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Linear Inverse Problems in Wave Motion:
Nonsymmetric First-Kind Integral Equations

Donald G. Dudley, Fellow, IEEE, Tarek M. Habashy, and Emil Wolf

Abstract—We present a general framework to study the solu-
tion of first-kind integral equations. The integral operator is as-
sumed to be compact and nonself-adjoint and the integral equa-
tion can possess a nonempty null space. An approach is presented
for adding contributions from the null-space to the minimum-en-
ergy solution of the integral equation through the introduction of
weighted Hilbert spaces. Stability, accuracy, and nonuniquenes of
the solution are discussed through the use of model resolution, data
fit, and model covariance operators. The application of this study
is to inverse problems that exhibit nonuniqueness.

Index Terms—Integral equation methods, inverse problems,
weighted Hilbert space.

I. INTRODUCTION

I N the study of linear inverse problems, first-kind Fredholm
integral equations play an important role. These problems

have been widely studied and reported in the pages of the journal
Inverse Problems[1], for example. Inverse problems present a
particular difficulty in that they are oftenill posedin the sense
of Hadamard [2]. A problem iswell posedif the following three
statements are true:

1) a solution to the problem exists;
2) there is at most one solution to the problem;
3) the solution depends continously on the data.

If any of these three statements is untrue, the problem is ill
posed. By far the major emphasis in the study of ill-posed prob-
lems has been on matters involving the dependence of the so-
lution on the data (Statement 3). Such studies have led to reg-
ularization strategies [3]–[11] to improve solution stability in
ill-posed problems. Indeed, there has recently been made avail-
able a Matlab package [12] concerned with the analysis of and
solution to discrete ill-posed problems, with emphasis on regu-
larization.

Our applications are in inverse problems in wave motion,
where nonuniqueness is a principal issue [13]–[16]. It is, there-
fore, the violation of the condition in Statement 2 that com-
mands our attention in this paper. This is not to minimize the
importance of continuous dependence on the data. Indeed, many
of our problems involve violation of both Statements 2 and 3.
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In many applications, the inversion of first-kind integral equa-
tions is widely used to estimate parameters and map geome-
tries in areas as diverse as geophysical prospecting, medical
imaging, and nondestructive evaluation. Principal among our
interests in wave motion are applications in geophysical explo-
ration [17]–[21]. A first-kind Fredholm integral equation arises,
for example, in the employment of the Born approximation.

In this paper, we consider characteristics of first-kind integral
equations and their solution(s) under the following two condi-
tions:

1) the integral operator is compact, but not necessarily self
adjoint;

2) the integral equation posseses a nonempty null space.
It is the second condition that sets our paper apart from most of
the literature on the subject.

In Section II, we give some preliminaries consisting of the
following:

1) a review the spectral theorem for compact self-adjoint op-
erators;

2) a review of the singular-value decomposition theorem and
its application to compact, nonself-adjoint operators.

In Section III, we consider compact, but not necessarily self-ad-
joint first-kind integral equations. We derive some basic results
using singular-value decomposition. In Section IV, we consider
a completeness relationship that involves eigenfunctions with
nonzero eigenvalues and eigenfunctions in the null space. In
Section V, we consider properties of the solution to the inte-
gral equation. In particular, we discuss the fact that classical
methods produce a minimum norm solution in terms of the
eigenfunctions with nonzero eigenvalues. However, the solution
is nonunique because these methods do nothing to remove the
arbitrary character of the portion of the solution in the null space.
In Section VI, we discuss solution accuracy and sensitivity and
develop measures to quantify the effects of the null space.

The principal purpose of this paper is to incorporate por-
tions of the solution that are in the null space of the integral
operator into the overall solution. We accomplish this goal by
using weighting functions to include the null-space contribu-
tions. Mathematically, we construct a Hilbert space containing a
weighting operator that generates the required weighting func-
tion. The resulting Hilbert space includes the original Hilbert
space as a subspace. In Section VII, we introduce the weighting
function and derive the minimum norm solution on the weighted
Hilbert space. In Section VIII, we take a slightly different ap-
proach and weight the data with the weighting operator on the
original Hilbert space. Finally, in Section IX, we produce our
principal result. In the weighted Hilbert space, we produce a so-
lution that consists of the minimum norm solution in the original
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Hilbert space, plus a contribution from the null space of the in-
tegral operator. This null-space contribution can be adjusted by
specific choice of the weighting operator, a choice that can in-
corporate our practical knowledge of the problem physics.

II. PRELIMINARIES

We shall consider our problem in a complex Hilbert space.
Let

(1)

where is compact and selfadjoint. Then, the principal results
from the spectral theory for compact self-adjoint operators [22],
[23] are as follows:

1) all eigenvalues of are real;
2) has at least one nonzero eigenvalue and at most a count-

able set of eigenvalues with accumulation point only at
zero;

3) all eigenspaces for nonzero eigenvalues have finite di-
mension;

4) eigenspaces for different eigenvalues are orthogonal;
5) eigenfunctions of corresponding to nonzero eigen-

values form an orthonormal basis for (range of ),
viz.

(2)
6) an arbitrary can be decomposed

(3)

where (null space of ), viz:

(4)

We remark that our sums above are countably infinite in length;
this will be the usual case in our problems of interest, however,
the theorems do not rule out finite sums in the above or in the
sequel.

We shall be particularly interested in cases, whereis not
empty. In addition, the operators we shall consider are in gen-
eral nonselfadjoint. We, therefore, must relax the self-adjoint
requirement. If is compact, we may use a classic procedure
and preoperate on both sides of (1) with the adjoint operator
to give

(5)

where

(6)

with the well-known characteristics:

1) is nonnegative. If implies that , then
is positive;

2) is selfadjoint.

Implicit is (domain of ). Since is selfadjoint,
we have the associated eigenproblem

(7)

where the eigenvalues are real and nonnegative and is
an orthonormal sequence. We remark thatbeing compact im-
plies that is compact. By the singular-value decomposition
theorem [24], [25]), there exists such that

orthonormal (8)

(9)

In (8) and (9), the numbers are thesingular values. Next,
from the spectral theorem for compact self-adjoint operators ap-
plied to , it follows that

(10)

Furthermore, since ,

(11)

which implies and, therefore, the important result

(12)

We, therefore, have a stronger result in (10),viz.

(13)

We may now apply the operatorto (13) with the result

(14)

We note that the passing ofinside the sum is legitimate, since
is compact and thus bounded.
Some comments are in order.

1) is an eigenfunction of with zero eigenvalue. The
eigenfunction has the important property that it is or-
thogonal to all .

2) The set of all eigenfunctions, including those with zero
eigenvalues, forms a basis for.

3) The set forms a basis if and only if
implies .

4) The maximum eigenvalue .
We note that the adjoint operator enters into all of this, as is

apparent in (5) and (9). We may multiply both sides of (9) by
and substitute (8) to obtain

(15)

Therefore, we now have the eigenfunctionsof given by
(7) and the eigenfunctions of given by (15); in addition,
we havecompleteexpansions for both the domain and the range
given by (13) and (14). We emphasize that one has to include
the null-space eigenfunctions in (13), if any.
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III. FIRST-KIND INTEGRAL EQUATIONS

We consider the following integral equation in Hilbert space
:

(16)

We refer to as the “solution” and to as the “observ-
ables” or “data.” We write (16) in operator form as

(17)

where

(18)

We refer to the integral operator in (18) with a specific
as the “model.” We shall assume thatis compact (and, there-
fore, bounded). An example of a class of compact operators
of potential interest is the Hilbert–Schmidt operator, with
Hilbert–Schmidt kernel defined by [26]

(19)

For nonselfadjoint, we find that

(20)

where

(21)

Although is nonselfadjoint, is selfadjoint, where, in this
case

(22)
where

(23)

We note that

(24)

Since compact implies that is self adjoint and compact,
the singular-value decomposition theorem applies. We, there-

fore, can use (7)–(9) and (13)–(15) for decomposition of the in-
tegral equation in (16). We find that

(25)
where

(26)

We note that

(27)

We may manipulate (14) to give

(28)

where we identify the following expansion for the kernel
:

(29)

Substitution of (29) into (23) and (26) and use of orthogonality
gives

(30)

(31)

IV. COMPLETENESSRELATIONSHIP

From the singular value decomposition theorem, we know
that can be expanded in the complete expan-
sion

(32)

where the sequence consists of all the eigenfunctions in
the eigenspace , typified by zero eigenvalue. If the null space
is empty, the second summation in (32) vanishes. If there are a
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countably infinite number of eigenfunctions in , the index
runs to infinity. We may manipulate (32) to give

(33)
We recognize the expression in brackets under the integral sign
as and write

(34)

Equation (34) is thespectral representation of the delta function
[27] for the operator . It is thecompleteness relationshipfor
expansions in the Hilbert space. This specific representation of
the delta function has an important application in analysis of the
solution to (16) under the condition in this paper: the null space

is not empty.

V. SOLUTION PROPERTIES

We consider some of the properties of the solution(s) to the
nonself-adjoint integral equation described in the previous sec-
tion. We begin by writing (13) as

(35)

where

(36)

(37)

We operate from the left with on both sides of (35) and sub-
stitute the result into (17) to obtain

(38)

Substituting (14), we find that

(39)

In general, the set of eigenfunctions does not constitute a
complete set of basis functions that are sufficient to represent an
arbitrary function. If the data functioncannot be expressed as
a linear combination of the set of eigenfunctions, as implied
by (39), then the integral equation (16) is incompatible and does
not have a solution. On the other hand, if the data functioncan
be expressed as a linear combination of the eigenfunctions,
then the integral equation (16) is compatible and has a solution
(or solutions).

Taking the inner product from the right with on both sides
of (39), we obtain the classic solution for the coefficients, viz.

(40)

Substitution of (40) into (36) and (36) into (35) yields

(41)

and

(42)

where by Picard’s theorem [25], it is necessary that

(43)

If the sum is finite, satisfaction of (43) is trivial. If the sum
is countably infinite, the limit point of the at zero necessi-
tates rapid fall-off of the magnitude of the Fourier coefficients

. We emphasize that, the first term in (42), has been
specifically and uniquely determined, whereas, the portion
of the solution in remains unspecified. From (38), it is clear
that our knowledge of the observables in (16) does not tell
us anything about the parts of that belong to the null-space

. Indeed, the addition of an arbitrary weighted sum of the
components of the null space to any solution of the inte-
gral equation (16), would still make the resulting function sat-
isfy (16), and therefore these components must be recovered
from information other than that contained in the data. This
recovery is the essential purpose of this paper.

Even though remains unspecified, we may show a “size”
comparison between the two terms in (42) by calculating norms.
The norm induced by the inner product is given as follows:

(44)

We calculate in (35) and obtain

(45)

where we have used the fact that in eliminating cross-
terms. We may show that has an important special property.
Indeed, from (45),

(46)

with equality if and only if

(47)

Because of the inequality in (46),is the uniqueminimum norm
solution to the integral equation in (16).

For use in the sequel, we also exhibit the solution to (17) by
projection on a closed linear manifold in Hilbert space .
We seek an approximation to the solution by
writing

(48)

Operating from the left with , we obtain an estimateof the
data , viz.

(49)
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where is the data error. We seek to minimize given by

(50)

By the projection theorem, the unique minimizing vector is
given by [28]

(51)

Substituting (48) and using the orthnormality of thegives

(52)

which is identical to the result in (40). Further, in the limit as
, we recover the minimum norm solution. We empha-

size that minimizing the data error allows us to obtain the min-
imum norm solution. This situation changes in later sections,
where we consider the use of weighting functions.

VI. SOLUTION ACCURACY AND SENSITIVITY

We seek measures for the accuracy of the solution(s) to the
integral equation and the sensitivity to errors in the forcing func-
tion. We have

(53)

and the estimate of the solution

(54)

We manipulate (54) to give

(55)
where

(56)

We write (55) as

(57)

where

(58)

The operator is ageneralized inverseto the operator . In-
deed, it is the specific generalized inverse that returns minimum
norm solution . Substitution of (53) into (57) gives

(59)

where is themodel resolution operatorgiven by

(60)

The model resolution operator is a continuous version of the
discrete model resolution matrix discussed in [29]. Specifically,
using (18) and (58), we obtain

(61)

where is themodel resolution kernelgiven by

(62)

The significance of the model resolution kernel can be drama-
tized by the substitution of (29) and (56),viz.

(63)

where we have used (34). To appreciate the significance of
model resolution, consider (59) with (61) substituted,viz.

(64)

The model resolution operator in (64) resolves the true solution
into the solution estimate. If the model resolution kernel

in (63) consists solely of the delta function, the solution and
the estimate coincide and the resolution is perfect. If, on the
other hand, the model is imperfect, the model resolution kernel

contains, in addition to the delta function, a function
with other than point support. This added term in (63) is caused
by a nonempty null space . In this case, produces
a “smearing” away from the true solution. How significant
this smearing is depends on whether or not is sharply
peaked around . In general, the less the peaking, the
more perturbed the solution estimate. We note the important
fact that the model resolution kernel is independent
of the forcing function , which supplies the data to the inte-
gral equation. The study of can therefore be undertaken
without running any experiments or simulations with data. In-
deed, is a valuable tool in experiment design [30], the
result of which is the “model” for the process we are studying.
In this case, the “model” is the integral equation. Once a par-
ticular model is adopted, is fixed. If the second term in
(63) produces smearing in solutions beyond acceptable limits,
the model should either be modified or discarded.

We next turn to a consideration of the data. We solve, the
integral equation and produce an estimateof the solution. We
then feed the solution estimate through the system and obtain
an estimate of the data, viz.

(65)
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Substituting (57), we obtain

(66)

where is thedata fit operatorgiven by

(67)

The data fit operator is a continuous version of the data resolu-
tion matrix discussed in [31]. Specifically, using (18) and (58),
we obtain

(68)

where is thedata fit kernelgiven by

(69)

Substituting (29) and (56), we obtain

(70)

Consider equation (15). Its solution consists of a sequence of
eigenfunctions with nonzero eigenvalues, plus a sequence
of eigenfunctions with zero eigenvalue. These eigenfunc-
tions are subject to the following completeness relation:

(71)

Using this relation in (70) gives

(72)

To appreciate the significance of data fit, consider (66) with (68)
substituted,viz.

(73)

The data fit operator in (73) changes the observed datainto
the data estimated by passingthrough the model. Similar to
the case of model resolution, if the data fit kernel contains only
the delta function, the data transformation is perfect. Otherwise
the model corrupts the data. Again, we note the important fact
that the data fit matrix is independent of the data and
therefore is another important tool in experiment design [30].

We may form a useful relationship between input and output
error by using correlation techniques. We assume errors
in the data that cause errors in the output through the

integral equation. We further assume and are sto-
chastic processes over the deterministic variable. We have

(74)

Taking the expectation, we obtain

(75)

If we assume that the error in the noise has zero mean for all
, then

(76)

Therefore, the autocovariance is equal to the au-
tocorrelation and we have

(77)

We shall assume that is a mean-zero white noise process so
that [31]

(78)

If, in addition, the process is assumed Gaussian, then
and

(79)

Substituting into (77), we obtain

(80)

If we substitute (56) into (80) and perform the indicated integra-
tion, we produce the following result:

(81)

The reader may wish to compare this result with a similar result
for discrete systems in [32]. In the great majority of problems
of practical interest, the eigenvalues are infinite in number.
They are bounded from above by and have an accumula-
tion point at zero. The autocovariance result in (81) points up the
possibility of serious error magnification, caused by the pres-
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ence of the eigenvalues in the denominator, especially the
small eigenvalues.

It is obvious from (81) that the autocovariance becomes larger
when is small. Thus, in order to limit the noise magnifica-
tion to within a certain level, eigenfunctions with small eigen-
values have to be excluded. This, however, reduces the number
of eigenfunctions that are used in the expansion of[see (41)],
degrading the resolution in both the minimum-norm solution
and the recovered data [see (63) and (70), (72)]. An appropriate
number of eigenfunctions can be selected by studying the trade-
offs between the resolution (of both model and data) and the au-
tocovariance of the solution due to noise in data. In order to limit
the effects of this error magnification, one normally uses some
form of regularization technique applied to the minimum norm
solution in (41). These techniques are well known [3]–[11]
and are outside the scope of this paper.

VII. SOLUTIONS USING WEIGHTING FUNCTIONS

We shall be interested in the possibility of using weighting
operators to weight certain characteristics in our solution. We
again consider solutions to the linear operator equation

(82)

We begin with some general concepts and then specialize to
the first-kind integral equations under study. We adopt a Hilbert
space [33] with inner product

(83)

and norm

(84)

where is called aweighting operator. To produce a legitimate
inner product, must be positive,viz.

(85)

with equality if and only if . Under such conditions is
selfadjoint. We remark that

(86)

Indeed, is a particular subspace of with weighting oper-
ator , the identity operator. As an example, in first-kind
integral equations, a typical weighting operator is given by

(87)

where

(88)

and where is positive.
We again seek an estimate to the solution , where

(89)

so that the solution is given with an error, viz.

(90)

We form

(91)

where we have used (14). We require and remark that
, a closed linear manifold in .

The weighting operator can be determined by the data
covariance which describes the estimated uncertainties in the
available data set (due to noise contamination). It describes not
only the estimated variance for each particular data point, but
also the estimated correlation between the various data misfits.
It also provides a point by point weighting of the input data ac-
cording to a prescribed criterion. In the case when the measure-
ment noise is stationary and uncorrelated, then

(92)

where is the root mean square (rms) deviation of the noise.
By the projection theorem, the unique minimizing vector in

(91) is given by

(93)

so that

(94)

where

(95)

This relation can be written in matrix form as

(96)

where is the Gram matrix

...
...

. . .
...

(97)

and where

...
(98)

and

...
(99)
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Explicitly, if are the elements of , then

(100)

and, in (89)

(101)

Note that although the are orthonormal on , they do not
have this property on . In addition, note that the coefficients
recovered by solving (94) produce a solution in , which is
different from the one in . By “solution” we mean the fol-
lowing:

(102)

This solution, in general, is distinct from that in (41). However,
the minimum norm result in is contained in as a special
case. Indeed, when , and the inner product

reverts to the usual inner product . The are or-
thonormal on this space, diagonalizes into the identity matrix,
and (100) gives the expected result,viz.

(103)

which is identical to the result in (40).

VIII. SOLUTION USING WEIGHTED SINGULAR SYSTEM

In the previous section, we have discussed the weighting op-
erator . In experiment design, it can be used to weight certain
characteristics of the data. In this section, we force the weighting
of the data on Hilbert space by premultiplying the original in-
tegral equation in (17) by a weighting operator, viz.

(104)

We define the weighted data by

(105)

and a new weighted operator by

(106)

and obtain the operator equation

(107)

We note in (107) that the new operator equation contains
weighted data as a forcing function. From previous consid-
erations, there exists a singular system, , , where the

and are each orthonormal and where

(108)

(109)

(110)

(111)

By the singular value decomposition theorem, the solution to
(107) is given by

(112)

where

(113)

As before, we evaluate the coefficients by seeking the least
squares solution. Let

(114)

Operating from the left with , we obtain an estimate of
, viz.

(115)

We wish to minimize the norm of given by

(116)

This minimization is given by the following projection:

(117)

Solving, we obtain the expected result

(118)

and in the limit

(119)

We may make these results specific to the first-kind integral
equation in (16) as follows. Let the weighting operator be
given by (87) and (88),viz.

(120)

(121)

Then

(122)
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where

(123)

and

(124)

IX. A SOLUTION INCLUDING NULL-SPACEVECTORS

We now come to the crucial point in our development where
we seek a solution in the Hilbert space that includes the
null-space vectors; that is, we seek such that

(125)

where is given by

(126)

and where we recall thatis minimum norm on . We minimize
by projection,viz.

(127)

or

(128)

where

(129)

can be determined by the model covariance representing the
degree of confidence in the model . As we have previously
pointed out, such considerations are independent of the data.
Therefore, is an important tool ina priori experiment de-
sign, where it provides a point by point weighting of the model
according to a prescribed criterion. Substituting (36) and (40),
we obtain

(130)

This matrix equation can be inverted to produce the coefficients
. These coefficients can then be substituted into (126) to com-

plete the solution in (125). We note that this solution contains
the elements of the null space . Explicitly, we write the in-
version to (130) in matrix form,viz.

(131)

or

...
...

...
. . .

...
...

(132)

where is inverse to the matrix, whose elements are
. We may write the th column explicitly as

(133)

where

(134)

Substituting (134) into (133) and (133) into (126), we obtain

(135)

where

(136)

(137)

Substituting (135) and (41) into (125), we have our principal
result,viz.

(138)

We may interpret the solution as follows. From (125), we
write

(139)

By the projection theorem (127), we determine the “best”and
produce such that the vectors and are orthogonal.
Taking the weighted norm in (139), we produce

(140)

from which we conclude that

(141)

We reach two conclusions as follows.

1) We have produced a solution containing the null-space
vectors.

2) The weighted norm of this solution is less than the
weighted norm of our previous solution.

We note that if we were to consider a sequence of projection
problems, where the weighting operator approaches unity,
the two vectors and must approach orthogonality, must
approach zero and the solution approaches the minimum
norm solution required in the unweighted Hilbert space.
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We next consider the model resolution operator on the
weighted Hilbert space. Writing the inner product in (138) in
integral form, we produce

(142)

where

(143)

The reader should compare this result with that in (55) and (56)
for the unweighted Hilbert space. Paralleling the development
there, we write (142) as

(144)

where

(145)

We note that is the specific generalized inverse that returns
the weighted norm solution . Substitution of (53) into (144)
gives

(146)

where is the weighted model resolution operator. Paral-
leling the development in (61) and (62), this operator is given
by

(147)

where is the weighted model resolution kernel given by

(148)

Similar to the development in (63), we may expand the kernel
and the Green’s function in (148) to give

(149)

This result gives us a concrete expression for model resolu-
tion. To obtain the “best” model resolution, we may minimize a
weighted norm of the function , where

(150)

This minimization depends on the coefficients which, from
(137) and the elements of the matrix, are controlled by the
choice of the weighting function .

X. CONCLUSION

One of the most intriguing problems in inverse scattering
theory concerns methods for reducing the size of the null space
of the relevant operator. Such considerations involve somehow
including in the total solution eigenfunctions with zero eigen-
value. In this paper, we have presented a theory whereby such
eigenfunctions are included by transferring the minimum norm
solution obtained in one Hilbert space into another Hilbert space
containing a weighting operator. In this new Hilbert space, we
have been able, in principle, to append solutions from the null
space to the minimum norm solution. Our principal result is
given in (138), with model resolution given by (149).

The ultimate success of the method must await trials by ex-
ample. On our part, we plan to produce examples where we shall
select weighting operators to take into account additional infor-
mation based on the problem physics.
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