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Ground Wave of an Idealized Lightning Return Stroke
James R. Wait and David A. Hill, Fellow, IEEE

Abstract—We model a lightning return stroke by a vertical trav-
eling wave of current with a complex propagation constant. The
Sommerfeld-integral analysis is similar to that of a vertical elec-
tric dipole over a lossy earth except that the source is distributed
in height. When the integration over the source current is per-
formed analytically, an extra term appears in addition to the clas-
sical Sommerfeld attenuation function. This term is a result of the
height-gain function of the distributed source due to an effective el-
evated height of the source dipole moment. In most cases of interest,
the extra term is small and the height-gain function is not much
larger than one. The results have application to remote sensing of
lightning from a ground-based observer.

Index Terms—Ground wave, height-gain function, lightning re-
turn stroke, Sommerfeld integral, vertical electric dipole.

I. INTRODUCTION

USUALLY, in analyzing the electromagnetic fields pro-
duced by lightning [1], it is assumed that the ground plane

is perfectly conducting [2], [3]. For many applications such
an idealization is permissible. But one aspect of the problem
is then overlooked. Specifically the excited ground wave at
zero-elevation angle is profoundly influenced by the finite earth
conductivity [4].

It is interesting to note that a fairly simple analytical solu-
tion for the fields of a traveling wave current is available based
on what we know about Sommerfeld-type integrals [5]. Here
we derive both an integral form for the solution and approxi-
mate forms that are closely related to the Sommerfeld attenua-
tion function. The results have application to remote sensing of
lightning from ground-based observations.

II. THEORETICAL MODEL

The simple model is indicated in Fig. 1. With respect to a
cylindrical coordinate system ( ), the ground plane at

is characterized by a surface impedance, which, for sim-
plicity, is assumed known. The source is a traveling wave of
current at , where is the height above .
Elementary field theory tells us that the resultant fields in the
free-space region can be determined by a vector poten-
tial , which has only a component, here denoted simply by

. We consider only the frequency-domain case, but the corre-
sponding time-domain solution could be obtained by an inverse

Manuscript received July 19, 1999; revised January 5, 2000.
J. R. Wait, deceased.
D. A. Hill is with the Radio Frequency Technology Division, Na-

tional Institute of Standards and Technology, Boulder, CO 80303 USA
(dhill@boulder.nist.gov).

Publisher Item Identifier S 0018-926X(00)09339-X.

Fig. 1. Vertical traveling wave current located over a flat earth of surface
impedanceZ . The observer is located at the surface at a distance� from the
base of the current channel.

Fourier transform. For a time-harmonic dependence ,
is given by [5]

(1)

where , , ,
, , is the Bessel function of order

zero and argument , is the radial wavenumber, is the per-
mittivity of free-space, and is the magnetic permeability of
free-space. The fields at the observer () can be obtained from

(2)

(3)

(4)

Equation (1) is the exact solution of the problem and is basi-
cally the known result for a vertical electric dipole that
has been integrated over the line source extending from
to . With due care, the order of the integrations can be
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interchanged. But before we proceed, it is useful to note that the
normalized surface impedancefor a homogeneous half-space
model of the earth is given by [5]

(5)

where , and is the radial
wavenumber as in (1) above. Here, the whole region is assumed
to be nonmagnetic, so the permeability iseverywhere. The
permittivity and conductivity of the lower region areand
respectively. For layered-earth models, other forms forare
available [5].

In the present case, we are focusing our attention on the
ground-wave field, so it is permissible to let in (1) so that

(6)

Now we adopt the traveling wave model [2], [6], [7]

for (7)

where is the current at the air-ground interface and
in terms of the phase velocity and attenuation

rate . Because , the integration in (6) is allow-
able. (If one wishes to be more rigorous, the integration over
could be done before setting . The results would be the
same.) Then

(8)

which is equivalent to

(9)

where

(10)

(11)

and we evaluate at .
An explicit expression for the magnetic field at ( ) without

further restrictions is obtained from (4) operating on (9) to give

(12)

where

(13)

and

(14)

Formally, the results given above are exact for the model
adopted, and they are exact for all distancesalong the ground

plane. But the reader will note that, , , and are diver-
gent integrals as written. The results can be made more rigorous
by noting the definition

(15)

where and are positive integers.
Exact expressions for the electric field components can also

be obtained from (1) when (2) and (3) are usedprior to setting
. These are not given here.

III. A PPROXIMATIONS

Here, we will be content with approximate analytical expres-
sions for the integrals and . Not too surprisingly, as given
by (10) is identical to the form for ground-wave propagation
for a ground-based vertical electric dipole when the observer is
also at . In the case when is assumed not to depend on
, where and indeed where , the Sommer-

feld–Norton form is equivalent to [5]

(16)

where the numerical distanceis defined by
and erfc is the error-function complement of the indicated
complex argument. The term in square brackets is usually
known as the ground-wave attenuation function (GAF), and it
has been well studied numerically [5]. A convergent (but not
always useful) series expansion is given by [5]

(17)

while an asymptotic (sometimes useful) expansion is

(18)

valid for . The leading term in (18) is adequate for
high frequencies (e.g., above 10 MHz) and normal soil (e.g.,

S/m and ). Then

(19)

where

(20)

and we assume .
But we also need to examine theintegral as defined by (11).

It appears to have the same form as theintegral which is true.
But if we set , the effective or analogous function to

would be given by . Thus, is not
small compared to one. But now a simple asymptotic estimate
will suffice, rather than trying to modify the GAF. To this end,
we note that

(21)
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is highly convergent since because the
principal value of is for propagation along the interface
where . The next step is then to note that

(22a)

(22b)

The first integral is identically zero in the limit .
The second and third integrals are

(23)

The integral here is just , where .
When these derivative operations are carried out and assuming

, we find that

(24)

where .
(The attenuation rate is assumed to be small.) Thus, the first-
order estimate for is

(25)

Thus, for most cases can be neglected compared within
(9) for the ground wave when . Thus, for , the
tangential magnetic field can be well approximated by

(26)

where and is given by (16). Also for
, it is noted that at is given by .

Furthermore the horizontal electric field at is given by
.

IV. EQUIVALENT DIPOLE INTERPRETATION

The analytical approximations for the distributed source in
the previous section have a somewhat different appearance from
the well-known ground-wave expressions for a vertical electric
dipole source located over imperfect ground [5]. However, in
this section we will show that the fields for sufficiently large
can be interpreted as the usual ground wave for a surface-based
dipole times a standard height-gain function [8] to account for
the effective height of the distributed line source.

Fig. 2. Effective source dipole momentIL located at a complex heighth .

The starting point is to determine the leading terms in inverse
for both and to be substituted into as given by (12).

From (13), (16), and (19), we can approximateas

(27)

Similarly, from (14) and (24), we can approximateas

(28)

If we substitute (27) and (28) into (12), we can approximate
as

(29)

We can factor the quantity in the right-hand parentheses to ob-
tain

(30)

This result can be interpreted as the classic ground wave multi-
plied by the height-gain function as shown in the next section.

A. Ground Wave and Height-Gain Function

For ground-wave excitation, the effective dipole moment
of the vertical line current is

(31)

where we assume so that the integral converges. The
effective height can be determined by averaging over

(32)
Since is complex, both and are complex. Even so,

they can be used to rewrite (30) as

(33)
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TABLE I
NORMALIZED SURFACE IMPEDANCE AND HEIGHT-GAIN FUNCTION (v=c = 0:5).

where

(34)

and

(35)

Now we can make the physical interpretation of (33) that the
magnetic field is the product of the ground-wave field for
a surface-based dipole with an effective moment and the
height-gain function for an effective height . This is pic-
tured in Fig. 2, but it should be kept in mind that is complex
because is complex. The same height-gain function [8] can be
used to account for an elevated observer :

(36)

where . The height-gain approximation in
(35) and (36) neglects terms of order .

B. Space Wave at Low Angles

The height-gain function provides a convenient method for
determining the field of an elevated source or observer [9], [10]
when the ground wave is already known. However, equivalent
results can also be obtained by adding the space wave to the
ground wave. To illustrate the procedure, consider the case of
the vertical line source with the observation point at the sur-
face ( ). Then the inverse-distance space wave can be
written as the sum of an incident and reflected wave [8] inte-
grated over the vertical line source. For bothand large,

can be approximated by

(37)

where

and (38)

By substituting (38) into (37), we can approximate as

(39)

Now we can relate the space wave to the ground wave by
using (34), (35), and (39)

(40)

Hence, the sum of the ground and space waves is

(41)

which is consistent with (36) for the observer located at the sur-
face ( ). For large heights, the space wave dominates the
ground wave and that case has been covered separately [11].

V. DISCUSSION

Typically the attenuation rate of the traveling wave current
is fairly small compared to the imaginary part of the propagation
constant [2]. So can be approximated as

(42)

If we substitute (32) and (42) into (35), we obtain the following
approximation for the height-gain function:

(43)

Even though (43) has a simple form, is frequency dependent
and complex because is frequency dependent and complex.
For all ground-wave calculations, is approximated by (5) at
grazing ( )

(44)

In Table I, we show numerical results for the normalized sur-
face impedance and height-gain function at 1 and 10 MHz for
typical ground and lightning parameters. For the current phase
velocity [1], we assume . For dry ground we take

and S/m and for moist ground we take
and S/m. The important point is that is

typically close to one. The largest departure offrom one oc-
curs at 10 MHz for dry ground because has its largest value
for that case. However, the ground-wave field strength ,
which multiplies the height-gain function would be smaller for
that case because is proportional to , as shown in (34).

VI. CONCLUSION

We have modeled a lightning return stroke by a vertical,
traveling wave current with a complex propagation constant.
A Sommerfeld-integral analysis yields an exact expression
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for the field at arbitrary height in (6). For a ground-based
observer, we obtain an exact expression for the Hertz potential
and the magnetic field in terms of two Sommerfeld integrals
in (9)–(14). These integrals could be evaluated numerically,
but we have obtained analytical approximations in Section III.
The integral is proportional to the standard ground-wave
attenuation function for a surface-based vertical electric dipole
as shown in (16). The integral is a result of the distributed
current, and it has a simple asymptotic expansion as shown in
(25). For most cases of interest, the dominant field contribution
comes from the integral.

At sufficiently large horizontal distances, the field can be
written as the product of the ground wave of a surface-based
electric dipole and the height-gain function due to the effective
height of the distributed current source, as shown in (33)–(36).
Because the propagation constant of the traveling wave current
is complex, the effective height is also complex as shown in
(32). Even so, the form of the height-gain function in (35) is the
same as the usual form for an elevated source located at a real
height [8], [9]. For the usual case where the real part of the prop-
agation constant of the current is small, the height-gain function
takes a simple form involving the normalized current-phase ve-
locity and surface impedance, as shown in (43). Some typical
numerical values for the height-gain function and the normal-
ized surface impedance are shown in Table I. The largest depar-
ture of the height-gain function from one is approximately 18%,
and it occurs at 10 MHz for dry ground.

Since both the surface impedance and the height-gain func-
tion are frequency dependent, the ground-wave pulse will suffer
dispersion. A useful extension would be to compute some typ-
ical time-domain waveforms to see how ground-based remote
sensing and coupling to cables near the ground [12] would be
affected. The effect of earth curvature [13] has been neglected
here, but could be included to make the analysis more general.
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