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On the Convergence of a Perturbation Series Solution
for Reflection from Periodic Rough Surfaces

Rayner K. RosichSenior Member, IEEEBNd James R. Wait

Abstract—in 1977, Rosich and Wait presented a general expres- plane at an anglé, to thex- and thez-axes, respectively. Since
sion for a perturbation series solution to electromagnetic (EM) re-  the surface is periodic, the total field can be written as a sum
flection from an imperfectly conducting periodic rough surface. ot jncident and scattered fields with the latter expressed as a

This is the first known publication of such a general result. Al- di t | ¢ f ol = implied ti
though this expression was shown to be consistent with earlier pub- ISCrete angular spectrum of plane waves. For an implied ime

lished results, all questions concerning the convergence of the seriedactorexp(iwt), the appropriate form of the total magnetic field
were deferred. This paper takes a first step in addressing this over- is

sight.
Index Terms—Electromagnetic (EM) scattering, perturbation H,=H, exp(iko(Coz — Sox))
series, perturbation solution, rough surfaces, rough surface
scattering. too
+ Z anl(_ikO(CrnZ'i_Snl‘T)) - (l)
I. INTRODUCTION m=Teo

N 1997, Rosich and Wait [1] and Rosich [2] considered rdd (1) So = sinfp andCo = cos fy characterize the incident

I flection of a vertically polarized electromagnetic (EM) plan&eld while S,.,, C,, and the scattering amplitudes, charac-
wave from an imperfectly conducting periodic rough surfacéerize the scattered field, has the value shown in (2).
The surface profile was decomposed into a Fourier expansior-learly, (1) has the required periodicity, so if we impose the
and was characterized by a local boundary impedance. Using@lmholtz equatiofV? + k3)H, = 0, we find
perturbation analysis that was an extension of Wait's [3], a gen- 2 \1/2
eral expression was obtained for the scattering amplitudes thatis Sm = S0 +mafko, Cm = (1= 5,)
valid for all spectral and all perturbation orders. This is the first o =2r/L, ko = 2 [ Xo. 2
known publication of such a general perturbation result [4]. i ) i ) )

Although it was shown that this expression is consistent witH1€ Sign of the radical fo’,, in (2) is chosen whef;,, > 1 so
the earlier results of Rayleigh [5], [6], Rice [7], Barrick [8], andN® aPpropriate radiation condition is satisfiectas: +-oc - Sy,
Wait [3], all questions concerning the convergence and cond?d ¢ can be interpreted asn 6,, andcos 6, respectively,

tions for the convergence of this series were deferred in [1]. THR @n appropriately defined scattering angje. Therefore, the

paper takes a first step toward addressing this oversight by pfadiation condition implies fo€;, positive real(s7, < 1), the

viding some numerical insight into the convergence propertid@Ves are outwardly _propagating at an antjle= arcsin .
of this general perturbation series solution. WhenC,, is negative imaginaryS;;, > 1), however, the waves

are evanescent (damped in the direction) withé,,, = 7/2 +
iarccosl¥,,. At the transition point/S2, = 1), on the other
hand,C,,, = 0, 6,,, = /2, and the waves travel undamped lat-
The details of the derivation of the general expression for tkgally over the surface. As is discussed in [2], these correspond
scattering amplitudesﬁ,f), of specular ordefr and perturba- to the well-known Rayleigh wavelengths [5], [9] and Wood's
tion orderp, can be found in Rosich and Wait [1] and in Rosiclanomalies [10]. In writing (1), we have invoked the Rayleigh hy-
[2]. Here it will suffice to reproduce the expression &F and pothesis, which states that only outgoinrgz{ reflected waves
enough explanatory information to allow the result to be undesre needed—even in the troughs of the surface. According to
stood. Millar [11]-[13], this is justified when the slope of the surface
Assume a vertically polarized plane EM wave, of free-spaégeverywhere less than 0.448—a criterion satisfied herein. This
wavelength)q, is incident at an anglé, on a periodic rough will be discussed further in Section XI, however.
surface. Let the surface profile be givendy- s(z) = s(z+L), The electric field components far > s(z) can be obtained
where L is the spatial period of the surface. This means thHeom (1) through the use of Maxwell's equation
incident magnetic fieldd, is antiparallel to they-axis and the

Il. FORMULATING THE PROBLEM

incident electric fieldE, and the wave vectdk, are in thex» E = —(ino/ko)V x H 3)

_ _ _ wherey is the impedance of free-space. Given both the mag-
Manuscript received August 31, 1999; revised November 17, 1999. netic and the electric fields, all that is needed for a solution to
R. K. Rosich is at Littleton, CO 80128-5558 USA. . . L.

3. R. Wait. deceased. exist to the problem posed here is a boundary condition. As
Publisher Item Identifier S 0018-926X(00)09356-X. stated earlier, we will require the tangential fields satisfy a local
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Fig. 1. «'? versusp for A = 0.10 + i0.10 atf, = 0°.
boundary impedance. As is shown in [1] and [2], this boundafy® > i versusp for A = 0.10 +10.10 atéy = 90°.
condition can be expressed:at s(z) as
truncate the modal expansions #&tV/, the truncated sum
E, +(2)E. = —mo[l + 7 ()] /*AH, (4)  will be within e of the sum of the full series. Such a trun-
cation leaves the series with/ + 1 scattering coefficients
(a—py ., G_1, o, G41, --., ayrpy) 10 be determined. To
do this numerically, we choos®V + 1 values ofx randomly
distributed on the open intervél), L). We then require (6) be
and whereZ is the surface impedance addis the normalized satisfied at each of these valuesaofnd solve the resulting
surface impedance. equations fora,,,. This is known as the “point-matching” or
Finally, combining (1)—(5), yields (6). The expression in (6);collocation” technique.
if solved, provides the solution to the problem posed here. Un-
fortunately, this problem is intractable by direct mathematical
techniques. As a result, (6) must either be solved numerically
or by recourse to the Rayleigh—Rice perturbation technique. We
will address both techniques below In the spirit of Rayleigh—Rice, we next proceed to identify
guantities in (6) of various orders of smallness. For example,

where

v(x) =tanb(x) = ds/de, A =Z/ny, no=1207 (5)

IV. PERTURBATION SOLUTION

Jio a [1 = (So +mAo/L)*]M/2 the surface heighitys(x) and slopey(x) are of first-order small-
i " [1+42(x)]/2 ness, whereas squares or products of these are of second order

and so on for higher orders. In contrast to Barrick [8], however,

S Xo/L
(S0 +mAo/L)y(2) we do not need to also assufigandA are of first-order small-

L+ 7@

+a)

: exp(—iko[l — (So+ m)\o/L)Q]l/Qs(x))
-exp(—i2rmaz/L)

[1 - 5312

Soy(x)

:<[

T+ @]

[1+~%(z)

)

ness. To facilitate the analysis, we expand the scattering coef-
ficientsa,, in terms of perturbation coefficienté,f) of orderp
smallness. Products of?’ with kos(x) andv(z) are ofp +

1 smallness, while higher order products are of higher order
smallness. Furthermore, sinkgs(z) andv(x) are of first-order

smallness, theexp[+iC,, kos(x)] and[1+~%(x)]*/? can be ex-
pressed as Taylor series (see [1], [2]).

Although the Rayleigh—Rice process uncouples all of the per-
turbation orders i, it does not uncouple the individual modes
(specular orders) im. To uncouple the modes(x), v(x), and
If the modal expansions imn in (1) and (6) converge, their various products must be decomposed into Fourier expan-
then for everye > 0, there exists am/, such that if we sions interms of the functionsp(—igax), whereg (the mode

~exp(+iko[l — S3]/%s(x)). (6)

lll. NUMERICAL POINT-MATCHING SOLUTION
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Fig. 3. a$? versusp for A = 0 + i0 atg, = 0°. Teo ol i
01 ERTENANES 35303
k=1

n=0 j=0 (=0

number) goes from-oo to +o0 and wherex = 27/L. Since (=) (2L — ) =) AR o
the surfaces(x) is periodic, we can write “Onjrap A
i +oo +oo W
o0 J
. . PR a nd2
st = 3 Pyexpl(—iqar) ;,o 200 m-Y i
q:—;ooo n n+21
. . C" P P,
= —1 P —1 . 7 m— ntat . < qk) < H e ) }
~v(x) q;oo( igor) Py exp(—igax) (7 ol a Pt it
forp >0 9)
For areal surfac, = (P_,)* for ¢ # 0 and for a surface with wheres: . — 4 9 forj #k
zero mean heighb, = 0. All of the powers ofs(x) and~(x) v, forj=k
and their products follow naturally from (7). Substituting this " 1-3.5-7-...-1, forlodd
into (6) yields an equation in which all of the modes (speculafnd wherg!! = {2 4.6-8-----1, forl even}
orders) ad all of the perturbation orders are uncoupled [1], [2].
Hence, we may solve foxﬁ,{’,) and obtain a general expression
valid for all modes (spectral orders) and for all perturbation V. THE SURFACE
orders ). Forp = 0, we have the following expression fa}, : For the comparisons to be made shortly, we shall use the fol-
lowing sinusoidal surface
) _ {(Oo—A)/(Oo+A), fOFmIO} f -
ay, , forp=0. .
0, form #£ 0 @) s(x) = Afsin(wz) + D]
While for p > 0, solving fora® yields = (=A/20) exp(—iax) + AD + (A/2i) exp(iaz)
o =27/L. (10)
) —
@ Hence,Py = AD, Py; = +A/2i,andP,, = 0 form #
pCP T IR = 0, £1.
—[Crm + A _L(;glo > oy
nETee demEEee VI. AVERAGE MODIFIED NORMALIZED SURFACE |MPEDANCE

. H P, P bt Although itis instructive to examine the scattering amplitudes
baiet Mo, of each mode (spectral order) individually, a more compact
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representation is the average (effective) modified normalized

surface impedancA’. Having in mind a mean flat surface par- 03pTTT T I"Sh'ﬂ_iw
allel to thezy plane(z = zg) through one period of the rough 0.32 e _
surface, we let BN -
028 — ¥ -
E, = — noHy exp(tkoSox)e(x) —_ B N .
. « 0.24 — Yo —
H, = Hyexp(—ikoSox)h(z). (11) T L N "
T 02| N s
Then we consider - Y s
B 0.16 [~ R |
A =e/h, i s
_ L 0.12 [ IO A A T TR U N OO A A A R A _|-"'_*
€= (1/L) /0 C(.Z‘) dx 013 T T [rrrrrryrr |‘|lilma£w
L J
h=(1/L) / h(z) dz. (12) 0.12 m
0 0.11 ]

Using (1), (3), (11), and (12), it is not difficult to show [2] that ~ ;

2 o.10 '
1—aqag eXp(—'LQk'oCoZo) E -

A= C . 13 )
0 1+ agp eXp(—i2]€00020) ( ) 0.09 1
Recall in (13) thaty is a complex quantity with both real and 0.08 :.—-
imaginary parts. - '

0.07 111 I 1 1 1 I 11 1 I L1 | I n
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VIl. B ARRICK—RICE AND KIRCHHOFFMODELS 0, (p=2)

The most obvious method to validate a theoretical model is
by way of comparison with experimental data. In the absenE@- 4. A’ versus, for A = 0.01 +i0.10 atp = 2.
of such data, however, an alternative is comparison against _ _ _ o
other existing accepted models. This latter course is adoptedimilarly, Rosich [2] contains the details of the derivation
here. Therefore, at grazing inciden¢gé, = 90°) we will of the average modified normalized surface impedance for the
compare against Barrick’s [8] model, while near normdfirchhoff approximation (model), which is given by
|nC|den_ce(9_0 = 0°) we will compare agalr_lst tr_\e Kirchhoff / 2C — (1 + C2 — S2)Jo(—47ACo /No)
approximation (model). It must be borne in mind, however, A’ =Cj, 50 15 02 = 5 Il —dm AC /X
the Kirchhoff approximation neglects multiple scattering and o+ (1+ G5 = 55)Jo(—4mACo/ o)
shadowing effects and has all of its modes uncoupled. AsaereJ, () is the zeroth-order Bessel function of the first kind
result, one cannot expect exact agreement even near norigh argumentz.
incidence.

It is shown in Rosich [2] that Barrick’s [8] average modified VIIl. N UMERICAL RESULTS—CONVERGENCETESTS
normalized surface impedance is given by

(19)

In order to gain some insight into the convergence of the per-
A=A+ A(()%) (14) turbation solution given by (8) and (9), we will next examine
numerical results for two of the examples from [2]. These were
where considered likely to converge somewhat slowly due to the value
b2 of max[v(x)] (0.157) being only 35% below Millar’s [11]-[13]
Aé%) = { 0ct limit of 0.448. Examples that violated Millar's limit by over
b(h =1, 0)D(~1, 0) 40% were also presented in [2]. Since no hint of convergence

+A o + koo + <—k0a + 04_2> } A_2 could be observed in these latter examples througs +10
| D(-1, 0) 2)1) 4 andp = 10, however, these examples are not presented here.
koo In the two examples belowd = 1m., L = 40m., \g =
- {b(h +1,0)D(+1, 0) 10m., D = 0,andzy = Om., while in the firstA = 0.10+¢0.10
Mo — koc a2\ 2 and in the seconch = 0 + 0.
+A D(+1, 0) + <+koa + ?> } R (15) In the spirit of “thenth term test” and “the comparison test,”
L ’ 2(h=1. 0 - Figs. 1-3 show the real (top) and the imaginary (bottom) parts
D(£1, 0)=+ 0 A [ ( i ! )+1} (16) of a(()p) versusp for p = 0 throughp = 6. Figs. 1 and 2 are for
b(h+1, 0) kg A = 0.10 +70.10 atfy = 0° andé, = 90°, respectively, while
b(h41, 0)=JkE — o (h£1)%])Y/? (17) Fig. 3isforA = 0+ 0 atf, = 0°. The results af, = 90°
h =ko/a=L/Xo (18) for the latter case are not presented due to numerical accuracy

problems which occur for infinitely conducting surfages =
and where4 is the amplitude of the surfacéz) [see (10)]. 0+1¢0) in the limit asfy — 90°. This is discussed further in [2].
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The dashed curvem Figs. 1-3 are proportional tg + 1)~! conducting surface§A = 0 -+ i0) the Rayleigh-Wood anom-

: : —2

while thedotted curvesire proportional tdp + 1) = alies have very narrow large-amplitude “spikes” in the plots of
The(p)roportlonallty constantt, in each case is equal Oyhe req| and the imaginary parts af versusf,. This occurs

max |ay”’| over the range of shown in the figure. As can be g (whens2, = 1) atf, = 30° and atf, = 48.59°. This

seen, Figs. 1-3 “seem to” satisfy both “théh term test” and pa¢rally impacts the visibility of the shadowing and multiple
“the convergence test,” although they are not at all Complet"%lattering effects in these figures.

convincing! However, as promised, Figs. 4—7 do provide far more con-
vincing evidence of the convergence of the perturbation solu-
IX. NUMERICAL RESULTS—MODEL COMPARISONS tion given by (8) and (9) than do Figs. 1-3. Recall that the nu-

meric point-matching, the Kirchhoff, and the Barrick solutions

ire not subject to the same “convergence considerations” as the
rturbation solution—although as was pointed out above, the

irchhoff and the Barrick solutions each have their own limita-

tions. Note in Figs. 4—7 that while the numeric point-matching,

the Kirchhoff, and the Barrick solutions do not change at all be-

tween the results fgr = 2 (Figs. 4 and 6) and fgr = 4 (Figs. 5

and 7), the perturbation solution very clearly does. Whereas the

perturbation solution gt = 2 in each case differs very notice-

Figs. 4-7 offer far more convincing evidence of the conve
gence of the perturbation solution. These four figures show t
real (top) and the imaginary (bottom) parts of the average m
ified normalized surface impedang¥ versusé, (from O° to
9() atp = 2 (Figs. 4 and 6) and ai = 4 (Figs. 5 and 7).
Figs. 4 and 5 are for the first exampl&a = 0.10 + ¢0.10),
while Figs. 6 and 7 are for the second exampe= 0 + 40; in-
finite conductivity). In each of these four figures, thalid line
shows the results for the perturbation solution, whilertteglium ably from the numeric point-matching solution, jat= 4 the
length dashed linshows the numerical point-matching resultsr‘esults from these two solutions seem to be eilmost identical.
the short dashed linshows the Kirchhoff solution, and the aSThis is true for bothA — 0.10 4+ 40.10 in Figs. 4 and 5 and
terisk (*) at 65 = 90° shows Barrick’s solution. The vertical for A = 0 + 40 in Figs. 6 and 7. This provides the clearest ev-

L'r?e at at_)ouﬁo :I 81 |nd||cat?sﬂt]he onfset Of'\f hadonvmg; that is ence found in [2] for the convergence of the perturbation so-
€ maximum siope ang'e ol the surtace. Normally, On€ WOl , i the cases presented here—both of which obey Millar’s
expect the Kirchhoff solution to begin to break down due to mlﬁ-

tiple scattering before the onset of shadowing and then to br %&HB] slope limit.
down catastrophically after the onset of shadowing. Figs. 4 and 5
clearly show that multiple scattering appears to begin abgut 10
before the shadowing angle. The “graph scaling” makes this farUnfortunately, thus far, the complexity of (9) has defied all of
less clearin Figs. 6 and 7. This is due to the fact that for infinitelyur analytical attempts to extract expressions for the radius of

X. CONVERGENCE—ANALYTICAL CONSIDERATIONS
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is not fulfilled and may diverge when the Rayleigh criterion

U L i is fulfilled—depending decisively on the positioning of the
0.20 ?‘.\ML\__ 7] collocation points.
0o | N ek Because the collocation points used here are randomly dis-
5 - tributed on the open intervéd, L), they do not follow the pre-
—~ 0.20 - - scription given in [16]-[19]. Furthermore, the numerical point-
% B ] matching solution used here minimizes neither fhenor the
r 040 - L., norm. As a result, [11]-[19] provide no guidance on the
0,60 B ] convergence of our numerical point-matching results.
L J The complexity of the perturbation solution given in (8) and
0.80 — (9) has thus far defied our attempts to obtain expressions for the
TN A N Is..'m radius of convergence and for the conditions of convergence.
L LR DL B IR Therefore, the numerical results presented here and in [2] must
0.06 - _ be considered entirely on their own merits. Although not mathe-
s . matically rigorous, the numerical results for the model compar-
0.04 - isons do appear rather convincing!
g 002 -
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Fig. 7. A’ versush, for A = 0 + i0 atp = 4.
In Memorium

convergence and for the conditions of convergence of the perDuring the time | worked on my Ph.D. dissertation under
turbation solution. Such convergence conditions as are knodames R. Wait, he always seemed to come up with the right mix-
will be discussed in the next section, however. ture of respect for my need for independence and my often-un-
realized need for some gentle guidance, especially when | had
managed to “paint myself into a corner.” Without this, it is not
at all clear to me how long it would have taken me to arrive at

As stated earlier, our goal is to shed some light on the cofire general perturbation solution discussed herein or even if |
vergence and the conditions for convergence of the general pgsuld have ever arrived at it! For this | shall always owe Jim
turbation series originally g)resented in [1] and [2]. In order tmy deepest gratitude. Following the completion of my disser-
do so, we first examined((f’ as a function op in the spirit of tation, although we no longer seemed to work on any problems
“the nth term test” and “the comparison test.” Althougﬁ’) of mutual interest, | typically would get a call from Jim once
appeared to behave as it should for a convergent series, the evitwice a year. He always had some interesting new result to
dence was not entirely convincing nor was it exhaustive. report on that was somehow at least loosely related to my ear-

More convincing evidence of convergence was presentedlir work. This always resulted in a very stimulating discussion
the form of “model comparisons.” The average modified nothat reactivated my “EM juices.” Unfortunately, the press of my
malized surface impedanc¥ as a function o, was compared then current job generally served to fairly quickly dissipate my
for: 1) the general perturbation series solution; 2) the numexcitement. However, a few of these discussions did result in
ical point-matching (collocation) solution; 3) the Barrick—RicéLetters to the Editor” that produced much enjoyment for me
solution; and 4) the Kirchhoff solution. The most convincingvhile | was preparing them. As a result, | can never adequately
evidence came from the comparison of “1” and “2” with “3"thank Jim for the intellectual stimulation that he added to my
and “4” providing an independent secondary test. This, howevkfe. | will certainly miss his periodic telephone calls!
naturally raises another issue. This concerns the convergence of
the numerical point-matching (collocation) solution and its re-
lationship to the Rayleigh hypothesis.

An early resolution of part of this controversy can be [1] R-K.RosichandJ. R. Wait, "A general perturbation solution for reflec-
found in [11]-[15], while more recent results can be found tlon;rf)gri;\gg-dslmensmnal periodic surface®é&dio Sci.vol. 12, no. 5,

pp. , Sept./Oct. 1977.

in [16]-[19]. Briefly, the former references present results on [2] R. K. Rosich, “Electromagnetic scattering from periodic rough sur-
the validity of the Rayleigh hypothesis. The latter references, fa;;z;," Ph.D. dissertation, Phys. Dept., Univ. Colorado, Boulder, Dec.
on the other hand, show that collocation solutions such as[3] J. R..Wait, “Perturbation analysis for reflection from two-dimensional
those given here may converge when the Rayleigh criterion  sea waves,Radio Sci.vol. 6, no. 3, pp. 387-391, 1971.

XIl. CONCLUSION
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