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Linear Inverse Problems in Wave Motion:
Nonsymmetric First-Kind Integral Equations

Donald G. DudleyFellow, IEEE Tarek M. Habashy, and Emil Wolf

Abstract—We present a general framework to study the solu-  In many applications, the inversion of first-kind integral equa-
tion of first-kind integral equations. The integral operator is as-  tjons is widely used to estimate parameters and map geome-
sumed to be compact and nonself-adjoint and the integral equa-dmes in areas as diverse as geophysical prospecting, medical

tion can possess a nonempty null space. An approach is presente . d destructi luati Princioal
for adding contributions from the null-space to the minimum-en- Imaging, and nondestructive evaluaton. Frincipal among our

ergy solution of the integral equation through the introduction of ~ interests in wave motion are applications in geophysical explo-
weighted Hilbert spaces. Stability, accuracy, and nonuniquenes of ration [17]-[21]. A first-kind Fredholm integral equation arises,

t_he solution are diSCySSEd through the use of model resolu;ion, data for example, in the employment of the Born approximation.
fit, and model covariance operators. The application of this study | thjs paper, we consider characteristics of first-kind integral

is to inverse problems that exhibit nonuniqueness. . . . - -
P q equations and their solution(s) under the following two condi-
Index Terms—integral equation methods, inverse problems, tigns:

weighted Hilbert space. . . .
1) the integral operator is compact, but not necessarily self

adjoint;
. INTRODUCTION 2) the integral equation posseses a nonempty null space.
N the study of linear inverse problems, first-kind Fredholr iS the second condition that sets our paper apart from most of
I integral equations play an important role. These problerif¢ literature on the subject.
have been widely studied and reported in the pages of the journain Section I, we give some preliminaries consisting of the
Inverse Problem§l], for example. Inverse problems present #llowing:
particular difficulty in that they are ofteitl posedin the sense 1) areview the spectral theorem for compact self-adjoint op-

of Hadamard [2]. A problem iwell posedf the following three erators;

statements are true: 2) areview of the singular-value decomposition theorem and
1) a solution to the problem exists; its application to compact, nonself-adjoint operators.
2) there is at most one solution to the problem; In Section I, we consider compact, but not necessarily self-ad-
3) the solution depends continously on the data. joint first-kind integral equations. We derive some basic results

If any of these three statements is untrue, the problem is yging singular-value decomposition. In Section IV, we consider
posed. By far the major emphasis in the study of ill-posed prog_completeness relationship that involves eigenfunctions with
lems has been on matters involving the dependence of the 8g0Zero eigenvalues and eigenfunctions in the null space. In
lution on the data (Statement 3). Such studies have led to r&§ction V, we consider properties of the solution to the inte-
ularization strategies [3]-[11] to improve solution stability irpral equation. In particular, we discuss the fact that classical
ill-posed problems. Indeed, there has recently been made avaigthods produce a minimum norm solution in terms of the
able a Matlab package [12] concerned with the analysis of afigenfunctions with nonzero eigenvalues. However, the solution
solution to discrete ill-posed problems, with emphasis on regi§-nonunique because these methods do nothing to remove the
larization. arbitrary character of the portion of the solution in the null space.
Our applications are in inverse problems in wave motio? Section VI, we discuss solution accuracy and sensitivity and
where nonuniqueness is a principal issue [13]-[16]. It is, ther@éVelop measures to quantify the effects of the null space.
fore, the violation of the condition in Statement 2 that com- 1he principal purpose of this paper is to incorporate por-
mands our attention in this paper. This is not to minimize tH#ons of the solution that are in the null space of the integral
importance of continuous dependence on the data. Indeed, mapgrator into the overall solution. We accomplish this goal by

of our problems involve violation of both Statements 2 and 3Using weighting functions to include the null-space contribu-
tions. Mathematically, we construct a Hilbert space containing a

, . . weighting operator that generates the required weighting func-
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Hilbert space, plus a contribution from the null space of the immplicit is 6 € Dy- (domain ofL*). SinceL* L is selfadjoint,
tegral operator. This null-space contribution can be adjusted g have the associated eigenproblem

specific choice of the weighting operator, a choice that can in-

corporate our practical knowledge of the problem physics. L* Ly, = A2 vn, (1)

where the eigenvalues, are real and nonnegative afid, } is
an orthonormal sequence. We remark thditeing compact im-
We shall consider our problem in a complex Hilbert spice plies thatZ* L is compact. By the singular-value decomposition

Il. PRELIMINARIES

Let theorem [24], [25]), there exists.,, } such that
La=0b; L#0 Q) Lv, = A\ up, {u, } orthonormal (8)
L uy, = A vp. 9)

whereL is compact and selfadjoint. Then, the principal results

from the spectral theory for compact self-adjoint operators [23h (8) and (9), the numbers,, are thesingular values Next,

[23] are as follows: from the spectral theorem for compact self-adjoint operators ap-
1) all eigenvalues of. are real; plied to L* L, it follows that
2) L has atleast one nonzero eigenvalue and at most a count-

able set of eigenvalues with accumulation point only at o= Z<a’ o) om + a0, a0 € NpoL. (10)
zero; —
3) all eigenspaces for nonzero eigenvalues have finite di-
mension: Furthermore, sincey € N,
4) eigenspaces for different eigenvalues are orthogonal, .
5) eigenfunctions ofL corresponding to nonzero eigen- (a0, L"Lao) = 0 = (Lao, Lao) (11)
x;azlues form an orthonormal basis @&, (range ofL), which impliesLag = 0 and, therefore, the important result
o o o0 NL*L - NL. (12)
La = (La, ex)er = {(a, Legyer = prla, epex
; ; kz_:,l @ We, therefore, have a stronger result in (203,
6) an arbitrarye € H can be decomposed o= Z<a’ VYo + o, ao € N7 (13)
n=1

@=ao+ ;1(@’ ek @) we may now apply the operatdrto (13) with the result

whereag € N (null space off.), viz La— Z<a’ ) Lvn = Z<a’ ) At (14)
n=1 n=1

Lao =0. (4)
We note that the passing éfinside the sum is legitimate, since
We remark that our sums above are countably infinite in length;is compact and thus bounded.
this will be the usual case in our problems of interest, however,Some comments are in order.
the theorems do not rule out finite sums in the above or in the 1) ag is an eigenfunction of.* L with zero eigenvalue. The
sequel. eigenfunctionzg has the important property that it is or-
We shall be particularly interested in cases, wh¥feis not thogonal to all,, .
empty. In addition, the operators we shall consider are in gen-2) The set of all eigenfunctions, including those with zero
eral nonselfadjoint. We, therefore, must relax the self-adjoint  eigenvalues, forms a basis f&f.
requirement. IfL. is compact, we may use a classic procedure 3) The set{v,} forms a basis if and only if.*La = 0

and preoperate on both sides of (1) with the adjoint opeuator impliesa = 0.
to give 4) The maximum eigenvalugax(\2) = ||L*L]].
. We note that the adjoint operator enters into all of this, as is
L*La=b (5) apparentin (5) and (9). We may multiply both sides of (9)by
and substitute (8) to obtain
where
. LL*u, = \u,. (15)
b=L"Db (6)
Therefore, we now have the eigenfunctiansof L* L given by
with the well-known characteristics: (7) and the eigenfunctions, of LL* given by (15); in addition,
1) L*L is nonnegative. IfLa = 0 implies thate = 0, then we havecompleteexpansions for both the domain and the range
L* L is positive; given by (13) and (14). We emphasize that one has to include

2) L* L is selfadjoint. the null-space eigenfunctions in (13), if any.
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lll. FIRST-KIND INTEGRAL EQUATIONS fore, can use (7)—(9) and (13)—(15) for decomposition of the in-
We consider the following integral equation in Hilbert spacléEgral equation in (16). We find that

Lo(c, d): d pd d
. - [ [ J ey dz] oo w)dy = [ Ot 2)ds
| e, 2 dz =), (16) o | (25)
¢ where
We refer toa(z) as the “solution” and té(x) as the “observ- d
ables” or “data.” We write (16) in operator form as flx, 2) = / 9(z, v)g(z, y) dy. (26)
La=1b (17) We note that
where [(z ) = f(z, 2). (27)
d We may manipulate (14) to give
L= [ Ogla, 2 (18)

Z An [/ a(z)0n (2 )dz] wp ()
We refer to the integral operator in (18) with a specifie, z)
as the “model.” We shall assume thiats compact (and, there-
fore, bounded). An example of a class of compact operators / [Z AT (2)un (2 ] dx
of potential interest is the Hilbert—-Schmidt operator, with

Hilbert—Schmidt ki | defined by [26 d
ilbert—Schmidt kernel defined by [26] :/ o(2)g(z, 2) d 28)
d C
/ / lg(, 2)|? d dz < oc. (19) where we identify the following expansion for the kernel
¢ e g(z, 2):
For L nonselfadjoint, we find that oo
z) = Z AT (20 (). (29)
n=1

(La, s) = / / a(z)g(x, z) dzs(z) dz
Substitution of (29) into (23) and (26) and use of orthogonality

/da /d§ g(z, z)dr dz gives
/da </ s(z dz) di h(z, z)I/cd Lﬁ; AnUn ()T ] [Z)\ U (2)un (y ] dy

9

=f{a, L) (20) =3 A2u(@)a(2) (30)
where n:; oo oo
d f(.’L', Z) = / [Z )\nun(x)aﬂ(y)‘| [Z )‘nuﬂ/(z)vn(y)] dy
= [ Oge o) e (21) - L =
| o . = 3 Aun(a)n(2) (31)
Although L is nonselfadjoint/* L is selfadjoint, where, in this o
case
d[ pd d IV. COMPLETENESSRELATIONSHIP
L'L = . ,2)dz| gy, ) dy = Iz, 2)dz i "
/c /(, ()gly, 2) dz| gly, @) dy /(, (I, z) dz From the singular value decomposition theorem, we know
(22) thata(z) € L2(c, d) can be expanded in the complete expan-
where sion
d oo M
h(xv Z) = / y(y, a:)g(y, Z) dy. (23) = Z nUn + Z FmUm,
c n=1 m=1
We note that - M
= Z (a, va)vp + Z {(a, Om)Um (32)
n=1 m=1

Wz, x) = h(x, 2). (24)

where the sequendg,,, } consists of all the eigenfunctions in

Since L compact implies that* L is self adjoint and compact, the eigenspac#’y, typified by zero eigenvalue. If the null space
the singular-value decomposition theorem applies. We, thergempty, the second summation in (32) vanishes. If there are a
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countably infinite number of eigenfunctions iz, the index and
M runs to infinity. We may manipulate (32) to give

d oo M a= Z (b,}\un) Un + Qo (42)
a(x) = / a(y) [Z Tn(0)0n(2) + Y T (y)Bm ()| dy. aml O
‘ n=1 m=1 (33) Where by Picard's theorem [25], it is necessary that
We recognize the gxpression in brackets under the integral sign o
asé(z — y) and write Z )\—2|(b, )| < 00 (43)
n=1 "

=9} M
S —y) =Y vn(@)0a(y) + Y Tm(@)Tm(y). (34 If the sum is finite, satisfaction of (43) is trivial. If the sum
n=l1 m=1 is countably infinite, the limit point of the,,, at zero necessi-
Equation (34) is thepectral representation of the delta functioriates rapid fall-off of the magnitude of the Fourier coefficients
[27] for the operatod.. It is the completeness relationshipr (b, ). We emphasize that, the first term in (42), has been
expansions in the Hilbert space. This specific representationsgiecifically and uniquely determined, whereas the portion
the delta function has an important application in analysis of ti#the solution in\;, remains unspecified. From (38), itis clear
solution to (16) under the condition in this paper: the null spadeat our knowledge of the observablés:) in (16) does not tell
N, is not empty. us anything about the parts @fz) that belong to the null-space
Ng. Indeed, the addition of an arbitrary weighted sum of the
V. SOLUTION PROPERTIES components of the null spad€;, to any solution of the inte-

rgaral equation (16), would still make the resulting function sat-

We consider some of the properties of the solution(s) to t|s€f‘y (16), and therefore these components must be recovered

nonself-adjoint integral equation described in the previous S&om information other than that contained in the d&atZhis
tion. We begin by writing (13) as

recovery is the essential purpose of this paper.

a=a-+ao, ap € N7 (35) Even thoughz, remains unspecified, we may show a “size”
comparison between the two terms in (42) by calculating norms.
where The norm induced by the inner product is given as follows:
&= ) nln (36) ¢
2 lall = Vo a) =/ [ lap = (44)
Y ={a, Vp)- (37) ‘

5. ,
We operate from the left witlh on both sides of (35) and sub—We calculatg|al|* in (35) and obtain

stitute the result into (17) to obtain ||a||2 _ <CL CL> _ ||&||2 + ||CL0||2 (45)
La=La=". (38) where we have used the fact that L @ in eliminating cross-
Substituting (14), we find that terms. We may show thiiti|| has an important special property.
- Indeed, from (45),
2 Ao =t 9 lall < llal (46)

In general, the set of eigenfunctiong does not constitute a with equality if and only if

complete set of basis functions that are sufficient to represent an

arbitrary function. If the data functiohcannot be expressed as Np =0. (47)

a linear combination of the set of eigenfunctians as implied _ o _ _ o

by (39), then the integral equation (16) is incompatible and doB§cause of the inequality in (46)js the uniqueninimum norm

not have a solution. On the other hand, if the data fundtican ~ SOlution to the integral equation in (16). _

be expressed as a linear combination of the eigenfunctipns ~ For use in the sequel, we also exhibit the solution to (17) by

then the integral equation (16) is compatible and has a solutigfpiection on a closed linear manifoltit in Hilbert space?:.

(or solutions). We seek an approximatiany € M to the solutiom. € H by
Taking the inner product from the right with,, on both sides Writing

of (39), we obtain the classic solution for the coefficieptsviz.

N
1 an =)  YnUn. (48)
S A o) 2

Substitution of (40) into (36) and (36) into (35) yields Operating from the left withL, we obtain an estimateof the

oo b > datab, viz.

U
a= L n 41 -

2 (41) Lay =b=bte (49)
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wheree is the data error. We seek to minimilze|| given by

N
||6|| = ||b - LaN b— Z ’Yn)\nun
n=1

(50)

By the projection theorem, the unique minimizing vector is

given by [28]

(b— Lay, um) =0, m=1,2,---, N, (51)

Substituting (48) and using the orthnormality of thegives

(b, un)
M=y (52)

which is identical to the result in (40). Further, in the limit a
N — oo, we recover the minimum norm solutiégnWe empha-

1611

The model resolution operator is a continuous version of the
discrete model resolution matrix discussed in [29]. Specifically,
using (18) and (58), we obtain

Ln= [ ' [ / "ot w) dy] K(z, 2)dz

d
— [ ORG v dy (61)
whereR(z, y) is themodel resolution kerngiven by
d
Riao) = [ ot ), 2) e (62)

Jhe significance of the model resolution kernel can be drama-

tized by the substitution of (29) and (56j)z.

size that minimizing the data error allows us to obtain the min- d [ oo 00 (2)n(2)
imum norm solution. This situation changes in later sectiong(z, y) = / lz )\nﬁn(y)un(z)] lz %] dz
¢ Ln=1

n

where we consider the use of weighting functions. n=1
VI. SOLUTION ACCURACY AND SENSITIVITY = Z v (2)0n(y)
n=1
We seek measures for the accuracy of the solution(s) to the M
integral equation and the sensitivity to errors in the forcing func- =6(z —y)— Z U (2)0n (1) (63)
tion. We have n=1

La=1b (53)
and the estimate of the solution
oo b "
o= 3 < XZ V. (54)

1

n

We manipulate (54) to give

(55)
where
Ko, )=y @)in(z) (56)
n=1 "
We write (55) as
a=L% (57)
where
d
U:/cm@@m. (58)

The operatot.’ is ageneralized inverse the operatol.. In-

where we have used (34). To appreciate the significance of
model resolution, consider (59) with (61) substituteid,
d

a= / a(y)R(z, y) dy. (64)
The model resolution operator in (64) resolves the true solution
a into the solution estimaté. If the model resolution kernel
in (63) consists solely of the delta function, the solution and
the estimate coincide and the resolution is perfect. If, on the
other hand, the model is imperfect, the model resolution kernel
R(z, y) contains, in addition to the delta function, a function
with other than point support. This added term in (63) is caused
by a nonempty null spac&’;.. In this case R(z, y) produces
a “smearing” away from the true solutian How significant
this smearing is depends on whether or R¢t:, ) is sharply
peaked around: = . In general, the less the peaking, the
more perturbed the solution estimate. We note the important
fact that the model resolution kern&l(x, y) is independent
of the forcing functionb, which supplies the data to the inte-
gral equation. The study dt(z, %) can therefore be undertaken
without running any experiments or simulations with data. In-
deed,R(z, y) is a valuable tool in experiment design [30], the
result of which is the “model” for the process we are studying.
In this case, the “model” is the integral equation. Once a par-
ticular model is adopted?(z, ¥) is fixed. If the second term in

deed, it is the specific generalized inverse that returns minimdfB) Produces smearing in solutions beyond acceptable limits,

norm solutionz. Substitution of (53) into (57) gives
@4=L"La=Lga (59)
whereLg is themodel resolution operatagiven by

Lr=L'L. (60)

the model should either be modified or discarded.

We next turn to a consideration of the dataMVe solve, the
integral equation and produce an estimatd the solution. We
then feed the solution estimate through the system and obtain
an estimate of the data viz.

b= La. (65)
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Substituting (57), we obtain integral equation. We further assue(z) andAb(z) are sto-

. chastic processes over the deterministic variabM/e have
b=LL'b=Lgb (66)

d
Aalx) = / Ab(2)K(x, z) dz. (74)

whereL is thedata fit operatorgiven by

Ly = LL. (67) Taking the expectation, we obtain
d
The data fit operator is a continuous version of the data resolu- E{Aa(z)} =F {/ Ab(z)K(z, z) dz}
tion matrix discussed in [31]. Specifically, using (18) and (58), ¢
btai d
we obtain - / E{A2)}K(z, 2)dz.  (75)
d d c
Lp= / [/ (VK (z, y) dy] g(x, ) dz If we assume that the error in the noise has zero mean for all
e € (¢, d), then

= / () (z, y) dy (68) E{Ab(2)} = 0= E{Aa(z)} = 0. (76)

whereF(z, y) is thedata fit kernelgiven by Therefore_, the autocovarian€é,,(x1, x») is equal to the au-
tocorrelationRa,(x1, z2) and we have
d

Fleon) = [ Kot 2) e 69)  Caules 72) = E{Aa(as)Ba(ra)}
Substituting (29) and (56), we obtain =E { / Ab(2)K (21, z) dz

= w(2)un(y) | |
Pz, y) = [ nz;l % nz=:1 AnTn(2)up(z)| dz / Ab(2)K (72, 2) dz

=3 e iny). (70 - [ Bty
n=1
X K 371, 71)K($2, 72) d71 d72

Consider equation (15). Its solution consists of a sequence of
eigenfunctionqu,, } with nonzero eigenvalues, plus a sequence / / Cav(21, 22)

of eigenfunctiond «,, } with zero eigenvalue. These eigenfunc-

tions are subject to the following completeness relation: x K (1, 20)K (23, 22) dzr dzy. (77)

We shall assume thatb is a mean-zero white noise process so

= i un () )+ Z T E T ENY (71) that [31]
n=1

m=t1 Caslz, ) = q(21)8(21 — 22),  q(t) = 0.  (78)
Using this relation in (70) gives If, in addition, the process is assumed Gaussian, fien =
N B o3, and
Fz,y)=6(x —y) - ;;1 Un (@)U (Y)- (72) Con(er, 22) = 02y8(1 — 7). (79)
To appreciate the significance of data fit, consider (66) with (6@ubstituting into (77), we obtain

substitutedyiz. d -
4 Caolz1, 22) = aib/ K(x1, 2)K (22, 2) dz. (80)
b= / b(y)F(x, y) dy. (73) _ e . .

c If we substitute (56) into (80) and perform the indicated integra-

The data fit operator in (73) changes the observed batto tion, we produce the following result

the data estimated by passiaghrough the model. Similar to
the case of model resolution, if the data fit kernel contains only
the delta function, the data transformation is perfect. Otherwise n=1
the model corrupts the data. Again, we note the important fabhe reader may wish to compare this result with a similar result
that the data fit matrix'(z, ) is independent of the data andfor discrete systems in [32]. In the great majority of problems
therefore is another important tool in experiment design [30].of practical interest, the eigenvalug$ are infinite in number.
We may form a useful relationship between input and outp@ihey are bounded from above [pf* L|| and have an accumula-
error by using correlation techniques. We assume etkd(s:) tion point at zero. The autocovariance resultin (81) points up the
in the data that cause errafse(z) in the output through the possibility of serious error magnification, caused by the pres-

Canlar. ) = o3, Y elouled) gy
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ence of the eigenvalues’ in the denominator, especially theso that the solution is given with an err@rviz.
small eigenvalues.

Itis obvious from (81) that the autocovariance becomes larger e=b-Lay. (90)
when A,, is small. Thus, in order to limit the noise magnifica-

tion to within a certain level, eigenfunctions with small eigen\-Ne form

values have to be excluded. This, however, reduces the number N
of eigenfunctions that are used in the expansiod [see (41)], lellw, = b — Lan]lw, = ||b— Z B Antin (91)
degrading the resolution in both the minimum-norm solution n=1 W,

and the recqvered daFa [see (63) and (70), (72)]. An appmp“%ﬁere we have used (14). We require Hyy, and remark that

number of eigenfunctions can be selected by studying the trade- . : .

. ay € Myy,, aclosed linear manifold iy, .

offs between the resolution (of both model and data) and the au- A .

. . o . ~."The weighting operatoV, can be determined by the data
tocovariance of the solution due to noise in data. In order to limit

the effects of this error magnification, one normally uses so cgvariance which describes_the estima_\ted_ uncertaintie_s in the
form of regularization technique applied 0 the minimum norr%vanable da_ta set (due_to noise contamma_non). It descrl_bes not
solutiona in (41). These techniques are well known [3]—[11r£nIy the estllmated vanance for each part|cula_r data pomt., b.Ut
and are outside the scope of this paper Iso the esgmated cprrelanop betvyeen the various data misfits.
' It also provides a point by point weighting of the input data ac-
cording to a prescribed criterion. In the case when the measure-
ment noise is stationary and uncorrelated, then
We shall be interested in the possibility of using weighting

operators to weight certain characteristics in our solution. We wy(x, 2) =
again consider solutions to the linear operator equation o3 ()

wheres, () is the root mean square (rms) deviation of the noise.
By the projection theorem, the unique minimizing vector in

VII. SOLUTIONS USING WEIGHTING FUNCTIONS

8(x — z) (92)

La=b. (82)

We begin with some general concepts and then specialize(33) 1S 9iven by
the first-kind integral equations under study. We adopt a Hilbert b— Lan —0 —1.9 ... N 93
spaceHyy [33] with inner product [ an;s tmly =0, e (93)

that
7 dl = (7, 9) @ 7
and norm Z ﬁn)\n[unv U’rn]b = [b7 U’rn]b (94)
n=1
Il = VIF 1=V (WF, f) (84) here
wherelV is called aveighting operatarTo produce a legitimate [, ol = (WL, ). (95)

inner producti/V. must be positiveyiz.
This relation can be written in matrix form as

Wf f)=0 (85)
. L . . . Ur=s (96)
with equality if and only iff = 0. Under such condition® is
selfadjoint. We remark that wherel is the Gram matrix
H C Hw. (86) [ug, wae  [ug, wi]s - fun, wie
[ur, waly  [ug, w2l -+ [un, uz2ls
Indeed,H is a particular subspace &fyy with weighting oper- U= : : . : (97)
atorW = I, the identity operator. As an example, in first-kind ) ) ' '
integral equations, a typical weighting operakby is given by [wa, unle [uz, unlo oo fun, unds
d and where
W= [ Oute, 2)ds (®7) A,
¢ A2f32
where r= : (98)
wi(@, z) = Wy(z, ) (88) AP
and wherew, (z, 2) is positive. and
We again seek an estimatg to the solutionz, where (b, w1l
[ba U’Q]b
N s= ) . (99)

aN = Z ﬁnvn (89)

=1 [0, un]o
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Explicitly, if ¢;; are the elements df —*, then Ly Lyr, =(\)2r, (109)
N Lwys, =\ r, (110)
B =AY camlb, wmls (100) W = A s (111)
m=1
i By the singular value decomposition theorem, the solution to
and, in (89) (107) is given by
al d —aw +aV WoeN (112)
anN = Z )\;1 Z cnnl[b7 U'rn]bvn~ (101) ¢=aw %o %0 Lw
n=t m=t where
Note that although the,, are orthonormal orH, they do not 00
have this property_oHW,,. In addition, note t_hat _the coefficie_znts aw = Z A (113)
recovered by solving (94) produce a solutiorHry, , which is et
different from the one ir{. By “solution” we mean the fol- . . )
lowing: As before, we evaluate the coefficient§” by seeking the least
squares solution. Let
N
= lim ay = lim 3 Un, . N ,
Novoo vawggf i =3 s, (114)
=9} =9} n=1
=D camlb, umlyvn. (102) , , , o
= = Operating from the left with.yy-, we obtain an estimata; of
bw, viz.
This solution, in general, is distinct from that in (41). However, R
the minimum norm result ittt is contained irf{yy, as a special Lwal = by = by + ew. (115)

case. Indeed, wheW;, = I, Hw, — H and the inner product
[f, g]s reverts to the usual inner produgt, g). Thew, are or- We wish to minimize the norm ofy given by
thonormal on this spac€] diagonalizes into the identity matrix,
and (100) gives the expected resul.

N
lewll = llbw — Lwan || = ||bw — > %Y AV ra | . (116)
b " n=1
g, = ) _ (103) .. . o
An This minimization is given by the following projection:
which is identical to the result in (40). (by — LW&‘,@], ) = 0. (117)
VIII. SOLUTION USING WEIGHTED SINGULAR SYSTEM Solving, we obtain the expected result
In the previous section, we have discussed the weighting op- N (b, 72)
eratori¥,,. In experiment design, it can be used to weight certain an = Z “;w“‘ s, (118)
characteristics of the data. In this section, we force the weighting n=1 An
of the data on H!Ibertspadé by prer_nulhplymg the (_)rlgmal - nd in the limit
tegral equation in (17) by a weighting operai®s, viz.
~ = <bVVv Tn>
Wy, La = Wyb. (104) aw;::£§; __XET_-SR. (119)

We define the weighted data by We may make these results specific to the first-kind integral

by = Wb (105) equation in (16) as follows. Let the weighting operakby be
given by (87) and (88)iz.
and a new weighted operatdg;- by

d
Ly =W, L (106) W, = / (Jwy(, 2) dz (120)

wy(z, z) =we(z, ). 121
and obtain the operator equation b2, 2) o2 @) (121)

Then
vaa = bvv . (107)

d d
We note in (107) that the new operator equation contains WbL“:/ wy (2, y)/ a(z)g(y, z)dzdy
weighted datéyy as a forcing function. From previous consid- “d i
erations, there exists a singular systems,,, ', where the = / a(z)/ wy(x, Y9y, 2)dydz
r, ands,, are each orthonormal and where c c

d
Lty Luys, =\ )2s,, (108) :L A2)gu (@, 2)dz = Wob (122)
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where whereB is inverse to théld x A A matrix, whose elements are
d [n, Um]o. We may write thenth column explicitly as
gule2) = [ wle gy (123) B
and Ym =Y Bmebe (133)
d
Wyb = / b(z)ywe(x, z) dz. (124) where
be= =Y AHb, wn)[vn, la- (134)
IX. A SOLUTION INCLUDING NULL-SPACE VECTORS el

We now come to the crucial point in our development Whe@ubsntutmg (134) into (133) and (133) into (126), we obtain
we seek a solution in the Hilbert spaggy, that includes the
null-space vectors; that is, we seek such that
ag = — Z Z Brné Z )\ b U/n Unv Ué]avrn

aw = a+ aop (125) m=1 (=1
whereao € N7, is given by = Z A (b, ) (135)
Qo = Z FnUn (126) where
and Where_we _reca!l thatis minimum norm or#<{. We minimize 4 = Z o (136)
aw by projection,viz. —~
[(& + CLO), 177”]0’ = 0, m = 1, 2’ e M (127) Qo = — Z Brné[runy ﬁé]a- (137)
or
M Substituting (135) and (41) into (125), we have our principal
Z [Ty Dmla = —[@ Tmla (128) result,viz.
where aw =Y A b, Un) (Un + gn)- (138)
n=1

We may interpret the solutiony as follows. From (125), we
W, can be determined by the model covariance representing tinéte
degree of confidence in the modégl:). As we have previously
pointed out, such considerations are independent of the data. a4 = aw — ag. (139)
Therefore,W, is an important tool ira priori experiment de-
sign, where it provides a point by point weighting of the modésy the projection theorem (127), we determine the “begtind
according to a prescribed criterion. Substituting (36) and (4@roduceay, such that the vectorsaq anday, are orthogonal.
we obtain Taking the weighted norm in (139), we produce

Z%W,vma— ZA (b ) [tm e (130) lallZy = llawly + llaoli3 (140)

from which we conclude that

This matrix equation can be inverted to produce the coefficients

¥». These coefficients can then be substituted into (126) to com- lawllE < |l (141)

plete the solution in (125). We note that this solution contains

the elements of the null spadé;,. Explicitly, we write the in- We reach two conclusions as follows.

version to (130) in matrix formyiz. 1) We have produced a solution containing the null-space
vectors.

2) The weighted norm of this solution is less than the
weighted norm of our previous solutién

. We note that if we were to consider a sequence of projection
N By Bz - By by problems, where the weighting operaidt approaches unity,
20 Ban Bz - By b (132) the two vectorg and—ag must approach orthogonality, must

: : : .. : : approach zero and the solutiesy, approaches the minimum
Am Byi Buao - Buwm by norm solutiona required in the unweighted Hilbert space.

y=A"'b = Bb (131)

or
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We next consider the model resolution operator on the M

weighted Hilbert space. Writing the inner product in (138) in = 6z —y) - Z U (%)0n(y)
integral form, we produce "=A14
d + > Taly) X Um ()
€ M (a9}
where =6z —y) - Z U (y) — Z U U (Y) | V().
m=1 n=1
o~ _ 14
K (2, 2) = 3 27 [on () + 4u ()] (2) (149)
nozol This result gives us a concrete expression for model resolu-
= Z Yo Y (7)o () tion. To obtain the “best” model resolution, we may minimize a
n=1 weighted norm of the functiod(y), where
M (a9}
+ QA T (2) | D(z). (143) _ > 3
7; L; A(y) = Tm (W) = > Cmnn(y)- (150)
n=1

The reader should compare this result with that in (55) and (56)
for the unweighted Hilbert space. Paralleling the developmeh#is minimization depends on the coefficients,, which, from
there, we write (142) as (137) and the elements of thé matrix, are controlled by the
choice of the weighting functioiW,.
aw = Li,b (144)

X. CONCLUSION
where

J One of the most intriguing problems in inverse scattering
i = / (VEw(z, 2)dz. (145) theory concerns methods for reducing the size of the null space
w c ’ of the relevant operator. Such considerations involve somehow

including in the total solution eigenfunctions with zero eigen-
We note thalLL, is the specific gener_aliz_ed inverse_that returng|ue. In this paper, we have presented a theory whereby such
the weighted norm solutiom . Substitution of (53) into (144) gjgenfunctions are included by transferring the minimum norm
gives solution obtained in one Hilbert space into another Hilbert space
containing a weighting operator. In this new Hilbert space, we
have been able, in principle, to append solutions from the null

where L% is the weighted model resolution operator. ParafPace to the minimum norm solution. Our principal result is

leling the development in (61) and (62), this operator is givéfVen in (138), with model resolution given by (149).
by The ultimate success of the method must await trials by ex-

ample. On our part, we plan to produce examples where we shall
R d select weighting operators to take into account additional infor-
Ly = /c () Bw (2, y) dy (147)  mation based on the problem physics.

aw = LiyLa=L%a (146)

where Ry is the weighted model resolution kernel given by ACKNOWLEDGMENT
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