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On the Convergence of a Perturbation Series Solution
for Reflection from Periodic Rough Surfaces

Rayner K. Rosich, Senior Member, IEEEand James R. Wait

Abstract—In 1977, Rosich and Wait presented a general expres-
sion for a perturbation series solution to electromagnetic (EM) re-
flection from an imperfectly conducting periodic rough surface.
This is the first known publication of such a general result. Al-
though this expression was shown to be consistent with earlier pub-
lished results, all questions concerning the convergence of the series
were deferred. This paper takes a first step in addressing this over-
sight.

Index Terms—Electromagnetic (EM) scattering, perturbation
series, perturbation solution, rough surfaces, rough surface
scattering.

I. INTRODUCTION

I N 1997, Rosich and Wait [1] and Rosich [2] considered re-
flection of a vertically polarized electromagnetic (EM) plane

wave from an imperfectly conducting periodic rough surface.
The surface profile was decomposed into a Fourier expansion
and was characterized by a local boundary impedance. Using a
perturbation analysis that was an extension of Wait’s [3], a gen-
eral expression was obtained for the scattering amplitudes that is
valid for all spectral and all perturbation orders. This is the first
known publication of such a general perturbation result [4].

Although it was shown that this expression is consistent with
the earlier results of Rayleigh [5], [6], Rice [7], Barrick [8], and
Wait [3], all questions concerning the convergence and condi-
tions for the convergence of this series were deferred in [1]. This
paper takes a first step toward addressing this oversight by pro-
viding some numerical insight into the convergence properties
of this general perturbation series solution.

II. FORMULATING THE PROBLEM

The details of the derivation of the general expression for the
scattering amplitudes , of specular order and perturba-
tion order , can be found in Rosich and Wait [1] and in Rosich
[2]. Here it will suffice to reproduce the expression for and
enough explanatory information to allow the result to be under-
stood.

Assume a vertically polarized plane EM wave, of free-space
wavelength , is incident at an angle on a periodic rough
surface. Let the surface profile be given by ,
where is the spatial period of the surface. This means the
incident magnetic field is antiparallel to the -axis and the
incident electric field and the wave vector are in the
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plane at an angle to the - and the -axes, respectively. Since
the surface is periodic, the total field can be written as a sum
of incident and scattered fields with the latter expressed as a
discrete angular spectrum of plane waves. For an implied time
factor , the appropriate form of the total magnetic field
is

(1)

In (1) and characterize the incident
field while and the scattering amplitudes charac-
terize the scattered field. has the value shown in (2).

Clearly, (1) has the required periodicity, so if we impose the
Helmholtz equation , we find

(2)

The sign of the radical for in (2) is chosen when so
the appropriate radiation condition is satisfied as
and can be interpreted as and , respectively,
for an appropriately defined scattering angle. Therefore, the
radiation condition implies for positive real , the
waves are outwardly propagating at an angle .
When is negative imaginary , however, the waves
are evanescent (damped in the direction) with
arccosh . At the transition point , on the other

hand, and the waves travel undamped lat-
erally over the surface. As is discussed in [2], these correspond
to the well-known Rayleigh wavelengths [5], [9] and Wood’s
anomalies [10]. In writing (1), we have invoked the Rayleigh hy-
pothesis, which states that only outgoing () reflected waves
are needed—even in the troughs of the surface. According to
Millar [11]–[13], this is justified when the slope of the surface
is everywhere less than 0.448—a criterion satisfied herein. This
will be discussed further in Section XI, however.

The electric field components for can be obtained
from (1) through the use of Maxwell’s equation

(3)

where is the impedance of free-space. Given both the mag-
netic and the electric fields, all that is needed for a solution to
exist to the problem posed here is a boundary condition. As
stated earlier, we will require the tangential fields satisfy a local
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Fig. 1. a versusp for � = 0:10 + i0:10 at� = 0 .

boundary impedance. As is shown in [1] and [2], this boundary
condition can be expressed at as

(4)

where

(5)

and where is the surface impedance andis the normalized
surface impedance.

Finally, combining (1)–(5), yields (6). The expression in (6),
if solved, provides the solution to the problem posed here. Un-
fortunately, this problem is intractable by direct mathematical
techniques. As a result, (6) must either be solved numerically
or by recourse to the Rayleigh–Rice perturbation technique. We
will address both techniques below

(6)

III. N UMERICAL POINT-MATCHING SOLUTION

If the modal expansions in in (1) and (6) converge,
then for every , there exists an , such that if we

Fig. 2. a versusp for � = 0:10 + i0:10 at� = 90 .

truncate the modal expansions at , the truncated sum
will be within of the sum of the full series. Such a trun-
cation leaves the series with scattering coefficients

to be determined. To
do this numerically, we choose values of randomly
distributed on the open interval . We then require (6) be
satisfied at each of these values ofand solve the resulting
equations for . This is known as the “point-matching” or
“collocation” technique.

IV. PERTURBATION SOLUTION

In the spirit of Rayleigh–Rice, we next proceed to identify
quantities in (6) of various orders of smallness. For example,
the surface height and slope are of first-order small-
ness, whereas squares or products of these are of second order
and so on for higher orders. In contrast to Barrick [8], however,
we do not need to also assumeand are of first-order small-
ness. To facilitate the analysis, we expand the scattering coef-
ficients in terms of perturbation coefficients of order
smallness. Products of with and are of

smallness, while higher order products are of higher order
smallness. Furthermore, since and are of first-order
smallness, then and can be ex-
pressed as Taylor series (see [1], [2]).

Although the Rayleigh–Rice process uncouples all of the per-
turbation orders in , it does not uncouple the individual modes
(specular orders) in . To uncouple the modes, , , and
their various products must be decomposed into Fourier expan-
sions in terms of the functions , where (the mode
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Fig. 3. a versusp for� = 0 + i0 at� = 0 .

number) goes from to and where . Since
the surface is periodic, we can write

(7)

For a real surface for and for a surface with
zero mean height . All of the powers of and
and their products follow naturally from (7). Substituting this
into (6) yields an equation in which all of the modes (specular
orders) and all of the perturbation orders are uncoupled [1], [2].
Hence, we may solve for and obtain a general expression
valid for all modes (spectral orders) and for all perturbation
orders ( ). For , we have the following expression for :

for
for

for

(8)
While for , solving for yields

for (9)

where
for
for

and where
for odd
for even

V. THE SURFACE

For the comparisons to be made shortly, we shall use the fol-
lowing sinusoidal surface

(10)

Hence, and for
.

VI. A VERAGE MODIFIED NORMALIZED SURFACEIMPEDANCE

Although it is instructive to examine the scattering amplitudes
of each mode (spectral order) individually, a more compact
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representation is the average (effective) modified normalized
surface impedance . Having in mind a mean flat surface par-
allel to the plane through one period of the rough
surface, we let

(11)

Then we consider

(12)

Using (1), (3), (11), and (12), it is not difficult to show [2] that

(13)

Recall in (13) that is a complex quantity with both real and
imaginary parts.

VII. B ARRICK–RICE AND KIRCHHOFFMODELS

The most obvious method to validate a theoretical model is
by way of comparison with experimental data. In the absence
of such data, however, an alternative is comparison against
other existing accepted models. This latter course is adopted
here. Therefore, at grazing incidence we will
compare against Barrick’s [8] model, while near normal
incidence we will compare against the Kirchhoff
approximation (model). It must be borne in mind, however,
the Kirchhoff approximation neglects multiple scattering and
shadowing effects and has all of its modes uncoupled. As a
result, one cannot expect exact agreement even near normal
incidence.

It is shown in Rosich [2] that Barrick’s [8] average modified
normalized surface impedance is given by

(14)

where

(15)

(16)

(17)

(18)

and where is the amplitude of the surface [see (10)].

Fig. 4. � versus� for � = 0:01 + i0:10 atp = 2.

Similarly, Rosich [2] contains the details of the derivation
of the average modified normalized surface impedance for the
Kirchhoff approximation (model), which is given by

(19)

where is the zeroth-order Bessel function of the first kind
with argument .

VIII. N UMERICAL RESULTS—CONVERGENCETESTS

In order to gain some insight into the convergence of the per-
turbation solution given by (8) and (9), we will next examine
numerical results for two of the examples from [2]. These were
considered likely to converge somewhat slowly due to the value
of (0.157) being only 35% below Millar’s [11]–[13]
limit of 0.448. Examples that violated Millar’s limit by over
40% were also presented in [2]. Since no hint of convergence
could be observed in these latter examples through
and , however, these examples are not presented here.
In the two examples below,

, and , while in the first
and in the second .

In the spirit of “the th term test” and “the comparison test,”
Figs. 1–3 show the real (top) and the imaginary (bottom) parts
of versus for through . Figs. 1 and 2 are for

at and , respectively, while
Fig. 3 is for at . The results at
for the latter case are not presented due to numerical accuracy
problems which occur for infinitely conducting surfaces

in the limit as . This is discussed further in [2].
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Fig. 5. � versus� for � = 0:01 + i0:10 atp = 4.

The dashed curvesin Figs. 1–3 are proportional to
while thedotted curvesare proportional to .

The proportionality constant, , in each case is equal to
over the range of shown in the figure. As can be

seen, Figs. 1–3 “seem to” satisfy both “theth term test” and
“the convergence test,” although they are not at all completely
convincing!

IX. NUMERICAL RESULTS—MODEL COMPARISONS

Figs. 4–7 offer far more convincing evidence of the conver-
gence of the perturbation solution. These four figures show the
real (top) and the imaginary (bottom) parts of the average mod-
ified normalized surface impedance versus (from 0 to
90 ) at (Figs. 4 and 6) and at (Figs. 5 and 7).
Figs. 4 and 5 are for the first example ,
while Figs. 6 and 7 are for the second example ( ; in-
finite conductivity). In each of these four figures, thesolid line
shows the results for the perturbation solution, while themedium
length dashed lineshows the numerical point-matching results,
theshort dashed lineshows the Kirchhoff solution, and the as-
terisk ( ) at shows Barrick’s solution. The vertical
line at about indicates the onset of shadowing; that is,
the maximum slope angle of the surface. Normally, one would
expect the Kirchhoff solution to begin to break down due to mul-
tiple scattering before the onset of shadowing and then to break
down catastrophically after the onset of shadowing. Figs. 4 and 5
clearly show that multiple scattering appears to begin about 10
before the shadowing angle. The “graph scaling” makes this far
less clear in Figs. 6 and 7. This is due to the fact that for infinitely

Fig. 6. � versus� for � = 0 + i0 atp = 2.

conducting surfaces the Rayleigh–Wood anom-
alies have very narrow large-amplitude “spikes” in the plots of
the real and the imaginary parts of versus . This occurs
here (when ) at and at . This
naturally impacts the visibility of the shadowing and multiple
scattering effects in these figures.

However, as promised, Figs. 4–7 do provide far more con-
vincing evidence of the convergence of the perturbation solu-
tion given by (8) and (9) than do Figs. 1–3. Recall that the nu-
meric point-matching, the Kirchhoff, and the Barrick solutions
are not subject to the same “convergence considerations” as the
perturbation solution—although as was pointed out above, the
Kirchhoff and the Barrick solutions each have their own limita-
tions. Note in Figs. 4–7 that while the numeric point-matching,
the Kirchhoff, and the Barrick solutions do not change at all be-
tween the results for (Figs. 4 and 6) and for (Figs. 5
and 7), the perturbation solution very clearly does. Whereas the
perturbation solution at in each case differs very notice-
ably from the numeric point-matching solution, at the
results from these two solutions seem to be almost identical.
This is true for both in Figs. 4 and 5 and
for in Figs. 6 and 7. This provides the clearest ev-
idence found in [2] for the convergence of the perturbation so-
lution in the cases presented here—both of which obey Millar’s
[11]–[13] slope limit.

X. CONVERGENCE—ANALYTICAL CONSIDERATIONS

Unfortunately, thus far, the complexity of (9) has defied all of
our analytical attempts to extract expressions for the radius of
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Fig. 7. � versus� for� = 0 + i0 atp = 4.

convergence and for the conditions of convergence of the per-
turbation solution. Such convergence conditions as are known
will be discussed in the next section, however.

XI. CONCLUSION

As stated earlier, our goal is to shed some light on the con-
vergence and the conditions for convergence of the general per-
turbation series originally presented in [1] and [2]. In order to
do so, we first examined as a function of in the spirit of
“the th term test” and “the comparison test.” Although
appeared to behave as it should for a convergent series, the evi-
dence was not entirely convincing nor was it exhaustive.

More convincing evidence of convergence was presented in
the form of “model comparisons.” The average modified nor-
malized surface impedance as a function of was compared
for: 1) the general perturbation series solution; 2) the numer-
ical point-matching (collocation) solution; 3) the Barrick–Rice
solution; and 4) the Kirchhoff solution. The most convincing
evidence came from the comparison of “1” and “2” with “3”
and “4” providing an independent secondary test. This, however,
naturally raises another issue. This concerns the convergence of
the numerical point-matching (collocation) solution and its re-
lationship to the Rayleigh hypothesis.

An early resolution of part of this controversy can be
found in [11]–[15], while more recent results can be found
in [16]–[19]. Briefly, the former references present results on
the validity of the Rayleigh hypothesis. The latter references,
on the other hand, show that collocation solutions such as
those given here may converge when the Rayleigh criterion

is not fulfilled and may diverge when the Rayleigh criterion
is fulfilled—depending decisively on the positioning of the
collocation points.

Because the collocation points used here are randomly dis-
tributed on the open interval , they do not follow the pre-
scription given in [16]–[19]. Furthermore, the numerical point-
matching solution used here minimizes neither thenor the

norm. As a result, [11]–[19] provide no guidance on the
convergence of our numerical point-matching results.

The complexity of the perturbation solution given in (8) and
(9) has thus far defied our attempts to obtain expressions for the
radius of convergence and for the conditions of convergence.
Therefore, the numerical results presented here and in [2] must
be considered entirely on their own merits. Although not mathe-
matically rigorous, the numerical results for the model compar-
isons do appear rather convincing!
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