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3-D Numerical Mode-Matching (NMM) Method for
Resistivity Well-Logging Tools

Guo-Xin Fan Senior Member, IEERQing Huo Liy Senior Member, IEEEand Sean P. Blanchard

Abstract—A three-dimensional (3-D) numerical mode-matching problem is reduced to one-dimensional (1-D) problems, and the
(NMM) method is presented for Poisson’s equation ingeneralinho- field in all layers is obtained in a recursive scheme.
mogeneous media. It reduces the original 3-D problem into a series The NMM method as an efficient algorithm has been used to
of two-dimensional (2-D) eigenvalue problems plus a one-dimen- . o . - .
sional (1-D) layered medium problem, which can be modeled effi- model various mult|reg|on ver'ucal_ly and cylindrically stratified _
ciently by a recursion procedure. The algorithm is tested for several inhomogeneous media for both high- and low-frequency appli-
3-D inhomogeneous media and an excellent agreement between thecations [9]-[21]. However, so far the applications of the NMM
NMM and analytical solutions is obtained for all test cases. We method have been limited to 2-D and two-and-a-half-dimen-
demonstrate some typical applications of the 3-D NMM algorithm sional (2.5-D) problems. Although 2-D inhomogeneous models,

in resistivity well logging, including invasion zones of noncircular h . tri dia. h f d ful
shape, vertical and horizontal fractures, and horizontal wells, The SUCH as axisymmetric media, have tfound many successiul ap-

solution procedure proposed is directly applicable to wave propa- Plications in realistic well-logging, the media in general are
gation in 3-D inhomogeneous media. three-dimensional (3-D) inhomogeneous. Therefore, it is nec-
Index Terms—nhomogeneous media, layered media, numerical gssgry to (_jeyglop a3-D algorithm for modeling Poisson’s equa-
mode-matching (NMM) method, resistivity well logging. tion in resistivity well logging.
In this work, we extend for the first time the NMM method
to 3-D inhomogeneous media and apply it to model electric po-
tential distribution in well logging. Although this work treats
OW-FREQUENCY electrode-type resistivity tools arghe electric potential problems, the solution procedure presented
widely used to probe the resistivity distribution of for-here can be directly applied to wave problems.

mation in electrical well logging [1], [2]. These electrode-type

resistivity tools usually operate at very low frequency (below Il. FORMULATION

a few kilohertz), while the measurement region interested is | general, a 3-D inhomogeneous medium can be regarded as
limited to a relatively small region (a few meters) around th§ horizontally-layered multiregion medium as shown in Fig. 1.

electrodes in the borehole. Therefore, the frequency effe%% break this 3-D inhomogeneous medium iéohorizontal
can be ignored, and the electrostatic or dc apprOX|mat|on|é§/erS of arbitrary thickness. Each layer is modeled as being

adequate for the modeling of these resistivity tools. homogeneous in the vertical direction, but inhomogeneous in

. V.af'ous humerical methods have been used t‘? model the {ife horizontal plane, i.e., the conductivity, of each layer is
sistivity tools, such as analytical methods [3]—[5], integral eJUfke function of onlyz andy. The interface betweenth layer
tion method [6], finite-element method (FEM) [7], [8], and nu'and(n 4 1)th layerisz = 2z, With 21 < 22 < -+ < zy_1.
merical mode-matching (NMM) method [9]-[15]. Among thesg, ,, 2150 assume thag — _(X; andzy — oo. Then, using the
me_thods, the FEM is a most general-purpose numerical ”!e_thf? aracteristic functiot®(z, z,—_1, 2,) (Which is one forz in
while the NMM method has been shown to be more eﬁ'c'eﬂiyern, and zero otherwise), we can write the 3-D conductivity

than a direct use of the FEM for the well-logging problems;ci.v tion ass _ C here
The efficiency of the NMM method is based on the idea that @ . " (@9, 2) = 2., Oz, Znmt, Zu)ou(p) W

higher dimensional problem can be reduced to a series of IoveeEO
dimensional problems. For example, a two-dimensional (2-lPr}

. INTRODUCTION

(z, y).
r such a horizontally layered conductive medium, the elec-
¢ potential within each region satisfies Poisson’s equation

2
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Fig. 1. AnXN-layer inhomogeneous conductive medium.
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problems for all layers. The mode conversion between adjacent
layers is then accounted for by the local reflection and transmis-

sion matrices. Finally, the multiple reflections among all layers Y S ——
are modeled by a recursion scheme through global reflection 00 800 200 100 ey T 20 %0 40
matrices.
(b)
A. 2-D Eigenvalue Problems Fig. 2. Comparison of the NMM result with MM result for a two-layer

. . . three-block medium. (a) Geometry—the conductivity value shown is in
We first consider an eigenvalue problem for layef=rom siemens per meter for this and all following figures. (b) Electric potential

(1), the 3-D eigenfunctions for théh layer can be written as distribution—the point charge source and receiver are moving along the
Y\ e . i i y ',:,7’:t ', :":]"', z—z’:]',

®;(p)e="=*, where the 2-D eigenvalue problem for thth direction, withz = " = 300 in, y = y* =150 in, and}z —=| = 16 in

layer can be defined as

Bf; = // oy N; N5 dx dy ,, j=1,2,3 (5)
Vo 0e(p)V-25(p) + 0c(p)k7. 8, (p) = 0 ) 2
with Dirichlet (®; = 0) or Neumannd®;/dn = 0) boundary where
conditions at the outer boundapye 9S. It can be shown that ¢  domain of thecth element;
the squared modal attenuation consta&rf[;are real and non- ¢  conductivity of thecth element in the'th layer;
negative. N{  expansion function.

For an inhomogeneous medium with an arbitrary boundaTfe details of the above formulation can be found in general
dS, the above eigenvalue problem does not have an analytis@M books, e.g., [22]. In addition, higher order elements may
solution. In this work, we use a 2-D FEM with triangular cell®e chosen to further improve the accuracy of solution and reduce
to solve the 2-D eigenvalue equation (2) with an appropriatiee number of nodes, hence, the size of matrikesndB.
boundary condition o®S. The eigenfunctions are expanded Equation (3) can be solved by several special purpose eigen-
in terms of basis functions and the resulting generalized matglvers available. In practical NMM computation, only the first

eigenvalue equation is of the form M eigenvalues and associated eigenmodes are necessary to give
. o a convergent field solution.
A-v;=FkiB-v; 3) From (2), we can show that the above eigenfunctions have the
following orthogonality:
where
A,B L x L sparse banded symmetric matricési§ the B 0rd) — / B, B.(p)dS = 6. 6
number of FEM nodal points); (i 0c®j) s iPlodp)2,(p) “ ©)
k2. eigenvalue;
jz ! o i i
v corresponding eigenvector of length whered;; is the usual Kronecker delta function. It can be readily

shown that the above orthogonality has an equivalent form as-

In the FEM implementation, the matricAsandB are assem- . .
sociated with (3) as

bled from the elementaA ¢ andB¢, respectively, incorporating
the boundary conditions. For linear triangle elements, the en- ¢

tries of A° andB* are given by Vi Bovy=o )

/ (4) The eigenfunctions form a complete set and a similar derivation

. _[ONf ONS  QNf NS where superscrigtdenotes the transpose of a vector or matrix.
Af; = %\ 5. 3 50 dz dy
2 roor vy ooy can be found in [16]. Therefore, the field within the layer can
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Fig. 3. Comparison of the NMM result with MM result for a three-layer __ . _ _
coaxial cylinder medium. (a) Geometry. (b) Electric potential distribution. T, ;41 = (Km-q-l,;,/ + an ma1 " Km, - Q
The point charge source and receive are moving along: tbection, with — —

r=2"=0,y=—y =0.1in,and|z — 2’| = 16 in.

B. A Half-Space Problem

The solution in (9) gives the potential distribution for an in-
finitely thick layer? (i.e., z._1 — —oc andz; — o). Now
when two semi-infinitely thick layers, say layefsandm + 1,
form a half-space with an interfaceat z,,, mode conversion
occurs at the interface in order to satisfy the boundary condi-
tions. In the NMM method, this mode conversion is described
by the local reflection and transmission matrices. Assuming a
source in regionn, the fields in the two regions are given by

G, ) =B}, (p) « Kol G

n —E.,,w Zyn—2
'an, m+1 € =( ):|

N Srn (PI) (10)

Grn-l—l(r? r/) = Q:n—l—l(p) ) 67Km+17 +(2mam)

° Tm, m+1 - G_sz (ZM_Z,) . Sm (PI) (11)

whereR,,, ,+1 andT,, .41 are the local reflection and trans-
mission matrices of dimensiol/ x M. Using the continuity
conditions for electric potentials and the normal electric cur-
rents atz = z,,, i.e.,

Grn = Grn-f—l
8Gm aGrn 1
Tm 9 e =0m+1 az+ o (12)

and applying the orthogonality relation of the eigenfunctions,
we obtain

— —1
m, rn—l—l)
N Q:n,rn-l—l N Krn, z (13)
Ern, m—+1 :an’ m-41 " Trn, m+1 — T (14)

be expanded in terms of these eigenmodes and the expansion

coefficients are determined uniquely.

wherel is an identity matrix, an®,, ,,,,; is the mode conver-

The Green’s function of (1), witfv - J = é(r —r’) in the sion matrix betweemth and(m + 1)th layers
absence of all horizontal boundaries, can be expanded in terms

of the above eigenfunctions as

G, v) =3 ()i (@)

2k,

J

an,rn-f—l = <q)7n? 0771@:u+1>' (15)

Note the conversion of modes from layerto layerm + 1 are
completely described by the local reflection and transmission
matricesR,;, m+1 and Ty, n.41. Similarly, when the source

Using vector notation [16], (8) can be written in a more concidé located in layern + 1, we can derive the expressions for

form

G(r, ¥') = ®'(p) - K1 5(p) )

where

an+1, m andTrn+l, me

C. The Multilayer Problem—Mode-Matching Process

Now we turn to the multilayer medium in Fig. 1. Because of
multiple interfaces, multiple reflections occur within the layers.

: . .
@*(p) column vector of lengthl/ containing the eigenfunc- T mode matching is a process to derive a recursive procedure

tion ©;(p);
K. M x M diagonal matrix containing;.;

to account for the multiple reflections through the global reflec-
tion matrices. The NMM solution procedure here is parallel to

S(p') excitation coefficient vector of length/ containing those in the 2-D and 2.5-D problems. We only provide the final

the remaining terms in (8).

formulas and more details can be found in [16], [17], and [20].
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For anNV-region problem, if the source is embedded in regic
m, the expression of Green’s function in regian(n = m ,
n > m andn < m) can be constructed as

Gon(x, 1) =@, (p) - [ Kl 8, ()
+67sz (Zizm_l) N Crn

+e K= D, [ (16)
Gl ©) =@} (p) - [0 Fsom)

'En, n+1:| N An
n>m an

Gn(r7 r/) :Q:L(p) ) |:67K71:(Z7Zﬂ_1) " ﬁn,n—l
+6E”Z(Z_Z”_l):| . Bn
n<m (18)

(@
whereA,,, B, C,, andD,, are the expansion coefficient vec-
tors to be determined arﬁn, n+1 are the global reflection ma-

trices.
Applying the constraint conditions [16], [17] to these region: N

we obtain the recursive relations for the matri&s_,, ,, and

R,41,, as

Rn:l:l,n = Rn:l:l, nt Tn, nEl -’ Pn—l, n Rn,n:Fl ’ Pn—l,n

'M;i) 'Tnzl:l,n (19)
2 - — VNN
where the propagatdP,,_;,,» and multiple reflection matrix RS R e
Miﬂ:) are given by R AN
VNN N NN &
Fn—l,n 267K715(Z717Z71_1) (20) ) _k_. **
N = O — -~ _ 1 VENES TR =
M = |:I — R ngt - Prot o Ry Pn_l,n:| ==

(21)
R R (b)
Sinceﬁw =0 andﬁm ~+1 = 0, all global reflection ma- Fig. 4. Two typical grids for an elliptical borehole and invasion zone. (a) An
tricesR,,, ,—1 andR.,, .41 can be obtained recursively fromeliptical grid. (b) A modified rectangular grid.

R o andRy, n41, respectively. . N

Using a similar procedure as in [16], [17], and [20], the re- D, =M§,J{) S &
maining expansion coefficients,,, B,,, C,,., andD,,, can be ] [Fm_1 AP .ﬁm o
derived as follows: ’ ’ ’

Km0 g, () (25)
An :?n, n—1"- Mgl_) . Anfl (22)
Bn :?n, n—1"- MS—) . Bn+1 (23) where

Crn :ﬁg,;) N E~rn,rn—1
. [e—ﬁm;(z'—zm_l) +

m—1,m " an, m—+1

= _ — —1
= N o M;:ll:) = |:I_an, mFLl’ Prn—l, m’ an, mFl ° Prn—l,rn:| .
K=, () (24) (26)
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z the eigensolvers. This is in contrast to the 2-D NMM method
where L is about the same a&l. As a result, reducing the
computational complexity of the eigenvalue problems in 3-D
0.2 NMM method becomes a more important issue than in 2-D
z= 180" NMM method. Currently, there are on-going efforts to improve
0.01 | 0.067 20" the efficiency of eigensolvers [23], [24].

z=84"

0.02 | 0.1 12" o [1. NUMERICAL RESULTS
Z=

02 L In this section, we first test the 3-D NMM algorithm by com-
~— paring with the analytical mode-matching (MM) results and
|<—T| then illustrate its applications in resistivity well logging. In all
examples, the dc sourceat d/2 and the observation point at
(@) z + d/2 move together in the direction. The source-receiver
spacing is! = 16 in and the borehole radius is 4 in.
120 : : : , : : : As a test example, we consider a two-layer conductive
medium as shown in Fig. 2(a). Each layer has three blocks,
1001 ] each having a constant conductivity. The Dirichlet boundary
condition is applied to the outer boundarieszat= 0, 400
inandy = 0, 300 in. Fig. 2(b) shows the electric potential
distribution due to a point charge moving along thairection.
Good agreement is observed between the NMM results and
Lo~ | MM solutions.
20! }; "y 1 Fig. 3(a) sh_ows a three—layer_ coax?al cylinder, with an outer
oy o boundary radius of 1.5 m. To investigate the accuracy of the
S0 300 200 <1000 100 200 300 400 NMM so_lutmn, we developed an independent MM solution (see
2 (inches) Appendix). In Fig. 3(b), we compare the results of the two so-
lutions. Again excellent agreement is obtained between these
(b) solutions.
Fig. 5. Elliptical invasion and circular invasion. (a) Geometry. (b) Apparent T0 illustrate the applications of 3-D NMM method, we con-
resistivity distribution; - - elliptical invasion—— circularinvasion. The straight sider several examples in resistivity well logging. The media in
lines indicate the formation true resistiviti®{) and invasion resistivityR..q). all cases are 3-D inhomogeneous and cannot be modeled by the
previous 2-D and 2.5-D NMM algorithms. In these examples,
From (16)—(18), we can obtain the connecting conditions e show the results for the apparent resistivity defined as
the source region as

A
v}

[o:3
(=)

R, (ohm-m)
[o)]
(=]
]

a

N
[=)

R, = doru (29)
Arn IG_KMZ (Zm_Z,) ° Sm(PI) + Frnfl,rn : Crn (27)

B, =c¢ Km:(Z'—2m-1) | Sm(P) +Ppm1.m Dn. (28) Whereuisthe electric potential produced by a unit point source
andr is the distance between the source point and field point.
In the following calculations, we take = o', hence; = d.

With the above global reflection matrices and source exci- For the well-logging application, the unique features in the
tation coefficient vectors, the field in all layers is, thereforenedium and source-receiver configuration require special atten-
obtained through (16)—(18). Note that these matrices and véon for the FEM grid generation. First, the borehole is ellip-
tors need to be solved only once. For any new source locatiotisal in general (the circular one being a special case), and both
the remaining computational efforts involve only matrix—vectdhe source and receiver are located in the borehole. Second, the
multiplies, which are much faster than the solution of global renedium far away from the borehole has a small effect on the
flection matrices. field since the field is generated and measured in the borehole.

Finally, we briefly discuss the computational cost in th&hese features call for an expanding grid as shown in Fig. 4(a)
3-D NMM method. The 2-D eigenvalue problems requiréonly a quarter is shown). To reduce the bandwidth of the ma-
O(NL>*M) arithmetic operations in iterative solvers, wherérices, we use a rebookkeeping procedure: the indexing starts
« = 2 if full matrices are used, and = 1.5 if sparse matrices with the left-most node on the outer circle, and slides along ver-
are used. More advanced methods may yield better resultstit@l direction to the right. This reduces the bandwidth to the
comparison, the mode matching process requinés/A3) number of nodes on the diameter line. Alternatively, a more ef-
arithmetic operations, usually much cheaper than the eigdicient approach isto transform the rectangular grid into an ellip-
value problems sincé is much larger thad/. Therefore, the tical grid. The minimum bandwidth of the modified rectangular
total computational cost IO[N(C1L*M + CoM?)] (C; and  grid remains unchanged. Fig. 4(b) shows the central part of the
Cs are constants) and can be dominated by the time spennindified rectangular grid (unoptimized).
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Fig. 6. Vertical fracture. (a) Geometry. (b) Apparent resistivity distribution. (b)

Fig. 7. Horizontal fracture. (a) Geometry. (b) Apparent resistivity distribution.

Conventionally, in vertical wells the invasion zone around thggso show the results without fractures. It can be seen that the
borehole is assume circular. However, for deviated wells, the iﬁ'ﬂactures have notable effects on the measurement even though
vasion zone can have a different shape because of nonsymmeigr thickness is very small.
mud filtration into the formation. Since the NMM method uses a Horizontal wells are becoming increasing|y popu|ar because
2-D FEM, it can model inhomogeneous invasion zones of arkjt the potentially significant increase in the yield. Fig. 8(a)
trary shape. Fig. 5(a) shows a four-layer medium with ellipticghows a horizontal well in a three-layer medium, with an
invaded zones in the center layers. In this and the following fighvasion zone in the center layer. The medium has three vertical
ures,R; refers to the formation reSiStiVity (i.e., the outer Zone}egions and is Symmetric about= 0 p|ane @-axis is chosen
and R, refers to the resistivity of the invaded zone (i.e., thglong the axis of borehole). Fig. 8(b) shows the result for the
zone between the borehole and the outer zone). The long apgarent resistivity measured in the formation.
short half axes for the two ellipses are (20, 12) in and (12, 10)
in, respectively. For comparison, both the results for the ellip-
tical invasion and circular invasion with radii the same as the
short axes of the elliptical invasion are shown in Fig. 5(b). The IV. CONCLUSION
difference between two results is displayed. In addition, the ef-
fects of borehole are also shown clearly outside the inhomogeA full 3-D numerical mode-matching (NMM) technique is
neous region. Because of the generality of the 2-D FEM for theveloped for modeling the distribution of electric potentials in
eigenvalue problems, the 3-D NMM method can model inh@-D conductive media in resistivity well logging. The fields due
mogeneous invasion zones of arbitrary shape. to an arbitrary electric current source can be obtained with the

Fractures are often encountered in well logging. Here, welp of Green’s function. The accuracy of the 3-D NMM method
consider vertical and horizontal fractures. In these examples, theverified for several 3-D inhomogeneous media. We demon-
fracture conductivity isr = 0.8 S/m. Fig. 6(a) shows a vertical strate some typical applications of the 3-D NMM algorithm in
fracture in a formation, with the cross section of 0.4<r200 resistivity well logging, including invasion zones of noncircular
in. Fig. 7(a) shows a half-plane horizontal fracture. Fig. 6(b) arsthape, vertical and horizontal fractures, and horizontal wells.
7(b) display the apparent resistivity for the formation with verfhe proposed algorithm is directly applicable to wave propaga-
tical and horizontal fractures, respectively. For comparison, wien in 3-D stratified media.
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to (A.1) and (A.2), we get the following eigenvalue equation:
0.01 0.067 0.01

O—l‘]r/n(krnzal)zrn(krnzal) - O—QJrn(krnzal)Z;n(krnzal) =0.
(A.5)

25n

|
/
N

-,
</

12" l 8
}

0.1 The roots of the above equation are the eigenvakygs de-
0.2 30 noted ask,.. (n = 1, 2, ---). The corresponding eigenmodes
0.005 are given by
0.067 0.01 0.067
D1 (p) = Rin(p) cosm(d — ¢') (A.6)
z=-100" z = 100"
(@ where the radial functions are defined as
103 T Anannl(krnnp) p < ai
Rn(p) = { (A.7)
R Brnann(krnnp) P > a1
A102' E Wlth Arnn = nl(knlnal)/Jnl( rnnal) andBrnn =1
i ST The eigenmodes in (A.6) can be normalized by using the fol-
s . \ lowing normalization constants:
<ol _,~’—-—i°-—- o .
_____________________________ Nrnn = rnn; Uq)rnn)
27t
0 . \ , , R ) ) / / rnn )(I)rnn(p)p dp d¢
%00 300 200 100 0 100 200 300 400 )
z (inches) =27 (bom + 1){01A,2,l / J,Qn(kznp)p dp
0
(b) , [,
Fig. 8. Horizontal well. (a) Geometry. (b) Apparent resistivity distribution. +02B;, / Z(kznp)p dﬁ} .
a1l
(A.8)
APPENDIX

MODE-MATCHING (MM) SOLUTION FOR A THREELAYER

COAXIAL CYLINDER It can be shown that the above eigenmodes are orthogonal with

the inner product defined in (3).
Consider the electric potential in a three-layer coaxial The mode conversion matrix elements betwétbrand(l +
cylinder of the inner radiua; and outer radiug,, with con-  1)th layers are given by
stant conductivitieg; andas in the inner and outer cylinders,
respectively. On the surfage = a», the electric potential is an m’n/

Zero. Lo
Let = <(I)£7ll)n7 O—(l)q)grll—"—ri’)>
a2
o = (14 bom) TS / o ORY, ()RS (o) dp
= Z A dm(bmzp) cosm (¢ — (/)/)Z(kmzz) p<a 0
m=0 = (1 + 60nl)7r6nwn
o A0 [ Da®, Al / Ton(ES ) T (Bt ) dp
== Z Brann(krnzp) Ccos m(d) - d)/)Z(knlzz) p > ai )
o +ol BB [ 2000 20K o
. ai
(A.9)

where . " : .
where the superscrift) denotes quantities associated with

layer. The local reflection and transmission matrices then have
Zm(kmzp) = Jm(Emzp)Ym(kmz02) = Yo (kmzp) Jm(kmza2).  the same formulas as (13) and (14).
(A.3) The integrals in (A.8) and (A.9) can be analytically carried
out by using the following formulas [25]:

Applying the boundary conditions at= a; . 1 9
2/7. _ L 2 2y _ ¥ 2/7.
o, s / 2Z(kz)dz = 5% [ZV (kz) + <1 k222> Zu(kz)}

w1 = uz, o1 a—p =02 a_p (A.4) (A.10)
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and > -C+am-D=hby (A22)
/ 24, (kz)Z,,(lz) dx where
= 12 (Z,(k)Z!(12) — kZ,(12)Z! (k2)] k#1 a =K. -Q, + Qb - Ko, (A.23)
(All) ap= (Klz Q- QY K2~) P (A.24)
whereZ, (k=) can be a Bessel's functions or a cross product ofttz1 = (Ka. - Qa3 — Qb 'ng)t Py (A.25)
Bessel's functions. _ . ==t
The Green’s functions for a single layer can then be expanded22 = — (KQZ Qo3+ Qao - ng) (A.26)
in terms of the above eigenmodes as and B
o o 1 bl = — (Klz - 612 — Qt?l . K?Z) . C_KZ:(Z _7‘/1) . SQ(p/)
G ! = ann ann / A'27
(r, ') ;;%mn (P) B (0) o - ( | )
T , b =— (Ka. - — -Ks,) e TS .
-cosm(p — ¢ )e R lF=F (A.12) 2 (K2: - Qo3 — Qs Kiz) - 2((:;8)

This has the same vector form as (8) with the same definition of
parameters. We can solve (A.21) and (A.22) f& andD to yield

Now we construct the Green's function for a three-layer .
coaxial cylinder. When the source is located in 1st layer, we D = (@22 — @21 -0y - 0'12) (b2 — a0 Ay bl)

have (A.29)

-1

Gl(r, I‘/) = ‘I)fl (p) . [C—E1;|Z—Z,| + C_Elz(zl_z) C Iaﬁl . (bl — 12 - D) . (A30)
Rz - c’ﬁlz(zl*z')} -S1(p)) The other two unknown vectors andB are given by
(A.13)

— — A=Qyy- K0 5,()) + P, C+ D

(A.31)
.R23 . P12:| - A2 (A14) B 2512 . [e—ﬁzz(z’_zl) . SQ(p/) + C +F12 B D:| .

Gs(r, ') = ®L(p) - e Ko=) . A, (A.15) (A.32)
Applying the constraint conditions [16] at the interfaces Fir!ally, when the source is located in third layer, the Green'’s
andz = z», the unknownsA, andA 5 can be found as function in each layer becomes

Ay =MD Ty, o K20 5 (f)  (A16) Gi(r, ') = @t( ) e K2 B, (A.33)
As Ing . ?12 <Ay (Al?) GQ(I‘ I‘ [G_KZZ(Z_Zl) . ﬁ21 . Fl?
~ - —Egz Ro—=z
and other matrices such &, andMS ", have the same defi- +e ( )} B2 (A.34)
nition as in Section IlI. \ R o] R o)
When the source is located in second layer, we write Ga(r, r') = 25(p) - [ S X
Ry - o—Ka:(z/=2)] /
Gl(r, r ) ‘I)f( ) G—Kl (=1—2) . B (A18) Rss - e :| Sg(p )
_ (A.35)
GQ(I‘ I‘ |:C Ko. |z—z | ( /) + CfKZ;(zle)
Ko (22—2) A similar procedure as in the case of the source in the first layer
C o Ko : D} (A19) ecults
Ga(r, ') = ®L(p) - ¢ Ke-(m22) LA, (A.20) B, =M, - Ty - e Ks=('=22) . 8,(p))  (A.36)
Using the boundary conditions at= »; andz = z, intro- B, =Ty -P»-By (A.37)

ducing the appropriate inner products, and by means of the or-
thogonality of eigenmodes, we can determine the four unknownd other parameters also have the definition same as in Section
vectorsA, B, C andD. The reduced matrix equations are Il
Since all integrals in the above have analytical expressions,
a1 - CH+apn-D=b; (A.21) this MM solution becomes very efficient. The above eigenmode
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solutions, combined with the recursive solution of the NMM [22] J. M. Jin, The Finite Element Method in ElectromagneticNew York:
method in Section Il, can be extended to model multiple hori-__ Wiley, 1993. N
I d cvlindrically | d di [23] A. V. Knyazev and A. L. Skorokhodov, “The preconditioned gra-
zontally and cylinarically layered media. dient-type iterative methods in a subspace for partial generalized
symmetric eigenvalue problem3IAM J. Numer. Anal.vol. 31, pp.
1226-1239, 1994.
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