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Ground Wave of an Idealized Lightning Return Stroke

James R. Wait and David A. HjlFellow, IEEE

Abstract—We model a lightning return stroke by a vertical trav-
eling wave of current with a complex propagation constant. The
Sommerfeld-integral analysis is similar to that of a vertical elec-
tric dipole over a lossy earth except that the source is distributed
in height. When the integration over the source current is per- 1(h)
formed analytically, an extra term appears in addition to the clas-
sical Sommerfeld attenuation function. This term is a result of the
height-gain function of the distributed source due to an effective el-
evated height of the source dipole moment. In most cases of interest,
the extra term is small and the height-gain function is not much
larger than one. The results have application to remote sensing of
lightning from a ground-based observer.
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Index Terms—Ground wave, height-gain function, lightning re-
turn stroke, Sommerfeld integral, vertical electric dipole. ) p E;

I. INTRODUCTION

SUALLY, in analyzing the electromagnetic fields pro-
duced by lightning [1], it is assumed that the ground plar
is perfectly conducting [2], [3]. For many applications such
an idealization is permissible. But one aspect of the probléﬁﬁ’- 1. \ertical traveling wave current located over a flat earth of surface
. e . impedanceZ. The observer is located at the surface at a distantem the
is then ove_rlooked. Spemﬂcally the excited grounq Wave glse of the current channel.
zero-elevation angle is profoundly influenced by the finite earth
conductivity [4]. ) ) _ .
It is interesting to note that a fairly simple analytical soluFourier transform. For a time-harmonic dependenqg(;jt),
tion for the fields of a traveling wave current is available based IS given by [5]
on what we know about Sommerfeld-type integrals [5]. Here -
we derive both an integral form for the solution and approxi-4 _ 1 / I(h)
mate forms that are closely related to the Sommerfeld attenua- 47 /o

tion function. The results have application to remote sensing of *g _ u—jhA ;
lightning from ground-based observations. ' o exp(—ulz L|)+u+j/§A exp[-u(z+h)]
Il. THEORETICAL MODEL ~Jo(gp) dg} dh @)

The simple model is indicated in Fig. 1. With respect to a
cylindrical coordinate systerp( ¢, z), the ground plane at= Whereu = +/g? — k%, A = Z/no, k* = (w/c)*, mo =
0 is characterized by a surface impedaut;ewhich, for sim-  v/#o/€0, ¢ = 1/\/I0g0, Jo(gp) is the Bessel function of order
plicity, is assumed known. The source is a traveling wave 8@ro and argumenyp, g is the radial wavenumbeg is the per-
currentI(h) at p = 0, whereh is the height above = 0. Mittivity of free-space, angi, is the magnetic permeability of
Elementary field theory tells us that the resultant fields in tHéee-space. The fields at the observer) can be obtained from
free-space region > 0 can be determined by a vector poten-

tial A, which has only & component, here denoted simply by B 1 9?4 @)
A. We consider only the frequency-domain case, but the corre- P jweg Opoz
sponding time-domain solution could be obtained by an inverse 1 , 02
B, =- ; A 3)
Jweg 022
0A
H,=— B (4)
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interchanged. But before we proceed, it is useful to note that thiane. But the reader will note that, G, F’, andG’ are diver-
normalized surface impedangefor a homogeneous half-spacegent integrals as written. The results can be made more rigorous
model of the earth is given by [5] by noting the definition

A=N1y1-N-252 ®) /Ooo F(9)Tm(gp)g" dg

whereS = g/k, N = /(o + jwe)/(jweo) andyg is the radial . o0 "
wavenumber as in (1)\ébove. Here, the whole region is assumed = Lim [/0 F(g) exp(—uz)Tm(gp)g" dg|  (15)
to be nonmagnetic, so the permeability.ig everywhere. The
permittivity and conductivity of the lower region areands Wherem andn are positive integers.
respectively. For layered-earth models, other forms/foare Exact expressions for the electric field components can also
available [5]. be obtained from (1) when (2) and (3) are ugeidr to setting
In the present case, we are focusing our attention on the= 0- These are not given here.
ground-wave field, so itis permissible to let— 0in (1) so that

I1l. A PPROXIMATIONS
1 [ = exp(—uh) . . . .
I(h) ————~ Jo(gp)gdgdh. (6) Here, we will be content with approximate analytical expres-
0

27 Jo ut kA sions for the integralg’ andG. Not too surprisinglyF' as given
Now we adopt the traveling wave model [2], [6], [7] by (10) is identical to the form for ground-wave propagation
for a ground-based vertical electric dipole when the observer is
I(h) = Iy exp(-T'h) (for0 < h < o0) (7) also atz = 0. In the case wher is assumed not to depend on

g, wherekp > 1 and indeed wherfA|> < 1, the Sommer-
where I, is the current at the air-ground interface and=  feld—Norton form is equivalent to [5]

jlw/v) + « in terms of the phase velocity and attenuation k)
rate . BecausaRe(l') > 0, the h integration in (6) is allow- F e — i /75 exol—perfe( i EXp{—Jkp 16
able. (If one wishes to be more rigorous, the integration éver 1= dy/ap exp(=p)eric(jv/p)] P (16)

could be done before setting= 0. The results would be the where the numerical distangeis defined byp = —jkpAZ/2

) Th i ; —
same.) Then and erfc is the error-function complement of the indicated
Iy [~ . _ . complex argument. The term in square brackets is usually
2 J, (u+JkA) " (w+T)""Jolgr)gdg  (8) known as the ground-wave attenuation function (GAF), and it
o _ has been well studied numerically [5]. A convergent (but not
which is equivalent to always useful) series expansion is given by [5]
Iy e L N1/2 . 1/2 372
A=—"__(F-@ 9 gal =1 —j(mp)™/" +2p+ jm/"p” " +--- (17)
2n(T — jkA) ( ) ©
while an asymptotic (sometimes useful) expansion is
where ymptotic ( ) exp
o0 . gaf = —(2p)™" = 3(2p) 7 - 15(2p)° — -+ (18)
F= / (u+ kD) Jo(gp)g dg (10)
0

o valid for |p| — oo. The leading term in (18) is adequate for
G = / (w+T) " Jo(gp)g dg (11) high frequencies (e.g., above 10 MHz) and normal soil (e.g.,
0 o =5x 1072 S/m ande /g = 10). Then
an;i\ we e\_/a_luatel atS =g/k =1 o _ gafl ~ (jhpA2)~! (19)
n explicit expression for the magnetic field at (0) without
further restrictions is obtained from (4) operating on (9) to gi@here

Iy

’ ’ 2 _ N-2(1 _ N2
m(F—G) (12) AT=NT(1-N77) (20)

Hy =

and we assum§ ~ 1.

where But we also need to examine thantegral as defined by (11).
y e . 1 2 aF It appears to have the same form as thimtegral which is true.
F = /0 (u+ gAY i(gp)g® dg = ~ o (13)  Butif we setl’ = jkA., the effective or analogous function to
A would be given byA, = I'/(jk) ~ c/v. Thus,|A.|? is not
and small compared to one. But now a simple asymptotic estimate
00 a9G will suffice, rather than trying to modify the GAF. To this end,
G' = /0 (u+T) " Ji(gp)g® dg = o (14)  we note that
Formally, the results given above are exact for the model (u+T)7" =71 4 (u/D)]

adopted, and they are exact for all distangedong the ground ~D 7L = (u/T) + (w/I)* =] (21)



WAIT AND HILL: GROUND WAVE OF AN IDEALIZED LIGHTNING RETURN STROKE 1351

is highly convergent since = /g2 — k? ~ jk because the

principal value ofg is j& for propagation along the interface z
wherekp > 1. The next step is then to note that s, &
0’ €0
1 i -1 _
G = lim [ /0 (u+1)"" exp(—uz).Jo(gp)g dg} (22a) T e
. o [T h
= lim [P ! / exp(—uz).Jo(gp)g dg f Surface Impedance Z~
z—0 0 y
-T2 / exp(—uz)udo(gp)g dyg
0 P
o0 ¢ EZ
+F_3/ exp(—uz)u*Jo(gp)g dg — - - } . X Hy
0
(22b) Ep
The first integral is identically zero in the limit — 0.
The second and third integrals are Fig. 2. Effective source dipole momeht . located at a complex height..
) L, D7 5 The starting point is to determine the leading terms in inverse
G= lﬂn { [_F 922 9.3 } p for both F” and@’ to be substituted intél,;, as given by (12).
= 4 From (13), (16), and (19), we can approxim#teas
- / = exp(—uz)Jo(gp) dg} - (23) .
0 u F/ ~ eXp(_jkp) (27)
p2AZ

The integral here is just* exp(—jkr), wherer = \/p? + 22.

When these derivative operations are carried out and assur@igpilarly, from (14) and (24), we can approximéie as

kp > 1, we find that ,
G~ _M. (28)

p*(L'/k)?

If we substitute (27) and (28) into (12), we can approxinfdte

wherep, = —jkpAZ/2 = jkp(L/k)?/2 =~ —jkp( [v®)/2. as

(The attenuation rate is assumed to be small.) Thus, the first-

i 2A2
order estimate fof7 is Hy = 5 @ IO‘kA/F) eXp(Q_AJQkp) <1 + kl“? ) . (29)
(1 — jk p

G~ [=(2pe) 7" = 3(2pe) 7 = 17" exp(—jkp)  (24)

1 o® exp(—jkp)

N — . (25) We can factor the quantity in the right-hand parentheses to ob-
Jko & p tain
Thus, for most cases can be neglected compared within Ho o~ Iy exp(—jkp) . kA 20
(9) for the ground wave whehp > 1. Thus, forkp >> 1, the ¢ T p2 A2 T (30)

tangential magnetic field can be well approximated by

This result can be interpreted as the classic ground wave multi-
" Iy » plied by the height-gain function as shown in the next section.
©7 2n(T — jkA) _ _ _
A. Ground Wave and Height-Gain Function
wherel” = —9F/dp ~ jkI' andF" is given by (16). Also for  For ground-wave excitation, the effective dipole momiit
kr > 1, itis noted thatt, atz = O is given byE. =~ —noHy.  of the vertical line current is

Furthermore the horizontal electric field at= 0 is given by o o
E, ~ —AnoHy. IL, = / I(h)dh = I / exp(=Th)dh = Io/T (31)
0 0

[V. EQUIVALENT DIPOLE INTERPRETATION where we assuma > 0 so that the integral converges. The

The analytical approximations for the distributed source ﬁﬁective height.. can be determined by averaging oer

the previous section have a somewhat different appearance from 0 0

the well-known ground-wave expressions for a vertical electriée = 77 / hI(h)dh = F/ h exp(—=I'h)dh = 1/T".
dipole source located over imperfect ground [5]. However, in « 70 0 (32)
this section we will show that the fields for sufficiently large Sincel is complex, both L, andh. are complex. Even so,
can be interpreted as the usual ground wave for a surface-bagr§ can be used to rewrite (30) as

dipole times a standard height-gain function [8] to account for

the effective height of the distributed line source. Hy =~ Hyy(p)Gr(he) (33)
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TABLE |
NORMALIZED SURFACE IMPEDANCE AND HEIGHT-GAIN FUNCTION (v/¢ = 0.5).

Frequency MHz) &g o (S/m) A G
1 6 103 0.228 /34.3° 1.096 £3.4°
1 10 102 0.075 £43.4° . 1.027 .zl.4°
10 6 10? 0.368 £6.8° 1.182 /1.1°
10 10 102 0217 £29.2° 1.096 £2.8°
where Now we can relate the space wave to the ground wave by
Hole) = IL. exp(—jkp) . using (34), (35), and (39)
27 p2 A2 Hyy ~ [Gu(he) — 1|Hgg. (40)
and Hence, the sum of the ground and space waves is
Galhe) = 1+ jkAh. (35) Hgg + Hsp ~ HgoGr(he) (41)

which is consistent with (36) for the observer located at the sur-
Now we can make the physical interpretation of (33) that tHace ¢ = 0). For large heights, the space wave dominates the
magnetic field is the product of the ground-wave figlg,, for ground wave and that case has been covered separately [11].
a surface-based dipole with an effective momént and the
height-gain functior(s;, for an effective heighk.. This is pic- V. DISCUSSION

tured in Fig. 2, butit should be kept in mind thiatis complex Typically the attenuation rate of the traveling wave current

becausé’ is complex. The same height-gain fgnction [8] can b% fairly small compared to the imaginary part of the propagation
used to account for an elevated obserer- 0): constant” [2]. SoT" can be approximated as

Hy 7 Hog(p)Gn(he)Gn(2) (36) T 2 j(w/v) = jk(c/v). (42)
whereG),(z) = 1+ jkAz. The height-gain approximation in |f we substitute (32) and (42) into (35), we obtain the following
(35) and (36) neglects terms of ordérA /. )?. approximation for the height-gain function:

v
B. Space Wave at Low Angles Gn(he) 21+ A-. (43)

The height-gain function provides a convenient method f&ven though (43) has a simple fordd;, is frequency dependent
determining the field of an elevated source or observer [9], [18hd complex becaus& is frequency dependent and complex.
when the ground wave is already known. However, equivalefor all ground-wave calculationg) is approximated by (5) at
results can also be obtained by adding the space wave to ginezing & = 1)
ground wave. To illustrate the procedure, consider the case of =1 ST 3
the vertical line source with the observation point at the sur- ARN 1=N7 (44)
face ¢ = 0). Then the inverse-distance space wakg can be In Table I, we show numerical results for the normalized sur-
written as the sum of an incident and reflected wave [8] intéace impedance and height-gain function at 1 and 10 MHz for
grated over the vertical line source. For béthandp/~ large, typical ground and lightning parameters. For the current phase
H.,, can be approximated by velocity [1], we assume/c = 1/2. For dry ground we take
e/eg = 6 ando = 1072 S/m and for moist ground we take

H,, ~ M / (1+ R,)exp(—Th)dh (37) ¢€/eo =10ando = 10~2 S/m. The important point is tha&t;, is
0

50

dmp typically close to one. The largest departur&®ffrom one oc-
where curs at 10 MHz for dry ground becauis®| has its largest value
C_A h for that case. However, the ground-wave field strengtfy,
R, =5 A andC ~ s (38)  which multiplies the height-gain function would be smaller for

that case becausdé,, is proportional taA 2, as shown in (34).
By substituting (38) into (37), we can approximaig,, as

jklo exp(—jkp) /°° VI. CONCLUSION
H,~— h —I'h)dh _ . .
¢ 2w p2 A 0 exp( ) We have modeled a lightning return stroke by a vertical,
A IL. exp(—jkp) traveling wave current with a complex propagation constant.
~ K e 5 <5

27 p2 A2 g (39) A Sommerfeld-integral analysis yields an exact expression
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for the field at arbitrary height in (6). For a ground-based [4] F. Rachidi, C. A. Nucci, M. lanoz, and C. Mazzetti, “Influence of lossy
observer, we obtain an exact expression for the Hertz potential ~ground on lightning-induced voltages on overhead linésEE Trans.

d th ic field i f S feld i | Electromagn. Compatvol. 38, pp. 300-310, Aug. 1996.
?-n the magnetic '.e In terms of two Sommerte 'nte_gras [5] J. R. Wait, Electromagnetic Waves in Stratified MediaNew York:
in (9)—(14). These integrals could be evaluated numerically, = Pergamon, 1962.
but we have obtained analytical approximations in Section Il [6] D M. LeVine and J. C. Willett, "Comment on the transmission-line
The F int | is proportional to the standard around-wave model for computing radiation from lightningJ. Geophys. Resvol.

e L integral 1S prop ard ground-w 97, pp. 2601-2610, Feb. 1992.
attenuation function for a surface-based vertical electric dipole[7] H. K. Hgidalen, J. Sletbak, and T. Henriksen, “Ground effects from
as shown in (16). Thé integral is a result of the distributed gggr%fl;g;lgg?g,"lEEE Trans. Electromagn. Compatol. 39, pp.
current, and it has a smple asymptotic éxpansion as showp M) J. R. Wait, “Radiation from dipoles in an idealized jungle environment,”
(25). For most cases of interest, the dominant field contribution ~ Radio Sci, vol. 2, pp. 747-750, July 1967.
comes from the”’ integral. [9] D. A. Hill, HF ground wave propagation over forested and built-up ter-

.. . . . rain, in NTIA (U.S. Dept. Commerce) Rep., Dec. 1982.

At sufficiently large horizontal distances, the field can bey;q . “Radio-wave propagation from a forest to a clearinglctro-
written as the product of the ground wave of a surface-based magn, vol. 6, pp. 217-228, 1986. N _
electric dipole and the height-gain function due to the effectivdlll J. R Wait, “Ir_]ﬂuence of finite ground conductivity on the fields of a

. . . vertical traveling wave of current/EEE Trans. Electromagn. Compat.
height of the distributed current source, as shown in (33)—(36). o, 41, p. 78, Feb. 1999.
Because the propagation constant of the traveling wave currefi2] A.zeddam and P. Degauque, “Current and voltage induced on a telecom-
is complex, the effective heigm is also complex as shown in munications cable by a lightning s_troke,"lhightning ElectromagnR.
32). Even so, the form of the height-gain function in (35) is the L. Gardner, Ed.  New York: Hemisphere, 1990, ch. 21.
(32). Ev ! ght-g [13] D.A.Hilland J. R. Wait, “Ground wave attenuation function for a spher-
same as the usual form for an elevated source located at a real ical earth with arbitrary surface impedanc®adio Sci. vol. 15, pp.
height [8], [9]. For the usual case where the real part of the prop- ~ 637-643, May—-June 1980.
agation constant of the current is small, the height-gain function
takes a simple form involving the normalized current-phase ve-
locity and surface impedance, as shown in (43). Some typical
numerical values for the height-gain function and the normal-
ized surface i.mpeda_nce are shownin Taple l. The_ largest depgafies r. Wait deceased.
ture of the height-gain function from one is approximately 18%,
and it occurs at 10 MHz for dry ground.

Since both the surface impedance and the height-gain func-
tion are frequency dependent, the ground-wave pulse will suffer
dispersion. A useful extension would be to compute some ty
ical time-domain waveforms to see how ground-based remc
sensing and coupling to cables near the ground [12] would
affected. The effect of earth curvature [13] has been neglec
here, but could be included to make the analysis more gener
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