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Adaptive Transient Solution of Nonuniform
Multiconductor Transmission Lines
Using Wavelets

S. Grivet-Talocia

Abstract—This paper presents a highly adaptive algorithm for be disregarded anymore, because they can seriously affect the
the transient simulation of nonuniform interconnects loaded with  gyerall performance of the system. This is especially relevant for
arbitrary nonlinear and dynamic terminations. The discretization electrical interconnects, which provide the basic link between

of the governing equations is obtained through a weak formula- diff t devi ts of ¢ diff t ¢
tion using biorthogonal wavelet bases as trial and test functions. 9!I"€réNt GEVICES, parts of a System, or even direrent systems.

It is shown how the multiresolution properties of wavelets lead to ~ 1he multiconductor TLs (MTL) model [22] is commonly
very sparse approximations of the voltages and currents in typical used for the simulation of practical interconnects. This model

transient analyzes. A simple yet effective time-space adaptive al- gssumes a small cross section with respect to the smallest
gorithm capable of selecting the minimal number of unknowns at \\ayelength in the system and quasi-TEM fields in the sur-
each time iteration is described. Numerical results show the high . L S
degree of adaptivity of the proposed scheme. roundmg of. the §truc.ture. Thls |s.true when the cross sectlo'n is
translation invariant in the direction of propagation of the sig-
nals. However, many interconnections of practical interest are
characterized by cross sections that are not translation invariant.
Examples can be impedance matching networks or cables in
|. INTRODUCTION complex structures, like automobiles or airplanes. In these

O NE of the problems that Prof. Wait considered in hi%ﬁases, the MTL model is not appropriate. However, as long as

vast scientific production is propagation of electromagihe cross section remains electrically small, the electric and
netic (EM) fields in stratified media [28]. It is well known agnetic fields can be assumed to have a dominant transversal

[27] that, at least in the one-dimensional (1-D) case, th 2mp|or:ﬁnt, €., tssusfy thr—:_fqua3|—T|ItE_M n;od:—z o_fri)rolyzl?\;;_?ﬂon
problem is fully equivalent to propagation along nonunifor ] In this case, the nonuniform multiconductor TLs ( )

transmission lines (TLs), where the characteristic impedarl@é’deI can tt)eTﬁs,ed tc:j F?“.adt'Ct dthe eIecItnca_It b deha;nor _oft_the
and propagation constant can be either piecewise constanlng?rconnec' IS model introduces a ‘ongitudinal variation

continuously varying through the domain of interest. sudh the per-unit-length parameters, by leaving the structure

problems have been analyzed in the past by several analytf&falf{he equations unchanged. Consequently, the solution of

techniques, especially asymptotic techniques like, e.g., t glcal nonuniform interconnects does not require a full-wave

Wentzel-Kramers—Brillouin (WKB) method, when the profiléranSiem simula}tion through complex three-dimensional (S_D)
does not allow analytical solutions. In this work, we analyzglvI solvers, which are extremely heavy under a computational

the same problem under a purely numerical standpoint, BE?Sndpo"ﬁ hni h b ted for the simulati f
introducing an advanced adaptive algorithm suitable for the everal lechniques have been presented for the simufation

transient analysis of 1-D field propagation in arbitrarily tapere e NMTLs. The;e te.chnlql.Jes. can be suhdivided |n.two main
TLs. In the seek for generality, we further extend the TElasses, pgrformlng S|.mulat|onmthefrequencyd.omam orinthe
analogy to general types of nonuniform multiconductor T lime domain, respectively. The former can obtain closed-form

(NMTLs), loaded with general possibly nonlinear and dynam&omtIonS [2] in some cases, but can also be used to analyze

termination networks. This problem is of extreme relevance fRore general structures through a piecewise constant discretiza-
modeling electrical interconnects tion of the line [3]. If the transient response is wanted, inverse
The simulation of electrical interconnects has become an &-St F%urler tratnslflorm (It:FT)tcan b € tus_ed. lHt9W9V§ r, this telfg_'l_
tremely important step for the analysis and design of electrodJiu€ does not allow a rue transient simuiation, because -
systems. In fact, as the clock frequencies of digital systems an only be used to obtain a steady-state solution. The total sim-

crease, structures usually modeled with lumped elements ar ion time must be long er)ough fo'r the transients to be extin-
longer electrically small and must be treated as distributed cﬂg'ShEd' Therefore, when signals with co_mplex waveforms are
cuits. Parasitic effects like crosstalk and EM coupling canngpp“ed tounmatched lines and !ong transients are generated, the
number of points for the evaluation of the FFT can be very large.
In addition, nonlinear terminations cannot be handled with this

approach. These are the reasons why numerical schemes per-

Index Terms—Electromagnetic (EM) transient analysis, multi-
conductor transmission lines (TLs), wavelet transforms.
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[26], spectral methods [21], and the waveform relaxation anal- 9 i(2,t) + C(z)ﬁv(z )+ G(2)v(z,t) =0 @)
ysis [5]. Several other schemes are available for uniform MTL 9z ot ’ ’

?llzrgl#gt)lc;r(l:,hsél:]::g'as the common finite-difference t'me'dom"’l\'/\rﬁth v(z,t) andi(z, t) indicating the voltage and current vec-

: . . rs at locatiornz and timet. The line is assumed to have+ 1
This work presents a new time-space adaptive scheme for

the transient simulation of nonuniform interconnects. The t gonductors, labeled with=0, ..., P, with the zeroth taken as
minations can be arbitrarv. including nonlinear and.d nan?tlhe reference for voltages and the return for currents. The per-
Y, 9 y un%t\—length parametefs(z), C(z), R(z), andG(z) areP x P

?Oezy(og(ﬁa -trr:]ee Vscﬁthaergg ;r?gscl?rlfer::g%cl)gr?l \?@“ﬁlﬁé gﬁzetso tt)l%t rices whose entries are arbitrary functions of the space vari-
b 9 9 &8le. We will consider the length of the line to be normalized.

the NMTL equations. The intrinsic multiresolution propertleﬁ.{1e change of variable = £ can be used for lines of length

of wavelet approximations make it possible to carefully Sele\(fvith < € [0, 1]. However, hereafter we proceed usingithout
a minimal number of unknowns to construct a highly spar§8FS of ger%efality '

ygt accurate represgntation of thg solu_tion at gach time step. ft will be convenient in the following to consider a form of the
will be shown that this can pe obtained in a stra|gth9rward WaIMTL equations that is explicit in the time derivatives. There-
through absolute thresholding of the wavelet coefficients. In ag-

LD . - Tore, we restate the NMTL equations as
dition, it will be shown that the space-adaptive approximation q

can be easily modified in time in order to track the fine struc- 9. P! .
tures of the solution as they move and change shape during the ~ 3;1(2:%) = —I'(z) 5-v(z,1) - T(z)R(2)i(=,1) ~ (3)
simulation. The finite propagation speed will play a crucial role 3

a.
in this respect. A set of numerical results will prove the high 7, V(#:1) = =S(z)5-i(2.1) = S(2)G(2)v(z.1)  (4)
degree of adaptivity that can be achieved by the proposed algo-
rithm. whereS(») = C(z)~! andI'(») = L(») 1.

The multiresolution properties of wavelets are well known The line terminations will be modeled as arbitrary nonlinear
in various electrical engineering fields, ranging from signaind dynamic voltage-controlled multiports, described by their
processing and data compression to sparsification and pstate equations. This model is derived from general electrical
conditioning of matrices stemming from method of momentsetwork theory [1]. More precisely, the terminationzat= 0
(MoM) discretizations. Recently, they have been used will be characterized by
construct so-called multiresolution time-domain (MRTD)
sqhemes, which have been shown to present some advantages ixo(t) = fo(x0(t), v(0, 1), ug(t); )
with respect to more standard FDTD schemes for time-domain dit

EM modeling [19], [20], [23], [25]. This paper proposes a i(0,1) = go <X0(t),v(0, t),uo(t),iuo(t);t>
discretization scheme that also tries to overcome, through use dt

of wavelets, the limitations of FDTD, namely limited accuracy, +Q d (0,1) )
large computation times and memory occupation. Multireso- O dt

lution (wavelet) bases seem to be very promising, since the
provide optimal representations of the fields. However, th _ )
construction of wavelet-based discretizations with a robustnesg® ~ State-variable vector; _

and flexibility comparable to FDTD is still a challenging task. o vectpr mcludmg the independent sources;
Nonetheless, this paper shows that wavelets can be used i 180 npnlmear functlpns.

very effective way to achieve time-space adaptivity, allowin € matrixQo allows to include the effect of lumped shunt ca-

fime- ¢ h i P t (|;itors. A similar m_odel is con_sid_ered for the termination net-
slir:]Tﬁoliezggg(rjitehnm;n(essee %?;:Ellfr}lz?da;edl?fg)en by mean W%I’k atz = 1, for which the suffix; is used. It should be noted

Here follows an outline of this work. Section | introduceéhagthelmedeigor the tefrrlr_unatlc;n r;etworr]kshherevt\;nh con5|d—d
the equations that will be solved. Section Il describes the g fod Includes e case of inear loads, which can be recovere
setting the function§ andg to be linear. The case of static

eral discretization scheme based on a weak formulation of inati . byi ficul ith tat iabl
NMTL equations. The trial and test functions are then definéﬁrmm.a I0NS 1S an obvious particular case with no state variables
Qd with a vanishing matriQ.

in Section Ill, which describes the basic properties of wavelet

allowing for space adaptivity. Section IV details the accuracy of

the scheme and the algorithm leading to time-space adaptivity.  !ll- W EAK FORMULATION OF NMTL EQUATIONS

Finally, numerical results are presented in Section V. The true solution of (3) and (4) loaded with (5) lies in some

functional spaces. A numerical approximation will be sought

for in some finite dimensional approximation spage C S

such thatS, — S,h — 0. This condition insures the con-
Under the quasi-TEM assumption any interconnect may Bistence of the discretization as the paraméteanishes. As

described through the NMTL equations [22] for the solution vectors, also the per unit length parameters will

be assumed to belong to some functional spacevhich can
9 J. . be approximated by some spad@s C P with the same con-
5, V(%) +L(z)50i(2,8) + R(2)i(2,£) =0 (1)  vergence properties?, — P,h — 0. The approximation of

Il. PROBLEM STATEMENT
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the per-unit-length parameters does not constitute a numerical IV. SPARSE WAVELET-BASED BIORTHOGONAL
problem since the quasi-TEM assumption requires their longi- DISCRETIZATION

t“d'T‘a' variations to be small. Qn the other hand, this apProXI- s section details the construction of sparse approximations
mation simplifies the construction of the discrete system to lB

derived in the followi A dix A Bsed on biorthogonal systems of wavelets defined on the in-
e\r/C/e_ ;n d €to OW'?V% (se? pf)pl))en_n; ).t' for th terval. Since wavelet theory is well established we will recall
. t'e Introduce now two sets ot basis functions for the appr%-nly the specific properties of wavelets that are of relevance for
Imation spaces this work. For further details we recommend the many books
and papers already available on the subject (see, e.g., [6], [8],
S =span{ln,n=1,...,Ne} (6) [15])p P y ject ( g-, [6], [8]
Pr = span{gr,k =1,..., Ny} (7)  Let us consider a function € L? defined on a domain
. 2 C R. We want to approximate by performing its projection
where N, and N, must be finite and are dependent on the digsnto a suitable finite-dimensional spaég, with the refinement
cretization parametér. The voltage and current vectors can bguye| 7 controlling the accuracy of the approximation. Wavelet

expanded into these basis functions theory shows that once a coarse lejek J is defined, the two
x following alternative representations hold:
3

v(z,t) = Z En(z)vn(t) v(z) =~ Z crrpsr(z) 9)
n=1 k
Ne J-1

i(z,8) = 3 &u(#)in(®) w(2) 2 o apio a2+ D Y within(z).  (10)
n=1 k j=io k

as well as the per-unit-length parametErs- ZQ:l or(2)Tx The first representation is calledanonical because it is
and similarly for the other matrices. We introduce also a third & usual form in which finite element approximations are
of functions, which will be taken as test functions for the derivéXPressed. For example, one could replace the scaling functions
tion of aweak form of the NMTL equations. The only restrictiorpsx With triangle functions (or, equivalently, linear finite
on these functions denotedf@s,,, m = 1, ..., N; } is that they element§),. and the _coefﬁuentgk would be the nqdal .values
are linearly independent. If we substitute the above expansidghe original functionv. The second representation is called
in the NMTL equation (3) and (4) and take the inner product aera}rchlcal because it |nyqlves the iterative sup_erp05|t_|on of
the resulting expressions with eagh, we get a system of ordi- details through superposition of wavelefg;. at increasing
nary differential equations (ODEs), where the expansion coéfvels j, without modifications of the coarser parts of the
ficientsv.,(¢) andi, (¢) are the unknowns. The equations of th@PProximation. Convergence ih? sense is guaranteed as
terminations can be combined with this system by eliminating — ©°- ) ) ] o

the border current coefficients andiy in terms of the voltage The main advantage in th_e hierarchical decomposmo_n is t_hat
coefficientsv; andvy and of the state variableg), x;. This the wavelets);; can _be designed to be'ext_remely localized in
procedure involves a straightforward substitution and is not fuPace around the pointg, = (k+-0.5) 27, with a support pro-
ther detailed here. Some remarks on stability are given in Agertional to27. If the functionv to be approximated is char-

pendix B. The result is a global system of ordinary differenti@iCterized by a small region with fast variations and is smooth
equations which reads elsewhere, it can be shown that only a small portion of the coef-

ficientsw;; should be retained. In addition, the location and the
d _ number of needed details can be automatically determined by
oy =2y(t) + 7y (1) ) |ooking at the magnitude of the wavelet expansion coefficients.
This leads to extremely sparse representations, which can be

where the vectoy includes the expansion coefficients of Von'adaptedto the functionv being analyzed. More precisely, the
ages and currents as well as the state-variable vectors of the é%rapted sparse representation can be defined as

minations, the matrice®, and® are highly sparse and the non-
linear function involves only the few border coefficients and v(z) =~ Z Cio kP (Z) + Z wirte(z) (11
the state variables of the termination networks. k (j,k)EA.,

Itwas shown in [13] that when the trial and test functions con-
stitute biorthogonal sets, the matri reduces to the identity. ere
This is not tru_e if more tra(_allt_lonal functions I|I_<e, e.g., trlangle_ Ac={0, k) : Jwir| > ¢} (12)
functions or higher order finite-element functions, are used in
a Galerkin scheme. The bases that we will use in this work aede is a threshold controlling the accuracy/sparseness of the
indeed pairs of biorthogonal systems, and will lead to a fullgpproximation. The optimality of such representations in terms
explicit system of ODEs (i.e¥ = Z). The advantage lies in of norm of the approximation error in general Sobolev or Besov
the fact that the system (8) becomes explicit in the time derivepaces is a well-known fact in wavelet theory [9] and is not
tives and can be inserted in a suitable time-stepping algorithecalled here. Examples of the high degree of sparsity that can
that does not require the inversion of any matrix at each tinbe achieved with adapted representations of typical signals in
iteration. electrical interconnects can be found in [11] and in Section VI.
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The wavelets employed in this work are biorthogonal -7
B-splines wavelets. We prefer biorthogonal instead of orthog-
onal systems like, e.g., Battle—Lemarié or Haar wavelets, since
we want to preserve regularity, small compact support, and
symmetry of the basis functions around their cenrtgr These
three requirements are not compatible in orthogonal settings
[8]. We will use in particular theB-splines (2,2) system,

808
constructed from piecewise line&-splines and characterized t:z::: oo
by two vanishing moments for both primal and dual wavelets.
This system is quite convenient since the primal scaling func- Level 2 5
tions are triangle functions, i.e., are equivalent to standard 1-D Level 1 5
finite elements, while the dual scaling functions are those with Level0 © °

smallest possible support among Blisplines duals [6].
The domain of interest is necessarily bounded since the lengith 1. Generation of the set of active indexes™ at timen + 1 from the

. . . e n ; ; ntl n
of the TL is finite. Therefore, it is necessary to consider spgt of active indexes? at timen (circles). The sed*** is generated from.
adding one coefficient on the left and one on the right per refinement level

cial wavelet systems defined on bounded domains. It is Cl%%frhe added coefficients (squares) allow to capture both forward and backward
that these cannot be constructed through translations and ditapagation (dashed lines) of a singularity (continuous line).

tions of a single function as in infinite or circular domains. The
construction of Wa\_/_elet_systems on boundgd domai_ns is usueka (see (9)) and testing with the corresponding diajs. In
baseql on the modification of the_few fu_nc;hons haw_ng suppqik, biorthogonaB-splines(2, 2) case we get
crossing the edges of the domain. This is not a trivial task |
a good localization of the border functions is to be preserved,
which is essential for this work. For this reason, we employ / _ )
the special construction derived in [15], specifically developed \ ¥J.%> g“>
in order to optimize localization at the edges and, of course,
preserving polynomial exactness, vanishing moments, stability,
and biorthogonality. One additional feature of this construction
is the so-calledhoundary adaptionconsisting of only one non- for any k, whereA» = 2~ is the spatial resolution of the ap-
vanishing wavelet per refinement level when evaluated at tpeoximation. The right-hand side of this expression is a stencil
borders. This fact is quite convenient for the implementation e be applied to the sequence of expansion coefficieptsin
the boundary conditions. order to perform differentiation. This is easily recognized as the
Given the biorthogonalB-splines (2,2) system, we use same stencil of a centered explicit fourth-order finite-difference
the primal scaling functions and wavelets for expansion gtheme [11], [17]. This proves that the order of consistency of
voltages and currents along the TL and the corresponding dugle discretization is four, even if the trial functions are only
for testing the NMTL equations in order to derive a discretgiecewise linear. In other words, there is a superconvergence
system of ODEs. Itis well known [6], [15] that the dual scalingffect intrinsic in the discretization process. In addition, since
functions and wavelets are not defined in closed form btHere is a full equivalence between the canonical and the hierar-
only through iterative refinement equations. In addition, theyhical representations of (9) and (10), we are led to the conclu-
are poorly regular. These two facts make the computatigion that also the multiresolution discretization using wavelets
of the testing integrals a difficult task since no quadratutg fourth-order accurate in space.
formulas can be used efficiently. However, there exist alter- Given this equivalence, it is necessary to select a proper time
native formulations [7] allowing to restate these integrals astegration method in order to exploit the advantages of the
eigenvector problems associated to special matrices derivggh spatial accuracy and to insure time stability. If a standard
from the scaling functions filters. Further details are found ilgapfrog scheme is used, we only get second order accuracy
Appendix A. in time. Moreover, it can be shown [17] that the stability
limit for leapfrog in time with fourth-order differencing in
space isAt < 0.72Az/vmax, 1-€., the time step must be
V. ACCURACY, TIME DISCRETIZATION, AND ADAPTIVITY smaller than the Courant condition for standard FDTD. For
this reason we are led to choose another possibly high-order
We discuss in this section the main features of the proposé@ie integration scheme that is capable of preserving stability
algorithm. First, the spatial accuracy of the discretization gith a larger Courant number. We found that a good choice is
investigated. This will help in determining which particulam fourth-order Runge—Kutta scheme [17]. In fact, the accuracy
time-stepping scheme is most suitable for the present appliofithis time discretization matches the accuracy of the spatial
tion. Then, the dynamic time—space adaptive strategy leadufigcretization, which is desirable for hyperbolic equations,
to sparse iterations is detailed and discussed. and in addition the stability limit requires only the time step
Let us consider the spatial differentiation operafyfo> to satisfy At < 2.06Az/vya.x. More details on stability are
acting on a generic function(z) and derive its weak approxi- given in Appendix B. A further advantage is that the dispersion
mation through expansion efinto the set of scaling functions errors are quite insensitive to the specific Courant number at

1
= E(CJ,k—2 —8crr—1+8crpt1 — crry2) (13)
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current waveforms along the line. At any fixed timg the array
y™ includes all the expansion coefficients into scaling functions
at the coarse level, plus all the expansion coefficients into
18 LLEEL wavelets at increasing levefs= jo,...,J — 1. Let us fix now
b LLLEH T an absolute thresholdand consider the sparse approximation
THHFFEFEEE S obtained by neglecting all wavelet coefficients smaller than
16 AL HEEEEEEEFFFEEA according to (11) and (12). The remaining “active” coefficients,
{HHHHHHEE 1 T 1 which correspond to a set of indexgsk) € A?, are collected
TR in the array denoted ag”{A”}. The length of this array may

20 T T

=

14} TVEEEEEEREC

1L 1 be much smaller than the total number of coefficients for typ-
WHECEEEEEFEELLLL ical waveforms, as shown in the numerical results of Section V.
il """"~-33ZI§;;;,”=.L More precisely, we have

EEFEEEELEFEELELLLL AT < # L)

This happens especially when there are localized regions of fast
variations embedded in regions of smoothness, like in the case
of Gaussian pulses or step functions with fast rise times. It is

important to note that all the information needed to compute the

solution (with accuracy/sparsity controlled by the threshgld

at the next time iteration through (14) is availableyfh{ A7 }.

The algorithm becomes fully adaptive if we manage to guess
which will be at the next time iteratiom + 1 the set of “active”
coefficientsA™*1. In fact, it is clear that this set depends on
the specific time iteration since it is determined from the actual
structure of the solution along the line. In other words, we need
an operatof acting on sets of indexes so that

Normalized Time

AT = e,

0 1 1
0 0.2 N 0.4 ; d%e 0.8 1 If this operator is known, we will be able to compute directly
ormaiized opace only a subset of coefficientg” ™1 {A?*1} that will correspond
_ , , _ to the active coefficients at iteration+ 1, being sure that the
Fig. 2. Adaptive solution for an unmatched lossless scalar line. The dotﬁq fficient illb ller than the th holahd. th
represent the location of the active wavelet coefficients automatically selecfd! er. co'e' icients wi ) e .Sma erthan the thres 0 N us,
by the adaptive algorithm to compute the solution. nonsignificant. Even if this operator may seem difficult to char-

acterize, its structure is easily determined by the dynamics of

which the scheme is run. This means that all different mod TL equations. Indeed, these equations support bidirectional
of arbitrary multiconductor lines characterized by differerRfoPagation at a maximum speegd... Therefore, if there is a
modal velocities will be affected by approximately the sanf&dion with fast variations centered &, we are sure that this
dispersion errors [16]. region will n_ot be able to move within a time step of widit
Once the time discretization has been performed, the fuﬂ’&}"ts'd? the |r_1terve{|z9 — UmaxAt, 20 "‘_UmaXAt]' We know that
discrete system reads a localized singularity remains localized at the next time itera-
tion and we know exactly where this singularity will be located.
y" = H(y"™) (14) The only missing information is the direction of propagation,
which can be either forward or backward. The above consider-
where the superscript denotes the time iteration corre-ations give a simple rule to determine a first guéSSLl. This
sponding to time™ = nAt¢. Due to the structure of (8), theis generated by simply adding one coefficient on the left and
operatorH is linear and sparse for most of the unknowns, armhe coefficient on the right of existing coefficients in the set
presents a nonlinear part involving only the few coefficientd? for each refinement level. This procedure is depicted in
related to the border basis functions, as well as the st#ig. 1. The obvious condition under which this strategy is effec-
variables of the termination networks. When all coefficients atwe is that the Courant number be not larger than one. In fact,
retained in the spatial approximation, the scheme is equivalé&nt\t > Az /vy, more than one additional coefficient may be
to a nonadaptive fourth-order finite difference scheme withecessary, resulting in reduced sparsity and increased computa-
fourth-order Runge—Kutta time stepping. tional complexity. Therefore, from now on, we will restrict the
We consider now the improvement of the scheme through ilGourant number to be at most equal to one. This requirement is
plementation of a dynamic adaptive strategy, in order to explaibmpatible with the stability requirements discussed above. At
the sparsity of wavelet-based approximations. To this end, wes point, the time iteration from ton+ 1 can be performed by
consider the system of type (14) obtained using the hierarchicaimputing only a subset of coefficients. The other coefficients
representation (10) to approximate the unknown voltage awill be smaller than the thresholdand thus non significant.
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v(0,t) [V] L*> Error
107"
1073}
107 S wmmm T P aht
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@
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v(1,4) [V] . parsity Index (%)

. ‘ : 107 107" -
0 > 4 6 a Threshold €

ts] ()

() Fig. 4. Matched 1:4 exponential line with trapezoidal voltage source. (a)
Maximum absolute error on voltage (circles) and current (stars) obtained with

Fig. 3. Solution for the matched 1: 4 exponential line excited by a trapezoidhe adaptive scheme as a function of the thresholdsed for the wavelet
pulse voltage source. Voltages at the (a) left and (b) right terminations. coefficients. The solid and dashed lines indicate the approximation errors
obtained with no wavelet thresholding for voltage and current, respectively. (b)

. 1r7nel Sparsity index of the adaptive approximation as a function of the threshold
Once the solutioy™+* {A”*1} has been computed, the true set

S el . .
Off active m?etxesA%_ . |stot_>t%|ned dthEOlj'Plh \t/Cresholdmg of _theWe remark that the thresholding procedure removes energy (as-
(few) wavelet coefficients indexed by;™". We summarize in sociated to the details that can be neglected at no loss of accu-

the following list the simple steps to be periormed by the adaPécy) from the waveforms at each time iteration and, therefore
tive algorithm at each time iteration. ' '

o ~ has no effect on the time stability of the scheme.
1) Foreachlevel perform absolute thresholding, i.e., define

an array of unknowns including all the state variables, all
the scaling function coefficients at the coarse leyednd o ) ) )
only the wavelet coefficients with magnitude larger than e present in this section several numerical examples illus-
the threshold; denote the corresponding set of indexelating and validating the proposed adaptive scheme. The first
asA”. case to be analyzed consists of a scalar uniform lossless TL with
2) For each levej extend the set of “active” coefficients byNormalized parameters (characteristic impeda#ice= 1, and
one on the left and on the right, in order to capture pro@n€-way delay timel” = 1). The line is excited by a trape-
agation in either direction (which is not knovarpriori); zoidal step-voltage source with finite rise time= 0.37" and

VI. NUMERICAL RESULTS

denote this set of indexes 5$+1. internal resistanc&s = 0.1 Z., and loaded by a resistance
3) Apply the iteration operator (14) restricted to the indez = 10 Z.. The analytical solution to this simple problem is
sets just determined. In compact notations well known. However, this represents a good canonical test case
for the adaptive algorithm since we are using a forcing function
y" Tt {[\f“} =H(y"{A"}). with regions of fast variations and since the pulse undergoes sig-

nificant reflections at the terminations during its propagation.
4) Go back to step 1) to perform the next time iteration. Fig. 2 represents the outcome of the adaptive algorithm. Each
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voltage wavelet coefficients.

(b)
Fig. 5. Location of the active voltage wavelet coefficients larger than ¢&8) edgez = 0. The nominal characteristic impedance of the line
10~* and (b)e = 10~°. is, therefore

dot in the plot represents the locatie, of an active wavelet Zu(%) L(z) — 70,5
coefficient automatically detected by the algorithm to be larger o C(z) e
than the threshold = 10~° and consequently used for the
computations. It can be clearly seen from the figure that tfiée parameters of the line that are used hereldre- 1 H/m,
active coefficients crowd along the characteristic curves of tk&’ = 1 F/m, and$ = log 4, corresponding to a 1 : 4 impedance
TL equation that correspond to the regions of fast variations $€Pping line with unitary delay tim& = 1 s. The termina-
the solution. As time progresses, the amplitude of the reflectd@ns are matched, and the line is excited by a trapezoidal pulse
waves dims to zero, and the corresponding adaptive represéqitage source (rise timg. = 0.4 T, durationr = 3.4 T). The
tation needs less and less details to approximate it. This is Hglytical solution is computed in the frequency domain and
reason why the density of the active coefficients diminishes iyerse FFT is used to recover the time domain response. The
the pulse is successively reflected. These results confirm @¥%act voltages at the left and right terminations are depicted in
high adaptivity guaranteed by the wavelet-based representatioldl. 3

In order to quantify the degree of adaptivity and its depen- The same structure has been solved with the proposed
dence on the cutoff threshold we performed a Study on aWﬁVE'Et-based adaptive algorithm by Setting the maximum
nonuniform line whose solution is known analytically, the exallowable refinement level to/ = 8. Fig. 4(a) reports the
ponential line [4]. This line is characterized by exponentiall@gPproximation errors on voltage and current obtained with

tapered per-unit-length inductance and capacitance wavelet thresholding for different values of the threshol@ihe
error is here defined ih.°>° norm, i.e., represents the maximum
L(z) = L%, O(z) = 0% %= absolute deviation in space and time between the exact and the

computed solution. Fig. 4(b) reports the sparsity index of the
where the parametércontrols the rate of taper add’, C° are adaptive approximation, defined as the percentage of active
the nominal per unit length inductance and capacitance at tuefficients used for the computations with respect to the total
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number of coefficients, plotted as a function of the threshold 0.6
e. Highly sparse representations can be obtained at no loss of
. X . 0.5}
accuracy. Indeed, the errors obtained with thresholding are
always comparable to the corresponding errors in the solution §’ 0.4¢
without thresholding, indicated in Fig. 4(a), with solid (voltage) S 0.3t
and dashed (current) lines. Fig. 5 depicts the location of the ?;» :
active wavelet coefficients in the, ¢) plane for two different g 0.2
values of the threshold. As for the uniform line, these plots S 0.1
give a quick interpretation of the solution in terms of travelling = - ?g:‘:% gﬁgeg
waves, which in this case are not simple translations of a single '
pulse as the time increases, but are affected by “distributed” -0.1, 5 ) 6 8
reflections due to the nonuniformity of the line. Normalized Time
In order to show the generality and robustness of the proposed )
scheme, we performed the analysis of a nonuniform line with a
nonuniform phase speed. This example could model propaga- 8
tion in media characterized by a continuous variation of the con-
stitutive parameters. The line is characterized as follows. The 06
(normalized) per-unit-length parameters are E
2
L(z) =4*HIm, C(z)=1Fm. F
2, AREGEED
These parameters lead to an exponentially increasing nominal .
characteristic impedance (froi§2 up to 2§2) and to an expo-

nentially decreasing nominal phase speed, % 03 04 06 08 1
Normalized Line Length

Y(2) = —e. (®)
L(Z)C Fig. 7. (a) Normalized voltages at the terminations of a scalar TL excited by
a step generator and loaded with a capacitor and a diode. (b) Locations of the

We consider a nonmatched line with nominal reflection Coeigllﬂltl;l(‘;r?.ntVOItage wavelet coefficients actually used for the computation of the
ficients at the left and right ends equalfg = —9/11 and

', = 2/3, respectively. With these load conditions, the input

voltage pulse undergoes significant reflections at the line ends.

The voltage waveform used in the following is a 1 V step fungocated around the characteristic curves along which the fast
tion with rise time equal to 0.3 s. The resulting voltages at tRgyriations of the solution occur.

left and right terminations are plotted in Fig. 6(a), while the The second example is a more realistic structure, depicted in
location of the active wavelet coefficients (using a threshng_ 8. It consists of two nonpara||e| PCB lands over a refer-
€= 10_4) are p|0tt6d in Flg 6(b) It should be noted that thes@']ce ground p|ane_ The Vo|tage pu{gét) isabV step with
coefficients follow the characteristic curves of the TL equaise timer = 200 ps. The cross section of the interconnect is
tions, tracking the location of the singularities (i.e., the poini§lectrically small throughout the significant frequency spectrum
where the derivative of voltage and current is diSCOﬂtinUOU@f. this waveform, therefore, a quasi_TEM propagation of the
These curves are significantly bent, with a tangent at a fixedfelds can be assumed and (1) and (2) are valid (see [12]). The
equal to+1/1(z). The figure clearly shows the sparsity in therosstalk voltages at the left and right terminations are reported
overall representation of the solution and the high adaptivity gf Fig. 9(a), while the locations of the active voltage wavelet co-

the method. efficients are reported in Fig. 9(b). Also in this case the solution
We proceed now with two examples of lines with nonlineagas computed by using very few coefficients.

and dynamic terminations. The first is a uniform scalar TL
with normalized characteristic impedance and delay time
(Zo = 1,T = 1) excited by a unitary step generator with rise
timer = 0.37" and unitary internal resistance and loaded with A discretization scheme for the transient simulation of

a capacitoflC = 1) and a diode in parallel. We chose thilNMTLs loaded with arbitrary nonlinear and dynamic networks
simple validation example because it can be readily analyzeds been presented. The scheme is based on a weak formulation
with SPICE. Fig. 7(a) shows the voltages at the two line teof the equations employing biorthogonal wavelet systems as
minations, indicating excellent agreement between the wavetigl and test functions. The particular wavelet bases employed
and the SPICE simulations. Fig. 7(b) shows the location in this work, namely biorthogonal piecewise lineBrspline

the [z, t] plane of the active wavelet coefficients actually usedavelets, leads to a fourth-order scheme in both space and time.
for the computations. Also in this case, it can be noted th@ihe key advantage of this formulation lies in the possibility
very few coefficients are needed and that these coefficients afeadaptively selecting a minimal number of basis functions

VII. CONCLUSION
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Fig. 8. Typical printed circuit board (PCB) configuration (top view) with nonparallel traces and termination networks. The width of the tracesnsTh2
structure is above a reference ground plane and a dielectric substrate 0.6 mm high with.7.

1 : - . APPENDIX A
0.8l INTEGRALS OFWAVELETS

= 0.61 Here we will show how integrals involving products of
°gf> ' scaling functions and wavelets can be computed at machine
§ 0.4¢ precision without the need of any quadrature formula. The
= g2 original formulation with the related mathematical proofs can
2 be found in [7]. The key fact allowing for this procedure is the
8 0 presence in the integrals of only refinable functions or their

-0.2¢ derivatives. All scaling functions and wavelets including duals

satisfy indeed a refinement equation [6], [8].

0 2 Ti 4 i 6 ;3 The general form of the testing integrals needed for the dis-
me s x10° cretization of the NMTL equations can be reduced through suc-
@) cessive application of the refinement equations to
gx 10~ M
(o, ..., 0m) = /To(z) H DHmY™(z — cp) dz (15)
m=1
6

where D is the spatial differentiation operatgr,,, = {0,1},
andcq,, are integers for any value af. The functionsY™ can

be either equal te or ¢, while Y is the Haar scaling function.
Note that this procedure is possible only if the per-unit-length
parameters are expanded into a set of refinable functions, e.g.,
o1 = ¢ In (7). This is the reason why the approximation of the
per-unit-length parameters defined in Section Il was included in

0 ' 0.2 . 0.6 0.8 1 the discretization process.
Normalized Line Length Due to the properties of the functions in the integrand, it can
(b) be shown that also the multivariate functibsatisfies a vector

Fig. 9. (a) Crosstalk voltages at the left (continuous line) and right (dashgﬁfmemem equation of the type

line) terminations of the interconnect of Fig. 8. (b) Locations of the active

voltage wavelet coefficients actually used for the computations. I(k) — oy mI(m) ke zZM (16)
E - , .

meZM

to represent the solution at each time iteration. The intrinsj . . .
hierarchical nature of wavelet approximations leads indeed e above relation can be interpreted as an eigenvector problem
sociated to the eigenvalde= 1. The normalization of the

a very sparse representation of the solution at each time st%i), . L . .
thus allowing computations through a time—space adaptiggenvectqr depe_nds_on the number ofd|fferent|aj[|on_s in the in-
discretization. The presented numerical examples demonstllgf%ral_ and IS detailed n [7.]' The components of this eigenvector
the high degree of adaptivity exploited by the proposed algf.;f-)'nClde with the testing integrals.

rithm. As a consequence, the scheme allows significant savings
of memory occupation and computing time with respect to
more standard nonadaptive discretization schemes. Further
research is in progress to extend the algorithm to transienfThe discussion in Section IV showed that the fourth-order
EM field computations in higher dimensions as well as mofRunge—Kutta scheme is quite appropriate for time discretiza-

complicated geometries. tion in conjunction with the proposed wavelet-based spatial dis-

APPENDIX B
BOUNDARY CONDITIONS AND STABILITY
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80 ! ! T g wavelet bases on bounded domains. The author is also grateful
: : ' ' to the anonymous reviewers for their constructive comments.
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