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Application of Radio Ground-Wave Propagation
Theory to the Tomographic Imaging of Ground

Surfaces
Zhipeng Wu, Member, IEEE

Abstract—Radiowave propagation over ground has been histor-
ically studied for predicting the radiated fields when the ground
properties are known and the field has been well covered over the
past hundred years. In this paper, the theory of ground wave prop-
agation is applied to inverse problem of the tomographic imaging
of ground surfaces. After the inverse problem is formulated, an
iterative technique for solving it is illustrated. This is based on
the minimization of the cost function of the measured and esti-
mated scattered fields produced by the surface under investigation
in isolation. Numerical simulation results are presented for the re-
construction of four different ground features surrounded by sea
water namely: 1) dry ground; 2) wet ground; 3) dry–wet mixed
ground; and 4) dry ground with a central water pool. It has been
demonstrated that the technique is able to reconstruct the distribu-
tions of normalized surface impedance of the isolated surfaces and,
hence, their images. The iterative process can converge with a small
number of iterations using the normalized surface impedance of
sea water as the initial guessed values. However, better images can
be produced usinga priori information. This study thus illustrates
a new application of ground wave propagation theory with possible
applications in ground surface mapping, remote sensing, target po-
sitioning and monitoring, and navigation.

Index Terms—Electromagnetic (EM) tomography, ground-wave
propagation.

I. INTRODUCTION

RADIOWAVE propagation over the ground surface of the
earth at low, medium, and high frequencies has been

studied theoretically and experimentally over the past hundred
years [1], [2]. In obtaining the solutions to these problems, a
number of different models and assumptions are made in order
to obtain simplified solutions. A current element is usually
considered as the radiation source, although other sources are
also used. Historically, the ground was first modeled to be flat
and homogeneous for short propagation ranges [3]–[11] and
spherical in shape for long distance propagation [12]–[17].
Ground surface inhomogeneity and irregularity was then
introduced in the model to take into account the effects of
mixed path propagation, and irregular terrain [18]–[44]. The
electric and magnetic fields from the radiation of a current
element over a flat homogeneous ground were thus expressed
in closed form and those over a spherical ground in the sum
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of a residue series. However, for inhomogeneous or irregular
grounds, the radiated fields were usually given in the form of an
integral equation for the attenuation function, which could be
derived from either the compensation theorem [20], [43]–[46]
or Green’s theorem [18], [19], [23], [39]–[42], [47], [48]. This
integral equation could be solved to give numerical solutions,
which have been confirmed experimentally to be accurate at
low, medium, and high frequencies. The subject of theoretical
radiowave propagation over a ground surface is, thus, now
reasonably well understood and tested as a forward problem.

However, as the radiated fields and ground properties are re-
lated by the same set of equations, measurements of the fields
can be used to determine the ground properties. This is inverse
problem. With the use of multiple fixed transmitting and re-
ceiving antennas, or a portable transmitter and a portable re-
ceiver, to create “multiviews” of the ground surface, as in X-ray
or microwave tomographic systems [49], [50], the ground sur-
face can be mapped in terms of its impedance properties. Con-
sequently, the image of the ground surface can be reconstructed.
The resolution of this image will depend on the operating fre-
quency. When the area under imaging is discretized, the resolu-
tion would further depend on the size of the cell, which is usually
chosen to be in the range between and . A higher op-
erating frequency and smaller cell area would give a better res-
olution. However, the use of a higher frequency would require
a larger number of discretized cells per square wavelength and,
thus, demand more computing capacity. A compromise between
the resolution and computing requirement would be the choice
of a frequency at which the diameter of the area to be imaged
is the order of a wavelength in free-space. For the imaging of a
ground surface of diameter of the order of a few hundred me-
ters or kilometers, a frequency in the medium or high-frequency
band would be most suitable. Hence, such frequency bands will
be considered in this paper for tomographic imaging of ground
surfaces. In the following sections, the technique for producing
tomographic images of ground surfaces will be presented.

In Section II, the forward problem of radiowave propagation
over ground will be described by considering an isolated ground
such as an island surrounded by seawater. In Section III, the in-
verse problem will be formulated to provide the procedure for
obtaining the dielectric constant distribution from the measure-
ments of the scattered fields from this isolated ground surface.
Finally, numerically simulated results of the image reconstruc-
tion for a number of isolated ground features will be presented
in Section IV.
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WU: RADIO GROUND-WAVE PROPAGATION THEORY TO IMAGING OF GROUND SURFACES 1385

Fig. 1. Radiation of a vertical current element atA over an isolated surface

II. FORMULATION OF THE FORWARD PROBLEM OFRADIOWAVE

PROPAGATION OVER ANISOLATED SURFACE

The consideration of an isolated surface for imaging purposes
does not lose its generality as the largest contribution to the
attenuated fields arises from the first Fresnel zone. The prop-
agation of radiowaves over an isolated surface, as shown in
Fig. 1, can be formulated using the compensation theorem [45],
[46] or Green’s theorem [47], [48]. The two methods lead to
slightly different expressions for the attenuation function [31],
[32], [34], [36], [38]. Here, the scalar Green’s theorem, which
was used by Feinberget al.[18], [19], [23], [39]–[41] in dealing
with irregular terrain, will be used. The transmitting antenna
is considered to be a vertical electric current element lo-
cated at on the ground surface. Following the work given in
[51], [52], the vertical electric field component at the
receiving point on the ground surface can be written as

(1)

where
subscript 1 field produced by the current element

;
vertical electric field component at from
the radiation of the same current element

on a homogeneous ground with a
constant normalized surface impedance

;
scattered vertical electric field component
at due to the isolated inhomogeneity.

is given by

(2)

where
constant depending on the transmitted power and an-
tenna gain;
wave number in free-space;
distance between and

(3)

is the Sommerfeld attenuation function and

(4)

Fig. 2. Measurement configuration to create multiviews of the isolated surface

is the Sommerfeld numerical distance [8]. The scattered field
in (1) is given by

(5)

where
wave impedance in free-space;
area of the isolated surface;
vertical electric field component at from the ra-
diation of the same current element on the inhomo-
geneous ground surface with a normalized surface
impedance distribution of ;
vertical electric field component at a pointon the
isolated surface from the radiation of a vertical elec-
tric current element at on a homogeneous
ground with a normalized surface impedance.

(6)

where is the distance between and and is the
Sommerfeld attenuation function with the numerical distance

(7)

Substituting (6) into (5) gives the following expression for
:

(8)

Equations (8) and (1) form an integral equation for the total
vertical electric field , which can be solved numerically
when the isolated surface is discretized. The isolated surface
could be divided into a number of square cells. For a circular
isolated surface, a different scheme as shown in Fig. 2(a) can be
employed. The circular surface is divided into rings [
in Fig. 2(a)] and segments in each ring for

to , giving a total of cells of equal area. Assuming
the isolated surface is divided into a total of cells of equal
surface areas with the use of one-dimensional cell numbering
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scheme to , the vertical electric field at point can be
approximated by

(9)

where , , are the values of , ,
at the th cell, which are taken to be constant across the

cell as an approximation. In (9), is the distance from point
to a point on the th cell and is the surface of the th

cell. The integration in (9) could be performed using quadra-
ture methods [32]. This however is time consuming. By using
the method of approximating the area of each cell by a circle
of the same area, which was first proposed by Richmond [53]
in dealing with electromagnetic (EM) scattering from dielectric
objects, an analytical expression can be obtained. The compu-
tation can be simplified further by the use of the spherical har-
monic expansion of exponent given in [48], [54]
with the choice of the arbitrary origin to coincide with the center
of the th cell, and with and for points on
the ground surface. This gives

(10)

where
and spherical Bessel functions of order

;
Legendre function of the first kind;
distance between point and the
center of the th cell;
radius of the circle having the same
area as .

A numerical study of the series in (10) shows that for the numer-
ical examples to be presented in Section IV, the first term is at
least 30 times larger than the second term which corresponds to

. Keeping the first term as the first-order approximation
leads to the closed-form expression

(11a)

Alternatively using the physical optics approximation, the
distance in the phase term of the left-hand side (LHS) of (10)
can be approximated by . The integration
over the equivalent circular area then gives

(11b)

Numerical studies show that (11a) and (11b) provide good
approximations to the integration . The er-
rors are usually less than 1% with (11b) generally giving slightly
smaller errors than (11a).

If the point coincides with the center of theth cell so that
, (11a) and (11b) cannot be applied. However, in this

case, it can be easily shown that

(11c)

By selecting the field point to be at the center of each cell
sequentially from to , a set of linear equations can be
obtained from (9) for the solution of the electric field distribu-
tion on the isolated surface. This can be written in matrix form
as

(12)

where and when is at the
center of the th cell

or

for (13a)

with and and

for (13b)

For to and to , is a square matrix. The
inverse of exists. Hence, the vertical electric fields on the
isolated surface can be obtained and

(14)

The scattered field due to the surface inhomogeneity at any
point outside the surface can then be evaluated from (8) or its
discretized form

(15a)

with the use of the first-order approximation of (11a) or, alter-
natively

(15b)

with the use of the physical optics approximation of (11b).
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Fig. 3. The exact distributions of the (a) real part and (b) imaginary part of the normalized surface impedance of a dry ground with" = 4 and� = 0:001 S/m
or� (P ) = 0:184527 + j0:140076 and the reconstructed distributions of the (c) real part and (d) imaginary part of the normalized surface impedance.

III. FORMULATION OF THE INVERSEPROBLEM OFRADIOWAVE

PROPAGATIONOVER AN ISOLATED SURFACE

A. Measurement Configuration

In order to reconstruct the image of an isolated surface, which
is assumed to be inaccessible otherwise, a number of measure-
ments of scattered fields around the isolated surface are required
to be made when the surface is illuminated sequentially with a
number of waves from different directions. The arrangement is
similar to that used in X-ray tomography or microwave tomog-
raphy [49], [50]. It is made in such a way that “multiviews” of
the isolated surface can be created. For simplicity, it is assumed
that a total of antennas are used. Each antenna is able to
transmit and/or receive at a given time. The antennas are placed
on a circle of diameter enclosing the isolated surface with
equal spacing at for to , as shown in Fig. 2(b). Each
of the antennas will transmit in turn and receive in turn. This
will generate “multiviews” of the isolated surface and enable
the measurements of the scattered fields indifferent “view
angles” to be made. When theth antenna acts as a transmit-
ting antenna, the measurements of the scattered fields atfixed
points for to are denoted as for
to .

B. Iterative Reconstruction Algorithm

The task of the image reconstruction is to find the distribution
of on the isolated surface which produces the same scat-
tered fields as at the same point with the same
transmitting position for to and to . Since
the number of measurements taken is not generally equal to the
number of unknowns for to , an exact solution of

can hardly be found. The task may be reduced to find
an approximated solution of , which minimizes the dif-
ference between the measured scattered fields and
the estimated scattered fields, denoted as for
to and to as a result of the estimated distribution
of for the same transmitting and receiving conditions.
This can be made in an iterative manner to minimize the square
of the second-order norms of the errors between the estimated
and measured scattered electric fields, or the cost function [55]
defined as

(16)
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Fig. 4. Percentage error of the iterative process against the number of iterations for the dry ground surface.

There exist a number of mathematical techniques that can be
used in the minimization of (16) [55], [56]. Here, the steepest
descent-based minimization technique is used. The search for
the approximated solution starts with a guessed distribution of

or a set of guessed values of for to
in the discretized form. The complex updating direction,

which combines the directions for changes in real and imaginary
parts, for each will then be determined so as to reduce the
error in (16). The direction is chosen as the negative direction
of the complex slope when the real and imaginary parts of
are varied, respectively, from . Using the differentiation
procedures described in [55], it can be derived that

(17)

where denotes the complex conjugate of the function. Hence,
an updated value of would become

(18)

where is the step length determined from the minimization of
the error function

(19)

It can be shown that

(20)

When and are obtained, the values of can be up-
dated using (18), the iterative process will then be continued.
The overall error estimation in each iteration can be made using
the following normalized root mean square (rms) error function:

(21)

The iteration terminates when the overall error measured using
(21) meets the permitted error requirement or the required
number of iterations is reached.

IV. NUMERICAL RESULTS

The validity of the image reconstruction technique described
in Section III will now be illustrated using the four following
isolated ground features: 1) dry ground; 2) wet ground; 3)
dry–wet mixed ground surface; and 4) dry ground with a central
water pool. In each case, the isolated surface is considered to
be surrounded by sea water and assumed to be confined within
a circle of diameter of 300 m. The circular surface is divided
into five rings with 4, 12, 20, 28, and 36 segments, respectively,
from the innermost to the outermost rings, as shown in Fig. 2(a).
Thus, there are a total of 100 cells of equal area, with cells
being numbered from 1 to 100 anticlockwise from the inner
ring to the outer rings. The transmitting and receiving antennas
are located at 18 fixed points along a circle with a diameter of

m. The frequency of operation is taken to be 1 MHz.
At 1 MHz, the normalized surface impedance of sea water with
a relative dielectric constant and conductivity
S/m is . The measured scattered
fields in Section III, are obtained by using (15a) with the known
distribution of ground properties for each case. Initial guessed
values of required in the iteration process are taken to be
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Fig. 5. The exact distributions of the (a) real part and (b) imaginary part of the normalized surface impedance of a wet ground with" = 10 and� = 0:01 S/m
or� (P ) = 0:054239 + j0:051025 and the reconstructed distributions of the (c) real part and (d) imaginary part of the normalized surface impedance.

for all cases, and the errors of reconstruction are evaluated
using the definition

Error (22)

A. Dry Ground Surface

The first isolated surface used to test the algorithm is dry
ground having a relative dielectric constant of and
conductivity S/m, giving a normalized surface
impedance . The
distributions of the real and imaginary parts of , Re
and Im , are shown in Fig. 3(a) and (b), respectively.
Using the reconstruction algorithm described in Section III,
the reconstructed distributions of Re and Im after
16 iterations are shown in Fig. 3(c) and (d), respectively. The
distributions of both Re and Im are well recon-
structed with an error of 0.7% evaluated using (22). The error
of reconstruction for each iteration is shown in Fig. 4. The error

reduces monotonically as the number of iteration increases,
and an error less than 1% can be achieved after 12 iterations.

B. Wet Ground Surface

The isolated wet ground used for the reconstruction has a rel-
ative dielectric constant of and conductivity
S/m for which the normalized surface impedance is

. The distributions of Re
and Im are shown in Fig. 5(a) and (b), respectively, and
the reconstructed distributions of Re and Im after
16 iterations in Fig. 5(c) and (d), respectively. Again, the distri-
butions of both Re and Im are well reconstructed.
The error of reconstruction is very similar to that for the dry
ground shown in Fig. 4, with the error falling below 1% after 12
iterations.

C. Dry–Wet Mixed Ground Surface

The isolated ground surfaces in cases A and B above are
each homogeneous. A combination of dry and wet ground areas
generates an artificial mixed inhomogeneous ground surface.
For the half-dry and half-wet combination, the distributions of
Re and Im are shown in Fig. 6(a) and (b), respec-
tively. The reconstructed distributions of Re and Im
after 16 iterations are shown in Fig. 6(c) and (d), respectively,
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Fig. 6. The exact distributions of the (a) real part and (b) imaginary part of the normalized surface impedance of a half dry and half wet mixed surface and the
reconstructed distributions of the (c) real part and (d) imaginary part of the normalized surface impedance.

with an error of 13.7%. Due to the sharp change in the normal-
ized surface impedance between the dry and wet ground areas,
the error of reconstruction converges slowly. A larger number
of iterations is needed to achieve an improved accuracy. The
spatial “low-pass” filtering effect can be observed from the re-
constructed distributions. The sharp change has been smoothed.
However, the image of the half dry and half wet ground can be
seen from either the distribution of Re or Im .

The distributions of Re and Im shown in Fig. 6(c)
and (d) are obtained without usinga priori information of the
ground properties. If the ground surface is known to be either
wet or dry, this information can be fed into the algorithm after
a number of iterations. For instance, if the information is fed
into the algorithm after 16 iterations, the algorithm is able to re-
construct the exact distributions of both Re and Im
after one further iteration, which are the same as those shown in
Fig. 6(a) and (b). The error evaluated using (22) is then effec-
tively zero.

D. Dry Ground with a Central Water Pool

The discontinuity in ground properties in case C above oc-
curs in the azimuthal direction of the isolated surface. In this
present case, the algorithm is to be tested for a discontinuity in
the radial direction. The isolated surface is composed of a water
pool, with a diameter of 120 m at the center and dry ground in

the rest of the area. The electrical properties of water are taken
to have a relative dielectric constant of and conduc-
tivity S/m, giving a normalized surface impedance of

at 1 MHz. The dry ground
has the same properties as that in Case A having a relative di-
electric constant of and conductivity S/m,
or a normalized surface impedance of

. The distributions of Re and Im of the
isolated surface are shown in Fig. 7(a) and (b), respectively.
The reconstructed distributions of Re and Im after
16 iterations are shown in Fig. 7(c) and (d), respectively, with
an error of 13.2%. Again, due to the sharp change in the nor-
malized surface impedance between the water and dry ground,
the reconstruction converges slowly. The spatial “low-pass” fil-
tering effect can also be observed from the reconstructed dis-
tributions, with the sharp change appearing in smoothed form.
However, the image of this circular water pool in the dry ground
can be seen clearly from either the distribution of Re or
Im .

Again, if the ground surface is known to be either dry or full
of water, thisa priori information can be fed into the algorithm.
When this is done after 16 iterations, the algorithm is able to re-
construct the exact distributions of both Re and Im ,
as shown in Fig. 7(a) and (b), respectively, after one further it-
eration.
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Fig. 7. The exact distributions of the (a) real part and (b) imaginary part of the normalized surface impedance of a dry land with a center water pool and the
reconstructed distributions of the (c) real part and (d) imaginary part of the normalized surface impedance.

V. CONCLUSION

In this paper, a technique for the tomographic imaging of iso-
lated ground surfaces is illustrated for the first time using both
the theory ground-wave propagation and the measurements of
scattered fields around the isolated surfaces with different trans-
mitting positions. These images are generated from the recon-
structed distributions of the real and imaginary parts of the nor-
malized surface impedance on the isolated surfaces.

It has been demonstrated through the simulation of four dif-
ferent ground features that the distributions of both real and
imaginary parts of the normalized surface impedance can be re-
constructed using the minimization technique, and the steepest
descent search method. The reconstruction process has made
use of the first order approximation of the spherical harmonic
expansion of , which is shown to be effective.
This could, however, be improved slightly if the physical op-
tics approximation is used. The initial guessed values may be
important in finding a quick solution. However, the algorithm
has been shown to be able to produce the distributions of nor-
malized surface impedance with a small number of iterations,
even using the normalized surface impedance of sea water as the
initial guessed values. But, thea priori information has proved

useful in the reconstruction process and it can become impor-
tant when a highly accurate distribution is to be obtained with a
small number of iterations.

The study presented in this paper shows a new application
of the theory of ground wave propagation. It may be useful in
ground surface mapping, remote sensing, target positioning and
monitoring, and navigation.
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