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Efficient Computation of Surface Fields Excited on a
Dielectric-Coated Circular Cylinder

Vakur B. Ertirk and Roberto G. RojaSenior Member, IEEE

Abstract—An efficient method to evaluate the surface fields it acts as a canonical problem useful toward the development of
excited on an electrically large dielectric-coated circular cylinder - asymptotic solutions valid for arbitrary smooth coated surfaces.
is presented. The efficiency of the method results from the circum- Early work on the subject of surface wave propagation on

ferentially propagating representation of the Green’s function as . .
well as its efficient numerical evaluation along a steepest descentcu"vGd surfaces was carried out by Weiital. [1], [2] to study

path. The circumferentially propagating series representation of ground wave propagation/attenuation on spherical and cylin-
the appropriate Green’s function is obtained from its radially drical surfaces satisfying impedance boundary conditions. The
propagating counterpart via Watson’s transformation and then  study of a small-diameter coated conducting wire supporting
the path of integration is deformed to the steepest descent path surface wave propagation (Goubau line) was carried out in [3]
on which the integrand decays most rapidly. Numerical results . A L

are presented that indicate that the representations obtained here for m|crow_{;1ve_transm|SS|_on line appllc_atlons. More re‘?e”tw‘?rk
are very efficient and valid even for arbitrary small separations ©On the derivation of the rigorous dyadic Green'’s function using
of the source and field points. This work is especially useful in the a spectral domain representation (radially propagating) for an
moment-method analysis of conformal microstrip antennas where  electric dipole located on the surface of a dielectric coated PEC
the mutual coupling effects are important. circular cylinder has been presented in [4] and [5]. Spectral

Index Terms—Conformal antennas, electromagnetic coupling, domain Green’s functions for coated cylinders and spheres are

Green function, microstrip arrays. used in [6] for the design of printed antennas and transmission
lines. However, due to the computational complexity of the so-
I. INTRODUCTION lutions in [4]-[6], which involve series representations in terms

) of Bessel and Hankel functions and Fourier integrals, most of
M ICROSTRIP antennas and arrays have gained proffiz numerical results have been given for electrically small

nence over the last 20 years and have naturally replacgfinders. It is well known that the spectral representation of the
conventional antennas for military as well as commercial agyreen's function has convergence problems for large cylinders
plications, ranging from satellite and wireless communicationg,q separations between source and observation points. This
to remote sensing and biomedical applications, due to thgligplem can be alleviated to some extent by using carefully
low fabrication cost, light weight, mass production, conformitynhosen basis functions in moment-method-based solutions.
to surface, and direct integrability with other microwave anf;rthermore, the number of terma&’) to be summed in the
solid-state devices. Although many practical applicationgries increases with the electrical size of the cylinder. This
such as high-velocity aircraft, missiles, space vehicles, efgakes the solution intractable, in particular, at high frequencies,
have stringent aerodynamic constraints that require the us&pfere the order of Bessel and Hankel functions as well as their
antennas that conform to their surfaces, the majority of thgguments become large resulting in numerical instabilities
work for microstrip elements have been for planar structuresyring the evaluation of the summations/integrations. Nakatini
This necessitates the development of efficient analytical agfly|. [4] addressed the second problem writing these functions
numerical tools for this class of antennas conformal to cylindrjg logarithmic derivatives and calculating these ratios via
cally shaped substrates. Therefore, the study of surface fielgyrrence relations and the continued fraction method so that
created by a current distribution on the surface of a materlﬂbh-order Bessel and Hankel functions with large arguments
coated perfect electric conducting (PEC) circular cylinder, hagn pe evaluated accurately. The dispersion of waves guided
been a subject of interest for many years due to its applicatiof)gng a cylindrical substrate—superstrate layered medium was
in the analysis of conformal microstrip antennas. Furthermotg,,died in [7] giving emphasis to the solution of the dispersion

equation. Pearson [8] developed integral expressions for the
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observation point. The scheme followed in [10] is an extension
of the method developed in [11] and [12] for metallic surfaces.
That scheme is a two-step procedure where the leading term
(O(1/kgs)) of the potentialsA, and F, are first developed
and the fields are then obtained by taking the second derivative
of A. and F., dropping terms higher tha®(1/(kqs)®) and
O(1/d) whered is the radius of the cylinder. That procedure
becomes quite complex for dielectric coated surfaces. The
surface wave solution in [10] was implemented in [13] and [14]
using a combination of Olver’s uniform representation and a
two-term Debye approximation for the logarithmic derivative of
the Hankel functions. Numerical results showed that reasonable
results can be obtained for large separations if only terms of
O(1/(kgs)) are included. If terms up t@(1/(kos)?) are used,

the results are not as accurate.

In this paper, we present a highly efficient and accurate
method to evaluate the surface fields excited by an electric
current source located on the surface of a dielectric coated
electrically large circular cylinder. The method is based on ob-
taining a circumferentially propagating{propagating) series
representation of the appropriate Green’s function from its rgig- 1. Dielectric coated PEC circular cylinder where the radius of the PEC

. . . . . . __cylinder isa and the thickness of the dielectric coatingis= d — a.
dially propagating ¢-propagating) counterpart and its efficient
numerical evaluation along a steepest descent path (SDP) on
which the integrand decays most rapidly. In Section II, formus located on the surface of a dielectric coated circular cylinder
lation of the SDP representation of the special Green's functigose geometry is given in Fig.(2 = ¢’ = d). The cylindrical
for a dielectric coated circular cylinder is given along with th&ourier transform of this current distribution is given by
deformation of the contour of integration which is required
to obtain the aferomentioned representation. Section Il deals s Pe e
with the numerical evaluation of some special functions that Je = ard’ e ®)
involve Bessel and Hankel functions as well as the numerical ) . ]
evaluation of the integrals. As shown in Section Ill, a diredfo" Such a source defined in (1), the surface fields-atd can
integration along the SDP can be performed efficiently usirRf Written as
a Gauss—Hermite quadrature to obtain solutions for large and

small separations without the need to perform complicated _ 1 —jn(ep—g)
o T . E(¢p, z) = — Z e

derivatives. The number of terms required in this algorithm 2r = oo

decreases with the distance between the source and field points, .

making it suitable for the analysis of large cylinders as well as G-Pe _ikm2) dk 4

| ; \ : . ——c 2 (4)

arge separations. Numerical results are presented in Section 1V, 2rd

which indicate that in contrast to most asymptotic solutions,

the results are valid for arbitrary small separations of sourld1ere

and field points. It is important to note that in the limiting case G G G

of large separations, this method reduces to the saddle-point . op re Pz
G=G(n k.,p=p =d)= |Gy, Gy Go.| (5

integration considered in [13] and [14] (where only the leading p
term of O(1/(kgs)) is kept). Ane“t time dependence is =P
assumed and suppressed throughout this paper.

qub GZZ

is the radially propagating series representation of the appro-
priate dyadic Green'’s function. In this paper, we are only in-
terested in the tangential components of the surface fields due
Il. FORMULATION to the tangential current sources since most of the moment-
method-based conformal antenna analysis require the use of
Consider an elementary surface electric current source giygRase components. Therefore, theelated components &

by (for examplel7 ., or G, which might be important for applica-
tions involving an excitation via a probe) are not taken into con-
J.—P. 6(¢ — ¢')o(2 — 2') (1) Sideration (despite the fact that the computation of these compo-
' ' d nents is still the same). Thu&:; ., obtained from (5) is defined
where as
= G Gy
P.= P2+ P%) (2) Gian = [Gji ij ©)
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whose components are explicitly given in [4]. For the sake of
clarity, these components are given here again for source and

observation points on the surfage<£ p’ = d), namely

o _d%0 [[Kkw] BaCiTm _,  RaTZ
" ko k2 T 0

(. — )T

- P, < Z e—jl’((¢—¢’)—27ﬂ)> d,/} (13)

l=—00

wheree is a small positive number. The expression in (13) can
be interpreted as a sum of ray fields that cré¢imes around
the cylinder. Provided that the cylinder is electrically large (a
few wavelengths diameter), the first terth £ 0) is usually

| nke 2 (Cr, = ko) (7a) dominant. So, keeping the leading term, (13) can be written as
dks1 T 1 00
E(p, 2) ~ —— dk e~k (==)
o 3% [nks k] (Co = kR - (620~ 723 /_ L ae
Pz = ko d kt21 T co—je ( )
. el . —jr(o—¢’
Gy =Gy (70) {/me Granlbs, ¥) - Pee d} ()
G.. = @kfog (7d) Although (24) converges faster than (4_1) for electrically large
ko r cylinders, computation of the surface fields can be performed
where more efficiently if the original contour of the-propagating rep-
resentation of the Green'’s function is deformed into its SDP on
T=1T1, -1 (8) which the integrand decays most rapidly. Therefore, making the
ith substitution originally suggested by Fock [15]
wi
k2, v = kyod + myT (15)
T. =kwR, — 5 C: (9a)
R in which
kio o (1/3)
T = kiR — e 75 C (9b) my = <k'—°d) (16)
t1 2
T, — kO(F"Q_ 1) nks (9c) and employing the usual polar transformations
¢ k3 d
and k. =ko sin ¢ (17a)
ko =k 17b
ko = /K2 — k2 ky = \Jek2 — k2 (10) o =Ko cos ¢ (17b)
oy along with the geometrical relations based on Fig. 1
R, = 2 (o) (11) g
n H’r(LQ)(ktOd) z—2z =ssin « (18a)
Cf —k S (ke1a)Y, (kud) — J) (kud)Y; (kna) (12a) d(¢p—¢') =scosa (18b)
n tl
S (kea)Yn(kud) — Ju(kud)Y, (ka) the surface fields can be obtained as
In(kn1a)Y) (kyd) — J) (kpd) Y, (b : J
C;n =k ( tla) ( tl ) ( tl ) ( tla) (12b) E(Oé, 8) ~ i 12d/ dwe—]kos cos(a—1))
a Cspp

wherek, is the free-space wave numbef; is the free-space
intrinsic impedance, and)(denotes derivative with respect to

the argument.

- / G, 7) - Poc 7 dr  (19)
C ()

large cylinders. Moreover, the Green’s function involves Bessé coating from the source to the observation paints the
and Hankel functions along with their derivatives and their conringle between the ray path and the akis — ¢'), and
putation for large values af is not a trivial matter due to the nu- ¢ = mi(p— &) (20)
merical instabilities that occur when the order and argument of i )

these functions become large. Therefore, (4) can be transformeehe evaluation of (19), the SDP in the complgplane can

into a more rapidly convergegtpropagating series representabe mapped onto the real axis in thelane by making the sub-
tion by using the Watson’s transformation. The new series &itution

pansion for the fields is given by

/t2
1 oo ' ) cos(ov —p) =1— Ii— (21)
E(¢, 2) = 3 / 7%+ =) 03
—00 which yields
oco—je . .
_ ) 2 j3w/4 —jkos oo 5
’ / , Gran(ks, V) E(a, s) = \/_e—e— dte™" Fla, s, ) (22)
—co—je Ar2d  kos J_oo
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with o kg — (v/d)?
1 — , i ;
F(Oé, S, t) = Gtan(t, 7') . Pec_jg‘r dT. cot (th (] /d) )
jt2 JC-@)
= s . 1 | k4 tan? (th — (v/d)? )
(23) 2d ki - (V/ d)?
2 2
[ll. NUMERICAL EVALUATION OF INTEGRALS d (V/d) (28b)
2
Numerical evaluation of the integrals given in (22) and (23) cos (t" — (v/d)? )
requires special attention both in theolane and along the SDP
(real axis irt-plane). Following the procedure given in [13], thdVheret. is the thickness of the coating(= d — a). As can

be seen, the above expressions provide a very useful and effi-
cient way to calculate the otherwise complicated functiofis
andC’ since they only involve some elementary functions. Fur-

integrandG,,, is written in terms of the logarithmic derivative
of HY? )(,), namely

H? (2) thermore, these expressions seem to work extremely well for all
R, = @ (24) k. andv values even for relatively electrically small cylinders
v (2) since they are defined as ratios between Bessel functions. Al-

with z = k;od andw is given by (15). Instead of evaluating thethough the approximation for each individual function breaks
Hankel functions and their derivatives separately, the rBfio down, the ratio remains accurate. It is worthwhile to mention at

is evaluated directly to avoid numerical problems and improvhis point that the first terms of (25), (28a), and (28b) can be rec-
its accuracy. These ratios are represented either by a two-t@gmized as the equations corresponding to the planar grounded
Debye approximation or Olver’s uniform representation delielectric slab, whereas the second terms can be treated as the
pending on where these representations are valid and mastvature correction terms. Note that there is no branch cut as-
accurate in the--plane. For a two-term Debye approximatiorsociated with the square roots given in (28a) and (28b). There-

[16], R, is given by fore, the results are independent of the sign chosen for the square
) roots.
LIV © e integral along the real axis can be easily performe
R, ~ JVEZ TV % (25) The i | al h | axi b il f d
z 2(2% — v?) in a very effective and accurate way using a Gauss—Hermite
whereas, for Olver's uniform representation [16], it is given bguadrature. The result of this procedure can be written as
Al(z) 1 /3 V2eidr/4 &
Ry~ A7(.’L') /3 (Z/l/)QC 1/2 (26) E(CY, S) ~ W Z F(CY, 5, tq)w(l (29)
~ 7 2 =1
[1 - <z/u>2} '
where with
. jkqs
x =3I /3 (273)  F(a, s, te) o —— / Gian(ty,7) - Pec 3T dr
Jt +(tg
¢ = (150" (27b) \/ )
=L v/ 2 (30)
p=Ln (1 +V1=(z/v) ) wheret, are the roots of the Hermite polynomials ang are
—Ln(z/v) = V1= (2/v)? (27¢) the appropriate weights. Numerical values fay and¢, can

be found in numerical analysis books [16]. In the limiting case
and A;(z) is the Airy function, whereasl(z) is its derivative where@ = 1,¢; = 0 andw; = +/, this algorithm will re-
with respect toc. Olver’s uniform representation is used whermover the leading term of the saddle-point integration consid-
the two-term Debye approximation fails. Note that use of (2&red in [13] and [14], which is valid for large separations be-
requires the proper choice of branches in the functions (27ayeen source and observation points.
(27b), and (27c) as explained in [17]. On the other hand, usingThe integration along the-contour is not trivial and a dif-
a two-term Debye approximation for the Bessel functions, ani@rent technique has to be used. First, the integration contour
Iytic closed-form expressions are obtained for @fgandC;* C.(¢) has to be adjusted for each valugpfThis contour map-

functions [18], which are given by ping is essential because it avoids potential numerical problems
5 5 due to thec7¢™ term during the integration process and guar-
C™ = ki — (v/d) 1 antees that no pole crosses the integration cor@yt, ). This
" tan (th — (v/d)? ) 2d task is accomplished by mapping the deformed cont@un
ther plane, depicted in Fig. 2, onto theplane using = (v —
kt21 d2(l//d)2 ktod/mt) (Wheremt = (k‘tod/Z)l/g with ktO = k‘o CcOs ”(/}(tq))

mymyrIEhe (28a) for eacht, value. Fig. 3 shows a typical SDP contour on which
sin (th - (v/d)? ) threey (¢,) values are marked and the correspondimgntours
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Fig. 2. The original contour of integratiofi and the deformed contod¥ in ; E
the complexv plane.
Fig. 3. SDP contour.
(C-(¢,)) are illustrated in Fig. 4. Second, the choice of numer-
ical integration algorithm as well as the addition of a proper tail I
are two important issues due to the oscillatory and slowly de- mt
caying nature of the integrands in thedomain. In this work,
the integration along the contour is performed using Filon’s
algorithm combined with a Gaussian quadrature. The contour R
+ + -
C,(t,) is divided into two region€’; (t,) as discussed in the Cf_(fl_)——".'r’
Appendix._ln rt_agiorC;_(tq), the integrand decay_s quickly and T .,—/’ Chty :T/ N ReT
the numerical integration can be performed easily. The integra- O * ] >
tion alongC:t(t,) is more difficult because the integrand does gy T
T \"q o ) . C (/[3) [
not decay fast and it is oscillatory. To handle the oscillatory na- oty 7 T DT ¥
ture of the integrand, Filon’s algorithm is used. In this method, e ,
part of the integration contour (where the integral is evaluated ’/C .
numerically) is subdivided into half periods determinedrg{¢| Gty [T !

to avoid numerical problems that might be encountered if arbi-

trary intervals are chosen. In the calculation of integrals whicly. 4. Typical integration contours in thedomain.

contain theG... and Gy, (or G.4) components of the dyadic

Green’s function, the contod¥/ (¢, ) is further divided into two for large cylinders, even though the rate of convergence is very
regions where the numerical integration is performed in one rdew. Figs. 5-7 show the real and imaginary parts of the mu-
gion and the second region is integrated analytically. Due to theal impedance between twedirected, az- and a¢-directed
analytical properties of74,, the integrals that contain th&;, and twog-directed current sources, respectively, versus separa-
component are performed via an envelope extraction technidiom. The angled) for these examples is chosen to bé 548°,

in the region from 0 tax in the 7-domain. In this technique, and 40, respectively. Similarly, the same type of results are de-
the asymptotic value of the integrand can be integrated in clogsdted in Figs. 8-10, respectively, for the smaller cylinder where
form; therefore, if one subtracts the asymptotic value from thalues foro are chosen to be 4025°, and 30. For the smaller
integrand, the resulting integrand is relatively smooth and fasflinder, the effects of multiple wave encirclements around the
decaying so that it can be integrated efficiently. The analyticabated cylinder become visible for separations larger Sk

details for this case are also given in the Appendix. (or 3X\o depending upon the polarization) and, hence, the addi-
tion of thel = |1| term given by (13) is necessary. As seen from
IV. NUMERICAL RESULTS the figures, excellent agreement is achieved even for separations

To access the accuracy of this method, some numerical ?g_small a9).2A9 (even0.1A, for some cases).

sults for the mutual impedance between two tangential elec-
tric current modes are obtained using (29) and compared with
the traditional eigenfunction solution given by (4) for a large A highly efficient and accurate scheme for the evaluation of
cylinder witha = 3Xg, t, = 0.06)g, ¢, = 3.25 (A = surface fields excited by electric current sources mounted on
free-space wavelength) and a smaller one with 1.5\, t;, = an electrically large dielectric-coated circular cylinder is devel-
0.06 ), ¢, = 3.25. The current modes are defined by a pieceped. The numerical results obtained from theepresenta-
wise sinusoid along the direction of the current and by constaitn-SDP integration method agree well with the conventional
along the direction perpendicular to the current. Each elemerigenfunction solution, even for electrically small separations
has dimensions d.05Xq (along the direction of the current) between the source and observation points. This is in contrast
by 0.02)q. This particular choice of current modes guaranteés most asymptotic solutions considered in the literature where
the convergence of the reference spectral-domain solution dgher order terms [up t@(1/(kos)*)] need to be included to

V. DISCUSSIONS ANDCONCLUSION
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e, = 3.25.
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evaluate the surface fields for small separations on PEC 9, =
material-coated PEC circular cylinders. However, obtaining

these higher order terms is very complicated for a mate-
rial-coated cylinder. On the other hand, the SDP integration
used here allows one to calculate the asymptotic form of the
surface fields directly, even for arbitrarily small separations

between the source and observation points without the need
to take complicated derivatives. However, the solution has

some accuracy problems near the paraxial regior& 7/2) B,

of the cylinder due to the mapping given by (15). This is a
well-known problem that has been observed for PEC and
impedance cylinders in the past, where the mapping in (15)
was used. Valid solutions in the paraxial region have also been
developed by these authors and will be reported in a separate

paper. Nevertheless, the present SDP representation of the

Green'’s function can be used in conjunction with the method

1515

_JZom
ko d

2 < k2, ) k2 (e, —1)k? k?}
— |1 +e, + — =z _9_Z
{k;ﬂ kg ki ki)

k2, k2, Fo(er—Dk. \
Ite, )<1+ )_<7)
< k3 ) )

JZo

(32¢)

==——Fwo

0

ko < ko) k%(tr—l)kQ k2:|
e, t0 ) 208 o1
|:kt21 kt21 k?l ktl

2 2 Fo(er—Dk\7] G
wegy) (o) - ()
< ki ) ki

2d)

of moments to analyze and design arbitrarily shaped confornte@nsequently, an integral related with tHe. component of the
antennas on coated cylinders, except for the calculation of #¢adic Green’s function, which is in the form of

self terms and mutual coupling between two current modes
that lie in the paraxial region of the cylinder. The self-term
calculations can be carried out using conventional techniques

(eigenfunction solution) or assuming that the current elemetdn be written as

lies on a planar substrate (planar approximation). Furthermore,
uniform theory of diffraction (UTD)-based solutions for di-
electric coated arbitrarily convex surfaces can be heuristically
developed generalizing this solution and the UTD solution
of a sphere via the local properties of electromagnetic wave
propagation at high frequencies as demonstrated in [10].

APPENDIX

The limiting values of the Green’s function components for

larger values are given by

B,

lim G..(t;,, 7)=— (31a)
T—00 T

lim Gg.(ty, 7) =Bs (31b)
lim Ggg(ty, 7) =Bs7+ Bs (31¢)

whereB; are constants whose values are given by

= / G..(ty, )P dr (33)
Co(ty)
IL=C / G..(ty, T)PZe ™ dr
Cr (t)+CH (1)
>~ B
+ ! — P —Jer dT] (34)
where
o0 . e IET
/ Bi it gr o BS . (35)
T/ T 5 !

In (34), C (¢,) is the part of the integration contour on which
Re(7) < 7 whereas(t(t,) is the part on which < Re(r) <
Re(7"). Integrals on these portions are performed numerically
as mentioned in Section Ill. On the other hand, the complex ex-
ponential integral (35) is evaluated using a first-order stationary
phase method in which only the end-point contributions are con-
sidered since the intervalle(7') < Re(r) < oo does not con-
tain a stationary point. Furthermore, the contribution frssis
omitted as mentioned in [19]. Similarly, an integral related with
theGy. (or G.) component can be evaluated the same way ex-

B, = JZO 120 12 cept that the tail contribution is given by
o0 . e—JET
2 / Boe ™€ dr ~ By S (36)
. Fiy 5 However, an integral with th&',,, component is written as
) () ()
d ki ki ki L=0 / Gty T)PP I dr
(32a) Co (tq)

i 70 k2 o0 ,
By = ‘@k_go -l—/ (Geolty, T) — Bam — Ba)PPe ™7 dr

ko ki1 0

2k,
= (32b)

k2 k ko(er—1)k.\"
tegl) (2) - (M5
< ki ki )

+ / B3TP%e™9¢ dr + / ByPPeitT dT] .
0 0

(37)
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As a result of this process, the integrand of the second integrai4]
also becomes rapidly convergent and can be performed numeri-
cally as mentioned in Section Ill. The result of the fourth integra
is given by (36) excepB; is replaced byB,. Finally, the third  [15]
integral can be recognized as the Fourier transform of a ramﬁe]
function and is given by

0o ' 1 [17]

/ Bare 3 dr = —ng. (38)
0

(18]

REFERENCES
(29]

J. R. Wait, Electromagnetic Radiation from Cylindrical Struc-
tures New York: Pergamon, 1959.

D. A. Hilland J. R. Wait, “Ground wave attenuation function for a spher-
ical earth with arbitrary surface impedanc®adio Sci. vol. 15, pp.
637-643, May—June 1980.

G. Goubau, “Surface waves and their applications to transmission linez”
J. Appl. Phys.vol. 21, pp. 1119-1128, Nov. 1950.

A. Nakatini, N. G. Alexopoulus, N. K. Uzunoglu, and P. L. E. Uslenghi,
“Accurate Green’s function computation for printed circuit antenna
on cylindrical antennas Electromagn.vol. 6, pp. 243-254, July—Sept.
1986.

T. M. Habashy, S. M. Ali, and J. A. Kong, “Input impedance and radi
ation pattern of cylindrical-rectangular and wraparound microstrip al
tennas,”|IEEE Trans. Antennas Propagatol. 38, pp. 722-731, May
1990.

K.-L. Wong, Design of Nonplanar Microstrip Antennas and Transmis-
sion Lines New York: Wiley, 1999.
K. Naishadham and L. B. Felsen, “Dispersion of waves guided along
a cylindrical substrate-superstrate layered mediuBEE Trans. An-
tennas Propagatvol. 41, pp. 304-313, Mar. 1993.

L. W. Pearson, “A construction of the fields radiated by -airected
point sources of current in the presence of a cylindrically layered ol
stacle,”"Radio Sci.vol. 21, pp. 559-569, July—Aug. 1986.

L. W. Pearson, “A ray representation of surface diffraction by
multilayer cylinder,”IEEE Trans. Antennas Propagatol. AP-35, pp.
698-707, June 1987.

P. Munk, “A uniform geometrical theory of diffraction for the radia-
tion and mutual coupling associated with antennas on a material coa
convex conducting surface,” Ph.D. dissertation, Dept. Elect. Eng., O
State Univ., Columbus, 1996.

P. H. Pathak and R. G. Kouyoumjian, “An analysis of the radiation fro
apertures in curved surfaces by the geometrical theory of diffractio
Proc. |IEEE vol. 62, pp. 1438-1461, Nov. 1974.

(1]
(2]

(3]

(4

(5]

(6]

(7]

(8]

&)

(20]

(11]

(12]

A, ¥ search interests include design and analysis of active

and passive microstrip antennas and arrays on planar

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

R. G. Rojas and V. B. Ertirk, “UTD ray analysis of mutual coupling and
radiation for antennas mounted on dielectric coated PEC convex sur-
faces,”Proc. URSI Int. Symp. Electromagn. Theoml. 1, pp. 178-180,
May 1998.

V. A. Fock, “Diffraction of radio waves around the earth’s surfack,”
Phys. USSRvol. 9, pp. 256-266, 1945.

M. Abramowitz and I. A. SteguniHandbook of Mathematical Func-
tions. New York: Dover, 1970.

R. Paknys, “Evaluation of hankel functions with complex argument and
complex order,'IEEE Trans. Antennas Propagatol. 40, pp. 569-578,
May 1992.

M. Marin and P. Pathak, “Calculation of surface fields created by a cur-
rent distribution on a coated circular cylinder,” ElectroSci. Lab., Dept.
Elect. Eng., Ohio State Univ., Tech. Rep. 721 565-1, Apr. 1989.

L. B. Felsen and N. Marcuvitz,Radiation and Scattering of
Waves Englewood Cliffs, NJ: Prentice-Hall, 1973.

Vakur B. Ertiirk received the B.S. degree in
electrical engineering from Middle East Technical
University, Ankara, Turkey, in 1993 and the M.S.
and Ph.D. degrees from The Ohio State University
(OSU), Columbus, in 1996 and 2000, respectively.
During his stay at OSU, he was a Graduate Re-
search Associate at the ElectroScience Laboratory.
He is now with the Department of Electrical Engi-
neering, Bilkent University, Ankara, Turkey. His re-

and curved surfaces.

Roberto G. Rojas(S'80-M'85-SM’'90) received the
B.S.E.E. degree from New Mexico State University,
Las Cruces, in 1979 and the M.S. and Ph.D. degrees
in electrical engineering from The Ohio State Univer-
sity, Columbus, in 1981 and 1985, respectively.

He is currently an Associate Professor in the De-
partment of Electrical Engineering, The Ohio State
University. His current research interests are the de-
velopment of analysis and design tools for conformal
arrays, active integrated antennas, design of large ar-
rays, as well as the analysis of electromagnetic radi-

! \ _ ation and scattering phenomena in complex environments.
P. H. Pathak and N. Wang, “An analysis of the mutual coupling betweenpr. Rojas received the 1988 R.W.P. King Prize Paper Award and the 1990

antennas on a smooth convex surface,” ElectroSci. Lab., Dept. Elegtowder J. Thompson Memorial Prize Award, both given by IEEE, and the

Eng., Ohio State Univ., Tech. Rep. 784 538-7, Oct. 1978.

(13]

1989 and 1993 Lumley Research Awards, given by the College of Engineering,
C. Demirdag and R. G. Rojas, “Mutual coupling calculations on a difhe Ohio State University. He has served as Chairman, Vice-Chairman, and
electric coated PEC cylinder using UTD-based Green's function,” iBecretary/Treasurer of the Columbus, OH, chapter of the IEEE Antennas and
IEEE Antennas Propagat. Symp. Digol. 3, Canada, July 1997, pp. propagation and Microwave Theory and Techniques Societies. He is an elected
1525-1528. member of the United States Commission B of URSI.



