
Ai . Its evident solution is ,
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(a)

(b)

(c)

Fig. 2. jV (y; z)j of the2� 1 mode in rectangular tunnels with� = 5:5 and
� = 0:03 S/m at 950 MHz with the brightness proportional to the normalized
amplitude. (a)� = 1 m, � = 0 . (b) � = 800 m, � = 0 . (c) � = 800 m,
� = 45 .

where , are the negative roots of the Airy func-
tion—see [16], [25]. In this case, the horizontal eigenfunction is
proportional to

(22)

Physically, that means that the wave field is detached from the
convex right waveguide wall due to strong curvature
effects and a purely whispering gallery wave [11] is formed near
the concave wall .

In the opposite case of very small axis curvature, parameter
becomes large and, after replacing in (18) the Airy functions

with their WKB asymptotics (see [16], [25]), an approximate
solution arises

(23)

Fig. 3. Attenuation rate forV andV modes in a rectangular tunnel with
electrically perfectly conducting ceiling and floor (f = 1000 MHz, tunnel
width 2a = 2:133m; wall parameters:� = 10,� = 0:01S/m) as a function
of relative curvaturea=�. Solid lines: numerical solution of the transcendental
equation (19), crosses: asymptotic formulas (29); circles: numerical results of
[7] for LSM � V and LSM � V modes.

with , . Evidently, func-
tion (23) vanishes at . Imposing similar
at the left-side wall , one obtains instead of (21) a sim-
plified transcendental equation

(24)

with the approximate solution

(25)

Substitution into (23) yields

(26)

a simple straight waveguide mode with a small correction pro-
portional to the axis curvature to the power 1/3. A similar ap-
proximation is valid for the vertical eigenfunctions

(27)

as the torsion effects are usually very small. Perturbation theory
applied to the exact transcendental equation (19) yields small
corrections to the eigenvalues, due to the surface imped-
ances , , which results in the following approximate for-
mula:

(28)

being in full agreement with the straightforward evaluation of
the contour integral (10) of Section II. In the above mentioned
limiting cases of the whispering gallery or of the almost straight
waveguide modes, the corresponding approximate formulae for
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(a) (b)

(c) (d)

(e)

Fig. 4. jV (y; z)j in a rectangular tunnel with traffic obstructions at different distances to a vertical half-wavelength dipole placed 30 m outside the tunnel entrance
(f = 1:8 GHz,� = 1000 m, � = 5:5, and� = 0:03 S/m). (a) Geometry. (b) GO field at the tunnel entrance (s = 0 m). (c) PE field ats = 100 m. (d) PE
field at s = 200 m. (e) PE field ats = 300 m.

can be used to give a practical estimate of the mode atten-
uation per unit length [dB/km] Re.

(29)

(effects of torsion are neglected). A similar formula holds for
the horizontally polarized modes if , are replaced with
the corresponding admittances . The accuracy of the
practical formulae can be inferred from Fig. 3, where the solid

lines depict the attenuation of the two lowest order modes of the
curved rectangular waveguide considered in [7], and the crosses
represent the asymptotic estimates (29) for the two respective
limits. A comparison with Mahmoud and Wait’s numerical re-
sults taken from [7, fig. 3] (white and black circles) shows a
good agreement for moderate values of the relative tunnel cur-
vature .

In the validity region of (22) [first line of (29)], the main
part of the whispering gallery mode attenuation is caused by
ohmic and refraction losses in the concave side wall
and rapidly tends, with increasing tunnel height and carrier fre-
quency, to its limit 8686 Re. depending only on the tunnel
axis curvature and wall impedance. In the opposite case of an
almost straight tunnel [second line of (29)] this formula gives a
small (proportional to the second power of curvature) additional
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(a) (b)

(c) (d)

Fig. 5. jV (y; z)j in an arched tunnel at different distances to a vertical half-wavelength dipole placed 30 m outside the tunnel entrance and 3.6 m above the
ground (f = 900MHz, � = 800m, � = 5:5, and� = 0:03 S/m). The tunnel cross section consists of a half-circle of radius 4.8 m and a trapezoid of widths 9.6
m and 8.8 m and of height 2.5 m. (a) GO field at the tunnel entrance (s = 0 m). (b) PE field ats = 200 m. (c) PE field ats = 600 m. (d) PE field ats = 1000m.

frequency- and index-dependent damping, compared with the
generally used approximation

(30)

Asymptotic estimate (29), coinciding with the direct numerical
solution of the rigorous PE eigenvalue problem (19) to the
accuracy of about 1%, agrees with the published results on
low-order mode attenuation in rectangular waveguides (cf.
[7]–[9]), which validates the proposed approximate solution.
Our approach can also simplify testing the approximate prac-
tical estimates of the propagation losses in arched tunnels. So,
in the case of a circular cross section of diameter, inserting
Bessel function into the integrals (10)
gives immediately [db/km] which
was the starting point for Yamaguchi’s “equiarea” formula [9].

A rough a priori applicability condition of the PE method
follows from expanding the mode propagation wavenumber in
powers of its transversal wavenumbers:

(31)
As is well known (e.g., [15], [26]), the “parabolic” approxima-
tion corresponds to the first two terms of this series. Therefore,
the phase-error accumulation, limiting the applicability of the
PE, has the order of magnitude . Estimating the
transversal wave numbers by their explicit values for a perfectly
lossless rectangular waveguide, one comes to the following PE
validity criterion (cf. [26])

(32)

Taken together with the above estimates of the waveguide mode
attenuation (29), it enables one to find the rangewithin which
PE accurately describes all essentially contributing modes.
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V. MODELING RADIO WAVE PROPAGATION IN TUNNELS

The advantages of the vectorial PE derived in Section III man-
ifest themselves when solving practical problems of radiowave
propagation in tunnel environments. Not being able to exten-
sively describe here all possible applications, we confine our-
selves with two realistic examples demonstrating its versatility
and computational efficiency.

Even in the simplest case of a rectangular tunnel cross sec-
tion, the straightforward numerical integration of the vectorial
PE is usually more efficient than semianalytical solutions based
on separation of variables. Apart from the purely computational
advantages demonstrated, e.g., in [15], [17], [26], the flexibility
and physical adequacy of the PE [13], [14] allows one to easily
adapt it to different propagation scenarios. As an example, con-
sider the entrance of a rectangular road tunnel illuminated from
outside by a vertical dipole. To predict the field strength inside
the tunnel, the diffraction by the edges of the entrance aper-
ture as well as the blockage by passing-by vehicles must be
taken into account. In a rigorous formulation, such a diffrac-
tion problem can hardly be solved with modest computational
means. However, in the framework of physical optics, the Kirch-
hoff approximation readily yields a simple and sufficiently ac-
curate solution [27]. As PE is equivalent to the paraxial phys-
ical optics [14], [26], the aforementioned diffraction effects can
be simulated numerically with a minimum modification of the
standard computational scheme (for example, the vehicles can
be represented as opaque screens of the corresponding shape).
The results of such modeling are depicted in Fig. 4 showing
cross-sectional field distributions in a rectangular tunnel with
a car in the left lane and a truck in the right lane obstructing
the dipole radiation coming into the tunnel entrance aperture.
Although the Kirchhoff approximation does not describe cor-
rectly higher diffraction angles, the resulting discrepancy dies
out rapidly with range due to the selective absorption in the
tunnel walls (see Introduction and Section II).

Generally, to solve the boundary value problem, namely
the vectorial PE (12) subject to (13), we use either the
Crank–Nicolson FD/FE scheme with a sparse matrix solver or
FD splitting methods (e.g., [22]). The efficiency of these tech-
niques for solving realistic problems of radiowave propagation
and scattering has been demonstrated in [17], [18]. To cope
with the arbitrary tunnel cross section, second order isotropic
quadrilateral and triangular elements of Serendipity family
have been chosen [28], [29]. These techniques provide a fast
and accurate solution of (12) and make thereby the parabolic
equation method very powerful in the numerical study of
diffraction and propagation of high-frequency electromagnetic
waves. The verification of the computer program implementing
the vectorial PE has been carried out successfully with the help
of the rectangular waveguide eigenfunctions described in the
previous section and the numerically obtained eigenfunctions
for arched tunnels.

As the parabolic approximation fails near the radiation source
[13], it must be replaced there with another solution. In order to
obtain the initial values for PE integration, we use the GO part of
a computer program written for predicting wave propagation in
complex environments [23]. This program calculates the elec-

tric field produced by the source and an appropriate number of
its reflections from the earth surface or tunnel walls. This com-
bination enables one to study numerically the complete propa-
gation range of interest, a task which can be performed neither
by GO nor by modal analysis. An example of field calulations
in an arched tunnel is given in Fig. 5.

VI. CONCLUSION

By rearranging the asymptotic solution of the Maxwell equa-
tions for lossy oversized nonuniform waveguides [12], a two-
component vectorial PE governing TE fields in the tunnel cross
section is derived. Two field components are coupled weakly
on the tunnel walls via a Leontovich-type matrix impedance
condition. After having proved the uniqueness of the solution
to this boundary value problem, the eigenfunctions for tunnels
with a rectangular cross section have been studied for valida-
tion purposes. The approximate mode attentuation constants in
such tunnels obtained through asymptotic analysis agree in spe-
cific cases with published results. In the general case, the vecto-
rial PE is solved using either a Crank–Nicolson FD/FE scheme
with a sparse matrix solver or FD-splitting techniques. Asymp-
totic analysis demonstrates the influence of the waveguide cur-
vature and wall impedances on radio wave propagation char-
acteristics. Numerical examples show 3-D field distributions in
realistic tunnels.

To our knowledge, this method gives a more complete and ac-
curate description of radio wave propagation than other existing
approaches. Not only is a deeper understanding of the propaga-
tion processes in tunnels gained, but also the realistic design and
optimization of radio communication systems in such environ-
ments are made possible without excessive computational work.
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