
1544 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

3-D Numerical Mode-Matching (NMM) Method for
Resistivity Well-Logging Tools
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Abstract—A three-dimensional (3-D) numerical mode-matching
(NMM) method is presented for Poisson’s equation in general inho-
mogeneous media. It reduces the original 3-D problem into a series
of two-dimensional (2-D) eigenvalue problems plus a one-dimen-
sional (1-D) layered medium problem, which can be modeled effi-
ciently by a recursion procedure. The algorithm is tested for several
3-D inhomogeneous media and an excellent agreement between the
NMM and analytical solutions is obtained for all test cases. We
demonstrate some typical applications of the 3-D NMM algorithm
in resistivity well logging, including invasion zones of noncircular
shape, vertical and horizontal fractures, and horizontal wells. The
solution procedure proposed is directly applicable to wave propa-
gation in 3-D inhomogeneous media.

Index Terms—Inhomogeneous media, layered media, numerical
mode-matching (NMM) method, resistivity well logging.

I. INTRODUCTION

L OW-FREQUENCY electrode-type resistivity tools are
widely used to probe the resistivity distribution of for-

mation in electrical well logging [1], [2]. These electrode-type
resistivity tools usually operate at very low frequency (below
a few kilohertz), while the measurement region interested is
limited to a relatively small region (a few meters) around the
electrodes in the borehole. Therefore, the frequency effects
can be ignored, and the electrostatic or dc approximation is
adequate for the modeling of these resistivity tools.

Various numerical methods have been used to model the re-
sistivity tools, such as analytical methods [3]–[5], integral equa-
tion method [6], finite-element method (FEM) [7], [8], and nu-
merical mode-matching (NMM) method [9]–[15]. Among these
methods, the FEM is a most general-purpose numerical method,
while the NMM method has been shown to be more efficient
than a direct use of the FEM for the well-logging problems.
The efficiency of the NMM method is based on the idea that a
higher dimensional problem can be reduced to a series of lower
dimensional problems. For example, a two-dimensional (2-D)
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problem is reduced to one-dimensional (1-D) problems, and the
field in all layers is obtained in a recursive scheme.

The NMM method as an efficient algorithm has been used to
model various multiregion vertically and cylindrically stratified
inhomogeneous media for both high- and low-frequency appli-
cations [9]–[21]. However, so far the applications of the NMM
method have been limited to 2-D and two-and-a-half-dimen-
sional (2.5-D) problems. Although 2-D inhomogeneous models,
such as axisymmetric media, have found many successful ap-
plications in realistic well-logging, the media in general are
three-dimensional (3-D) inhomogeneous. Therefore, it is nec-
essary to develop a 3-D algorithm for modeling Poisson’s equa-
tion in resistivity well logging.

In this work, we extend for the first time the NMM method
to 3-D inhomogeneous media and apply it to model electric po-
tential distribution in well logging. Although this work treats
the electric potential problems, the solution procedure presented
here can be directly applied to wave problems.

II. FORMULATION

In general, a 3-D inhomogeneous medium can be regarded as
a horizontally-layered multiregion medium as shown in Fig. 1.
We break this 3-D inhomogeneous medium intohorizontal
layers of arbitrary thickness. Each layer is modeled as being
homogeneous in the vertical direction, but inhomogeneous in
the horizontal plane, i.e., the conductivity of each layer is
the function of only and . The interface betweenth layer
and th layer is , with .
We also assume that and . Then, using the
characteristic function (which is one for in
layer , and zero otherwise), we can write the 3-D conductivity
distribution as , where

.
For such a horizontally layered conductive medium, the elec-

tric potential within each region satisfies Poisson’s equation

(1)

where is the external electric current density. We aim to solve
this equation to compute the electric potential distribution in all
regions.

This partial differential equation can be solved by the 3-D fi-
nite-element method (FEM). However, as shown for 2-D and
2.5-D problems [9]–[21], the NMM method is far more effi-
cient, especially for layered media with large layer thicknesses.
Here, in the 3-D NMM method, we first solve 2-D eigenvalue
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Fig. 1. AnN -layer inhomogeneous conductive medium.

problems for all layers. The mode conversion between adjacent
layers is then accounted for by the local reflection and transmis-
sion matrices. Finally, the multiple reflections among all layers
are modeled by a recursion scheme through global reflection
matrices.

A. 2-D Eigenvalue Problems

We first consider an eigenvalue problem for layer. From
(1), the 3-D eigenfunctions for theth layer can be written as

, where the 2-D eigenvalue problem for theth
layer can be defined as

(2)

with Dirichlet or Neumann boundary
conditions at the outer boundary . It can be shown that
the squared modal attenuation constantsare real and non-
negative.

For an inhomogeneous medium with an arbitrary boundary
, the above eigenvalue problem does not have an analytical

solution. In this work, we use a 2-D FEM with triangular cells
to solve the 2-D eigenvalue equation (2) with an appropriate
boundary condition on . The eigenfunctions are expanded
in terms of basis functions and the resulting generalized matrix
eigenvalue equation is of the form

(3)

where
, sparse banded symmetric matrices (is the

number of FEM nodal points);
eigenvalue;
corresponding eigenvector of length.

In the FEM implementation, the matricesand are assem-
bled from the elemental and , respectively, incorporating
the boundary conditions. For linear triangle elements, the en-
tries of and are given by

(4)

(a)

(b)

Fig. 2. Comparison of the NMM result with MM result for a two-layer
three-block medium. (a) Geometry—the conductivity value shown is in
siemens per meter for this and all following figures. (b) Electric potential
distribution—the point charge source and receiver are moving along thez

direction, withx = x = 300 in, y = y = 150 in, andjz � z j = 16 in.

(5)

where
domain of the th element;
conductivity of the th element in theth layer;
expansion function.

The details of the above formulation can be found in general
FEM books, e.g., [22]. In addition, higher order elements may
be chosen to further improve the accuracy of solution and reduce
the number of nodes, hence, the size of matricesand .

Equation (3) can be solved by several special purpose eigen-
solvers available. In practical NMM computation, only the first

eigenvalues and associated eigenmodes are necessary to give
a convergent field solution.

From (2), we can show that the above eigenfunctions have the
following orthogonality:

(6)

where is the usual Kronecker delta function. It can be readily
shown that the above orthogonality has an equivalent form as-
sociated with (3) as

(7)

where superscriptdenotes the transpose of a vector or matrix.
The eigenfunctions form a complete set and a similar derivation
can be found in [16]. Therefore, the field within the layer can
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(a)

(b)

Fig. 3. Comparison of the NMM result with MM result for a three-layer
coaxial cylinder medium. (a) Geometry. (b) Electric potential distribution.
The point charge source and receive are moving along thez direction, with
x = x = 0, y = �y = 0:1 in, andjz � z j = 16 in.

be expanded in terms of these eigenmodes and the expansion
coefficients are determined uniquely.

The Green’s function of (1), with in the
absence of all horizontal boundaries, can be expanded in terms
of the above eigenfunctions as

(8)

Using vector notation [16], (8) can be written in a more concise
form

(9)

where
column vector of length containing the eigenfunc-
tion ;

diagonal matrix containing ;
excitation coefficient vector of length containing
the remaining terms in (8).

B. A Half-Space Problem

The solution in (9) gives the potential distribution for an in-
finitely thick layer (i.e., and ). Now
when two semi-infinitely thick layers, say layersand ,
form a half-space with an interface at , mode conversion
occurs at the interface in order to satisfy the boundary condi-
tions. In the NMM method, this mode conversion is described
by the local reflection and transmission matrices. Assuming a
source in region , the fields in the two regions are given by

(10)

(11)

where and are the local reflection and trans-
mission matrices of dimension . Using the continuity
conditions for electric potentials and the normal electric cur-
rents at , i.e.,

(12)

and applying the orthogonality relation of the eigenfunctions,
we obtain

(13)

(14)

where is an identity matrix, and is the mode conver-
sion matrix between th and th layers

(15)

Note the conversion of modes from layerto layer are
completely described by the local reflection and transmission
matrices and . Similarly, when the source
is located in layer , we can derive the expressions for

and .

C. The Multilayer Problem—Mode-Matching Process

Now we turn to the multilayer medium in Fig. 1. Because of
multiple interfaces, multiple reflections occur within the layers.
The mode matching is a process to derive a recursive procedure
to account for the multiple reflections through the global reflec-
tion matrices. The NMM solution procedure here is parallel to
those in the 2-D and 2.5-D problems. We only provide the final
formulas and more details can be found in [16], [17], and [20].
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For an -region problem, if the source is embedded in region
, the expression of Green’s function in region( ,

and ) can be constructed as

(16)

(17)

(18)

where , , and are the expansion coefficient vec-
tors to be determined and are the global reflection ma-
trices.

Applying the constraint conditions [16], [17] to these regions,
we obtain the recursive relations for the matrices and

as

(19)

where the propagator and multiple reflection matrix

are given by

(20)

(21)

Since and , all global reflection ma-

trices and can be obtained recursively from

and , respectively.
Using a similar procedure as in [16], [17], and [20], the re-

maining expansion coefficients , , , and can be
derived as follows:

(22)

(23)

(24)

(a)

(b)

Fig. 4. Two typical grids for an elliptical borehole and invasion zone. (a) An
elliptical grid. (b) A modified rectangular grid.

(25)

where

(26)
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(a)

(b)

Fig. 5. Elliptical invasion and circular invasion. (a) Geometry. (b) Apparent
resistivity distribution,� � � elliptical invasion,��� circular invasion. The straight
lines indicate the formation true resistivity (R ) and invasion resistivity (R ).

From (16)–(18), we can obtain the connecting conditions in
the source region as

(27)

(28)

With the above global reflection matrices and source exci-
tation coefficient vectors, the field in all layers is, therefore,
obtained through (16)–(18). Note that these matrices and vec-
tors need to be solved only once. For any new source locations,
the remaining computational efforts involve only matrix–vector
multiplies, which are much faster than the solution of global re-
flection matrices.

Finally, we briefly discuss the computational cost in the
3-D NMM method. The 2-D eigenvalue problems require

arithmetic operations in iterative solvers, where
if full matrices are used, and if sparse matrices

are used. More advanced methods may yield better results. In
comparison, the mode matching process requires
arithmetic operations, usually much cheaper than the eigen-
value problems since is much larger than . Therefore, the
total computational cost is ( and

are constants) and can be dominated by the time spent in

the eigensolvers. This is in contrast to the 2-D NMM method
where is about the same as . As a result, reducing the
computational complexity of the eigenvalue problems in 3-D
NMM method becomes a more important issue than in 2-D
NMM method. Currently, there are on-going efforts to improve
the efficiency of eigensolvers [23], [24].

III. N UMERICAL RESULTS

In this section, we first test the 3-D NMM algorithm by com-
paring with the analytical mode-matching (MM) results and
then illustrate its applications in resistivity well logging. In all
examples, the dc source at and the observation point at

move together in the direction. The source-receiver
spacing is in and the borehole radius is 4 in.

As a test example, we consider a two-layer conductive
medium as shown in Fig. 2(a). Each layer has three blocks,
each having a constant conductivity. The Dirichlet boundary
condition is applied to the outer boundaries at
in and in. Fig. 2(b) shows the electric potential
distribution due to a point charge moving along thedirection.
Good agreement is observed between the NMM results and
MM solutions.

Fig. 3(a) shows a three-layer coaxial cylinder, with an outer
boundary radius of 1.5 m. To investigate the accuracy of the
NMM solution, we developed an independent MM solution (see
Appendix). In Fig. 3(b), we compare the results of the two so-
lutions. Again excellent agreement is obtained between these
solutions.

To illustrate the applications of 3-D NMM method, we con-
sider several examples in resistivity well logging. The media in
all cases are 3-D inhomogeneous and cannot be modeled by the
previous 2-D and 2.5-D NMM algorithms. In these examples,
we show the results for the apparent resistivitydefined as

(29)

where is the electric potential produced by a unit point source
and is the distance between the source point and field point.
In the following calculations, we take , hence, .

For the well-logging application, the unique features in the
medium and source-receiver configuration require special atten-
tion for the FEM grid generation. First, the borehole is ellip-
tical in general (the circular one being a special case), and both
the source and receiver are located in the borehole. Second, the
medium far away from the borehole has a small effect on the
field since the field is generated and measured in the borehole.
These features call for an expanding grid as shown in Fig. 4(a)
(only a quarter is shown). To reduce the bandwidth of the ma-
trices, we use a rebookkeeping procedure: the indexing starts
with the left-most node on the outer circle, and slides along ver-
tical direction to the right. This reduces the bandwidth to the
number of nodes on the diameter line. Alternatively, a more ef-
ficient approach is to transform the rectangular grid into an ellip-
tical grid. The minimum bandwidth of the modified rectangular
grid remains unchanged. Fig. 4(b) shows the central part of the
modified rectangular grid (unoptimized).
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(a)

(b)

Fig. 6. Vertical fracture. (a) Geometry. (b) Apparent resistivity distribution.

Conventionally, in vertical wells the invasion zone around the
borehole is assume circular. However, for deviated wells, the in-
vasion zone can have a different shape because of nonsymmetric
mud filtration into the formation. Since the NMM method uses a
2-D FEM, it can model inhomogeneous invasion zones of arbi-
trary shape. Fig. 5(a) shows a four-layer medium with elliptical
invaded zones in the center layers. In this and the following fig-
ures, refers to the formation resistivity (i.e., the outer zone),
and refers to the resistivity of the invaded zone (i.e., the
zone between the borehole and the outer zone). The long and
short half axes for the two ellipses are (20, 12) in and (12, 10)
in, respectively. For comparison, both the results for the ellip-
tical invasion and circular invasion with radii the same as the
short axes of the elliptical invasion are shown in Fig. 5(b). The
difference between two results is displayed. In addition, the ef-
fects of borehole are also shown clearly outside the inhomoge-
neous region. Because of the generality of the 2-D FEM for the
eigenvalue problems, the 3-D NMM method can model inho-
mogeneous invasion zones of arbitrary shape.

Fractures are often encountered in well logging. Here, we
consider vertical and horizontal fractures. In these examples, the
fracture conductivity is S/m. Fig. 6(a) shows a vertical
fracture in a formation, with the cross section of 0.4 in200
in. Fig. 7(a) shows a half-plane horizontal fracture. Fig. 6(b) and
7(b) display the apparent resistivity for the formation with ver-
tical and horizontal fractures, respectively. For comparison, we

(a)

(b)

Fig. 7. Horizontal fracture. (a) Geometry. (b) Apparent resistivity distribution.

also show the results without fractures. It can be seen that the
fractures have notable effects on the measurement even though
their thickness is very small.

Horizontal wells are becoming increasingly popular because
of the potentially significant increase in the yield. Fig. 8(a)
shows a horizontal well in a three-layer medium, with an
invasion zone in the center layer. The medium has three vertical
regions and is symmetric about plane ( -axis is chosen
along the axis of borehole). Fig. 8(b) shows the result for the
apparent resistivity measured in the formation.

IV. CONCLUSION

A full 3-D numerical mode-matching (NMM) technique is
developed for modeling the distribution of electric potentials in
3-D conductive media in resistivity well logging. The fields due
to an arbitrary electric current source can be obtained with the
help of Green’s function. The accuracy of the 3-D NMM method
is verified for several 3-D inhomogeneous media. We demon-
strate some typical applications of the 3-D NMM algorithm in
resistivity well logging, including invasion zones of noncircular
shape, vertical and horizontal fractures, and horizontal wells.
The proposed algorithm is directly applicable to wave propaga-
tion in 3-D stratified media.
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(a)

(b)

Fig. 8. Horizontal well. (a) Geometry. (b) Apparent resistivity distribution.

APPENDIX

MODE-MATCHING (MM) SOLUTION FOR A THREE-LAYER

COAXIAL CYLINDER

Consider the electric potential in a three-layer coaxial
cylinder of the inner radius and outer radius , with con-
stant conductivities and in the inner and outer cylinders,
respectively. On the surface , the electric potential is
zero.

Let

(A.1)

(A.2)

where

(A.3)

Applying the boundary conditions at

(A.4)

to (A.1) and (A.2), we get the following eigenvalue equation:

(A.5)

The roots of the above equation are the eigenvalues, de-
noted as ( ). The corresponding eigenmodes
are given by

(A.6)

where the radial functions are defined as

(A.7)

with and .
The eigenmodes in (A.6) can be normalized by using the fol-

lowing normalization constants:

(A.8)

It can be shown that the above eigenmodes are orthogonal with
the inner product defined in (3).

The mode conversion matrix elements betweenth and
th layers are given by

(A.9)

where the superscript denotes quantities associated withth
layer. The local reflection and transmission matrices then have
the same formulas as (13) and (14).

The integrals in (A.8) and (A.9) can be analytically carried
out by using the following formulas [25]:

(A.10)
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and

(A.11)

where can be a Bessel’s functions or a cross product of
Bessel’s functions.

The Green’s functions for a single layer can then be expanded
in terms of the above eigenmodes as

(A.12)

This has the same vector form as (8) with the same definition of
parameters.

Now we construct the Green’s function for a three-layer
coaxial cylinder. When the source is located in 1st layer, we
have

(A.13)

(A.14)

(A.15)

Applying the constraint conditions [16] at the interfaces
and , the unknowns and can be found as

(A.16)

(A.17)

and other matrices such as and , have the same defi-
nition as in Section II.

When the source is located in second layer, we write

(A.18)

(A.19)

(A.20)

Using the boundary conditions at and , intro-
ducing the appropriate inner products, and by means of the or-
thogonality of eigenmodes, we can determine the four unknown
vectors , , and . The reduced matrix equations are

(A.21)

(A.22)

where

(A.23)

(A.24)

(A.25)

(A.26)

and

(A.27)

(A.28)

We can solve (A.21) and (A.22) for and to yield

(A.29)

(A.30)

The other two unknown vectors and are given by

(A.31)

(A.32)

Finally, when the source is located in third layer, the Green’s
function in each layer becomes

(A.33)

(A.34)

(A.35)

A similar procedure as in the case of the source in the first layer
results

(A.36)

(A.37)

and other parameters also have the definition same as in Section
II.

Since all integrals in the above have analytical expressions,
this MM solution becomes very efficient. The above eigenmode
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solutions, combined with the recursive solution of the NMM
method in Section II, can be extended to model multiple hori-
zontally and cylindrically layered media.
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