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Adaptive Transient Solution of Nonuniform
Multiconductor Transmission Lines

Using Wavelets
S. Grivet-Talocia

Abstract—This paper presents a highly adaptive algorithm for
the transient simulation of nonuniform interconnects loaded with
arbitrary nonlinear and dynamic terminations. The discretization
of the governing equations is obtained through a weak formula-
tion using biorthogonal wavelet bases as trial and test functions.
It is shown how the multiresolution properties of wavelets lead to
very sparse approximations of the voltages and currents in typical
transient analyzes. A simple yet effective time–space adaptive al-
gorithm capable of selecting the minimal number of unknowns at
each time iteration is described. Numerical results show the high
degree of adaptivity of the proposed scheme.

Index Terms—Electromagnetic (EM) transient analysis, multi-
conductor transmission lines (TLs), wavelet transforms.

I. INTRODUCTION

ONE of the problems that Prof. Wait considered in his
vast scientific production is propagation of electromag-

netic (EM) fields in stratified media [28]. It is well known
[27] that, at least in the one-dimensional (1-D) case, this
problem is fully equivalent to propagation along nonuniform
transmission lines (TLs), where the characteristic impedance
and propagation constant can be either piecewise constant or
continuously varying through the domain of interest. Such
problems have been analyzed in the past by several analytical
techniques, especially asymptotic techniques like, e.g., the
Wentzel–Kramers–Brillouin (WKB) method, when the profile
does not allow analytical solutions. In this work, we analyze
the same problem under a purely numerical standpoint, by
introducing an advanced adaptive algorithm suitable for the
transient analysis of 1-D field propagation in arbitrarily tapered
TLs. In the seek for generality, we further extend the TL
analogy to general types of nonuniform multiconductor TLs
(NMTLs), loaded with general possibly nonlinear and dynamic
termination networks. This problem is of extreme relevance in
modeling electrical interconnects.

The simulation of electrical interconnects has become an ex-
tremely important step for the analysis and design of electronic
systems. In fact, as the clock frequencies of digital systems in-
crease, structures usually modeled with lumped elements are no
longer electrically small and must be treated as distributed cir-
cuits. Parasitic effects like crosstalk and EM coupling cannot
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be disregarded anymore, because they can seriously affect the
overall performance of the system. This is especially relevant for
electrical interconnects, which provide the basic link between
different devices, parts of a system, or even different systems.

The multiconductor TLs (MTL) model [22] is commonly
used for the simulation of practical interconnects. This model
assumes a small cross section with respect to the smallest
wavelength in the system and quasi-TEM fields in the sur-
rounding of the structure. This is true when the cross section is
translation invariant in the direction of propagation of the sig-
nals. However, many interconnections of practical interest are
characterized by cross sections that are not translation invariant.
Examples can be impedance matching networks or cables in
complex structures, like automobiles or airplanes. In these
cases, the MTL model is not appropriate. However, as long as
the cross section remains electrically small, the electric and
magnetic fields can be assumed to have a dominant transversal
component, i.e., satisfy the quasi-TEM mode of propagation
[12]. In this case, the nonuniform multiconductor TLs (NMTL)
model can be used to predict the electrical behavior of the
interconnect. This model introduces a longitudinal variation
in the per-unit-length parameters, by leaving the structure
of the equations unchanged. Consequently, the solution of
typical nonuniform interconnects does not require a full-wave
transient simulation through complex three-dimensional (3-D)
EM solvers, which are extremely heavy under a computational
standpoint.

Several techniques have been presented for the simulation of
the NMTLs. These techniques can be subdivided in two main
classes, performing simulation in the frequency domain or in the
time domain, respectively. The former can obtain closed-form
solutions [2] in some cases, but can also be used to analyze
more general structures through a piecewise constant discretiza-
tion of the line [3]. If the transient response is wanted, inverse
fast Fourier transform (FFT) can be used. However, this tech-
nique does not allow a true transient simulation, because FFT
can only be used to obtain a steady-state solution. The total sim-
ulation time must be long enough for the transients to be extin-
guished. Therefore, when signals with complex waveforms are
applied to unmatched lines and long transients are generated, the
number of points for the evaluation of the FFT can be very large.
In addition, nonlinear terminations cannot be handled with this
approach. These are the reasons why numerical schemes per-
forming the simulation directly in the time domain have been re-
cently proposed. Among these we can cite the methods based on
the scattering representation [10], the method of characteristics
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[26], spectral methods [21], and the waveform relaxation anal-
ysis [5]. Several other schemes are available for uniform MTL
simulation, such as the common finite-difference time-domain
(FDTD) scheme.

This work presents a new time-space adaptive scheme for
the transient simulation of nonuniform interconnects. The ter-
minations can be arbitrary, including nonlinear and dynamic
networks. The scheme uses biorthogonal wavelet bases both
to expand the voltages and currents along the line and to test
the NMTL equations. The intrinsic multiresolution properties
of wavelet approximations make it possible to carefully select
a minimal number of unknowns to construct a highly sparse
yet accurate representation of the solution at each time step. It
will be shown that this can be obtained in a straightforward way
through absolute thresholding of the wavelet coefficients. In ad-
dition, it will be shown that the space-adaptive approximation
can be easily modified in time in order to track the fine struc-
tures of the solution as they move and change shape during the
simulation. The finite propagation speed will play a crucial role
in this respect. A set of numerical results will prove the high
degree of adaptivity that can be achieved by the proposed algo-
rithm.

The multiresolution properties of wavelets are well known
in various electrical engineering fields, ranging from signal
processing and data compression to sparsification and pre-
conditioning of matrices stemming from method of moments
(MoM) discretizations. Recently, they have been used to
construct so-called multiresolution time-domain (MRTD)
schemes, which have been shown to present some advantages
with respect to more standard FDTD schemes for time-domain
EM modeling [19], [20], [23], [25]. This paper proposes a
discretization scheme that also tries to overcome, through use
of wavelets, the limitations of FDTD, namely limited accuracy,
large computation times and memory occupation. Multireso-
lution (wavelet) bases seem to be very promising, since they
provide optimal representations of the fields. However, the
construction of wavelet-based discretizations with a robustness
and flexibility comparable to FDTD is still a challenging task.
Nonetheless, this paper shows that wavelets can be used in a
very effective way to achieve time-space adaptivity, allowing
time-dependent mesh generation and refinement by means of
simple algorithms (see also [11], [12], and [14]).

Here follows an outline of this work. Section I introduces
the equations that will be solved. Section II describes the gen-
eral discretization scheme based on a weak formulation of the
NMTL equations. The trial and test functions are then defined
in Section III, which describes the basic properties of wavelets
allowing for space adaptivity. Section IV details the accuracy of
the scheme and the algorithm leading to time-space adaptivity.
Finally, numerical results are presented in Section V.

II. PROBLEM STATEMENT

Under the quasi-TEM assumption any interconnect may be
described through the NMTL equations [22]

(1)

(2)

with and indicating the voltage and current vec-
tors at location and time . The line is assumed to have
conductors, labeled with , with the zeroth taken as
the reference for voltages and the return for currents. The per-
unit-length parameters , and are
matrices whose entries are arbitrary functions of the space vari-
able . We will consider the length of the line to be normalized.
The change of variable can be used for lines of length,
with . However, hereafter we proceed usingwithout
loss of generality.

It will be convenient in the following to consider a form of the
NMTL equations that is explicit in the time derivatives. There-
fore, we restate the NMTL equations as

(3)

(4)

where and .
The line terminations will be modeled as arbitrary nonlinear

and dynamic voltage-controlled multiports, described by their
state equations. This model is derived from general electrical
network theory [1]. More precisely, the termination at
will be characterized by

(5)

where
state-variable vector;
vector including the independent sources;
nonlinear functions.

The matrix allows to include the effect of lumped shunt ca-
pacitors. A similar model is considered for the termination net-
work at , for which the suffix is used. It should be noted
that the model for the termination networks herewith consid-
ered includes the case of linear loads, which can be recovered
by setting the functions and to be linear. The case of static
terminations is an obvious particular case with no state variables
and with a vanishing matrix .

III. W EAK FORMULATION OF NMTL EQUATIONS

The true solution of (3) and (4) loaded with (5) lies in some
functional space . A numerical approximation will be sought
for in some finite dimensional approximation space
such that . This condition insures the con-
sistence of the discretization as the parametervanishes. As
for the solution vectors, also the per unit length parameters will
be assumed to belong to some functional space, which can
be approximated by some spaces with the same con-
vergence properties, . The approximation of
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the per-unit-length parameters does not constitute a numerical
problem since the quasi-TEM assumption requires their longi-
tudinal variations to be small. On the other hand, this approxi-
mation simplifies the construction of the discrete system to be
derived in the following (see Appendix A).

We introduce now two sets of basis functions for the approx-
imation spaces

(6)

(7)

where and must be finite and are dependent on the dis-
cretization parameter. The voltage and current vectors can be
expanded into these basis functions

as well as the per-unit-length parameters
and similarly for the other matrices. We introduce also a third set
of functions, which will be taken as test functions for the deriva-
tion of a weak form of the NMTL equations. The only restriction
on these functions denoted as is that they
are linearly independent. If we substitute the above expansions
in the NMTL equation (3) and (4) and take the inner product of
the resulting expressions with each, we get a system of ordi-
nary differential equations (ODEs), where the expansion coef-
ficients and are the unknowns. The equations of the
terminations can be combined with this system by eliminating
the border current coefficients and in terms of the voltage
coefficients and and of the state variables . This
procedure involves a straightforward substitution and is not fur-
ther detailed here. Some remarks on stability are given in Ap-
pendix B. The result is a global system of ordinary differential
equations which reads

(8)

where the vector includes the expansion coefficients of volt-
ages and currents as well as the state-variable vectors of the ter-
minations, the matrices , and are highly sparse and the non-
linear function involves only the few border coefficients and
the state variables of the termination networks.

It was shown in [13] that when the trial and test functions con-
stitute biorthogonal sets, the matrix reduces to the identity.
This is not true if more traditional functions like, e.g., triangle
functions or higher order finite-element functions, are used in
a Galerkin scheme. The bases that we will use in this work are
indeed pairs of biorthogonal systems, and will lead to a fully
explicit system of ODEs (i.e., ). The advantage lies in
the fact that the system (8) becomes explicit in the time deriva-
tives and can be inserted in a suitable time-stepping algorithm
that does not require the inversion of any matrix at each time
iteration.

IV. SPARSE WAVELET-BASED BIORTHOGONAL

DISCRETIZATION

This section details the construction of sparse approximations
based on biorthogonal systems of wavelets defined on the in-
terval. Since wavelet theory is well established we will recall
only the specific properties of wavelets that are of relevance for
this work. For further details we recommend the many books
and papers already available on the subject (see, e.g., [6], [8],
[15]).

Let us consider a function defined on a domain
. We want to approximateby performing its projection

onto a suitable finite-dimensional space, with the refinement
level controlling the accuracy of the approximation. Wavelet
theory shows that once a coarse level is defined, the two
following alternative representations hold:

(9)

(10)

The first representation is calledcanonical, because it is
the usual form in which finite element approximations are
expressed. For example, one could replace the scaling functions

with triangle functions (or, equivalently, linear finite
elements), and the coefficients would be the nodal values
of the original function . The second representation is called
hierarchical, because it involves the iterative superposition of
details through superposition of wavelets at increasing
levels , without modifications of the coarser parts of the
approximation. Convergence in sense is guaranteed as

.
The main advantage in the hierarchical decomposition is that

the wavelets can be designed to be extremely localized in
space around the points , with a support pro-
portional to . If the function to be approximated is char-
acterized by a small region with fast variations and is smooth
elsewhere, it can be shown that only a small portion of the coef-
ficients should be retained. In addition, the location and the
number of needed details can be automatically determined by
looking at the magnitude of the wavelet expansion coefficients.
This leads to extremely sparse representations, which can be
adaptedto the function being analyzed. More precisely, the
adapted sparse representation can be defined as

(11)

where

(12)

and is a threshold controlling the accuracy/sparseness of the
approximation. The optimality of such representations in terms
of norm of the approximation error in general Sobolev or Besov
spaces is a well-known fact in wavelet theory [9] and is not
recalled here. Examples of the high degree of sparsity that can
be achieved with adapted representations of typical signals in
electrical interconnects can be found in [11] and in Section VI.
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The wavelets employed in this work are biorthogonal
-splines wavelets. We prefer biorthogonal instead of orthog-

onal systems like, e.g., Battle–Lemariè or Haar wavelets, since
we want to preserve regularity, small compact support, and
symmetry of the basis functions around their center. These
three requirements are not compatible in orthogonal settings
[8]. We will use in particular the -splines system,
constructed from piecewise linear-splines and characterized
by two vanishing moments for both primal and dual wavelets.
This system is quite convenient since the primal scaling func-
tions are triangle functions, i.e., are equivalent to standard 1-D
finite elements, while the dual scaling functions are those with
smallest possible support among all-splines duals [6].

The domain of interest is necessarily bounded since the length
of the TL is finite. Therefore, it is necessary to consider spe-
cial wavelet systems defined on bounded domains. It is clear
that these cannot be constructed through translations and dila-
tions of a single function as in infinite or circular domains. The
construction of wavelet systems on bounded domains is usually
based on the modification of the few functions having support
crossing the edges of the domain. This is not a trivial task if
a good localization of the border functions is to be preserved,
which is essential for this work. For this reason, we employ
the special construction derived in [15], specifically developed
in order to optimize localization at the edges and, of course,
preserving polynomial exactness, vanishing moments, stability,
and biorthogonality. One additional feature of this construction
is the so-calledboundary adaption, consisting of only one non-
vanishing wavelet per refinement level when evaluated at the
borders. This fact is quite convenient for the implementation of
the boundary conditions.

Given the biorthogonal -splines system, we use
the primal scaling functions and wavelets for expansion of
voltages and currents along the TL and the corresponding duals
for testing the NMTL equations in order to derive a discrete
system of ODEs. It is well known [6], [15] that the dual scaling
functions and wavelets are not defined in closed form but
only through iterative refinement equations. In addition, they
are poorly regular. These two facts make the computation
of the testing integrals a difficult task since no quadrature
formulas can be used efficiently. However, there exist alter-
native formulations [7] allowing to restate these integrals as
eigenvector problems associated to special matrices derived
from the scaling functions filters. Further details are found in
Appendix A.

V. ACCURACY, TIME DISCRETIZATION, AND ADAPTIVITY

We discuss in this section the main features of the proposed
algorithm. First, the spatial accuracy of the discretization is
investigated. This will help in determining which particular
time-stepping scheme is most suitable for the present applica-
tion. Then, the dynamic time–space adaptive strategy leading
to sparse iterations is detailed and discussed.

Let us consider the spatial differentiation operator
acting on a generic function and derive its weak approxi-
mation through expansion ofinto the set of scaling functions

Fig. 1. Generation of the set of active indexes�̂ at timen + 1 from the
set of active indexes� at timen (circles). The set̂� is generated from�
by adding one coefficient on the left and one on the right per refinement level
j. The added coefficients (squares) allow to capture both forward and backward
propagation (dashed lines) of a singularity (continuous line).

(see (9)) and testing with the corresponding duals. In
the biorthogonal -splines case we get

(13)

for any , where is the spatial resolution of the ap-
proximation. The right-hand side of this expression is a stencil
to be applied to the sequence of expansion coefficientsin
order to perform differentiation. This is easily recognized as the
same stencil of a centered explicit fourth-order finite-difference
scheme [11], [17]. This proves that the order of consistency of
the discretization is four, even if the trial functions are only
piecewise linear. In other words, there is a superconvergence
effect intrinsic in the discretization process. In addition, since
there is a full equivalence between the canonical and the hierar-
chical representations of (9) and (10), we are led to the conclu-
sion that also the multiresolution discretization using wavelets
is fourth-order accurate in space.

Given this equivalence, it is necessary to select a proper time
integration method in order to exploit the advantages of the
high spatial accuracy and to insure time stability. If a standard
leapfrog scheme is used, we only get second order accuracy
in time. Moreover, it can be shown [17] that the stability
limit for leapfrog in time with fourth-order differencing in
space is , i.e., the time step must be
smaller than the Courant condition for standard FDTD. For
this reason we are led to choose another possibly high-order
time integration scheme that is capable of preserving stability
with a larger Courant number. We found that a good choice is
a fourth-order Runge–Kutta scheme [17]. In fact, the accuracy
of this time discretization matches the accuracy of the spatial
discretization, which is desirable for hyperbolic equations,
and in addition the stability limit requires only the time step
to satisfy . More details on stability are
given in Appendix B. A further advantage is that the dispersion
errors are quite insensitive to the specific Courant number at
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Fig. 2. Adaptive solution for an unmatched lossless scalar line. The dots
represent the location of the active wavelet coefficients automatically selected
by the adaptive algorithm to compute the solution.

which the scheme is run. This means that all different modes
of arbitrary multiconductor lines characterized by different
modal velocities will be affected by approximately the same
dispersion errors [16].

Once the time discretization has been performed, the fully
discrete system reads

(14)

where the superscript denotes the time iteration corre-
sponding to time . Due to the structure of (8), the
operator is linear and sparse for most of the unknowns, and
presents a nonlinear part involving only the few coefficients
related to the border basis functions, as well as the state
variables of the termination networks. When all coefficients are
retained in the spatial approximation, the scheme is equivalent
to a nonadaptive fourth-order finite difference scheme with
fourth-order Runge–Kutta time stepping.

We consider now the improvement of the scheme through im-
plementation of a dynamic adaptive strategy, in order to exploit
the sparsity of wavelet-based approximations. To this end, we
consider the system of type (14) obtained using the hierarchical
representation (10) to approximate the unknown voltage and

current waveforms along the line. At any fixed time, the array
includes all the expansion coefficients into scaling functions

at the coarse level plus all the expansion coefficients into
wavelets at increasing levels . Let us fix now
an absolute thresholdand consider the sparse approximation
obtained by neglecting all wavelet coefficients smaller than,
according to (11) and (12). The remaining “active” coefficients,
which correspond to a set of indexes , are collected
in the array denoted as . The length of this array may
be much smaller than the total number of coefficients for typ-
ical waveforms, as shown in the numerical results of Section V.
More precisely, we have

This happens especially when there are localized regions of fast
variations embedded in regions of smoothness, like in the case
of Gaussian pulses or step functions with fast rise times. It is
important to note that all the information needed to compute the
solution (with accuracy/sparsity controlled by the threshold)
at the next time iteration through (14) is available in .

The algorithm becomes fully adaptive if we manage to guess
which will be at the next time iteration the set of “active”
coefficients . In fact, it is clear that this set depends on
the specific time iteration since it is determined from the actual
structure of the solution along the line. In other words, we need
an operator acting on sets of indexes so that

If this operator is known, we will be able to compute directly
only a subset of coefficients that will correspond
to the active coefficients at iteration , being sure that the
other coefficients will be smaller than the thresholdand, thus,
nonsignificant. Even if this operator may seem difficult to char-
acterize, its structure is easily determined by the dynamics of
the TL equations. Indeed, these equations support bidirectional
propagation at a maximum speed . Therefore, if there is a
region with fast variations centered at, we are sure that this
region will not be able to move within a time step of width
outside the interval . We know that
a localized singularity remains localized at the next time itera-
tion and we know exactly where this singularity will be located.
The only missing information is the direction of propagation,
which can be either forward or backward. The above consider-
ations give a simple rule to determine a first guess . This
is generated by simply adding one coefficient on the left and
one coefficient on the right of existing coefficients in the set

for each refinement level. This procedure is depicted in
Fig. 1. The obvious condition under which this strategy is effec-
tive is that the Courant number be not larger than one. In fact,
if , more than one additional coefficient may be
necessary, resulting in reduced sparsity and increased computa-
tional complexity. Therefore, from now on, we will restrict the
Courant number to be at most equal to one. This requirement is
compatible with the stability requirements discussed above. At
this point, the time iteration from to can be performed by
computing only a subset of coefficients. The other coefficients
will be smaller than the thresholdand thus non significant.
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(a)

(b)

Fig. 3. Solution for the matched 1 : 4 exponential line excited by a trapezoidal
pulse voltage source. Voltages at the (a) left and (b) right terminations.

Once the solution has been computed, the true set
of active indexes is obtained through thresholding of the
(few) wavelet coefficients indexed by . We summarize in
the following list the simple steps to be performed by the adap-
tive algorithm at each time iteration.

1) For each level perform absolute thresholding, i.e., define
an array of unknowns including all the state variables, all
the scaling function coefficients at the coarse leveland
only the wavelet coefficients with magnitude larger than
the threshold ; denote the corresponding set of indexes
as .

2) For each level extend the set of “active” coefficients by
one on the left and on the right, in order to capture prop-
agation in either direction (which is not knowna priori);
denote this set of indexes as .

3) Apply the iteration operator (14) restricted to the index
sets just determined. In compact notations

4) Go back to step 1) to perform the next time iteration.

(a)

(b)

Fig. 4. Matched 1 : 4 exponential line with trapezoidal voltage source. (a)
Maximum absolute error on voltage (circles) and current (stars) obtained with
the adaptive scheme as a function of the threshold� used for the wavelet
coefficients. The solid and dashed lines indicate the approximation errors
obtained with no wavelet thresholding for voltage and current, respectively. (b)
Sparsity index of the adaptive approximation as a function of the threshold�.

We remark that the thresholding procedure removes energy (as-
sociated to the details that can be neglected at no loss of accu-
racy) from the waveforms at each time iteration and, therefore,
has no effect on the time stability of the scheme.

VI. NUMERICAL RESULTS

We present in this section several numerical examples illus-
trating and validating the proposed adaptive scheme. The first
case to be analyzed consists of a scalar uniform lossless TL with
normalized parameters (characteristic impedance , and
one-way delay time ). The line is excited by a trape-
zoidal step-voltage source with finite rise time and
internal resistance , and loaded by a resistance

. The analytical solution to this simple problem is
well known. However, this represents a good canonical test case
for the adaptive algorithm since we are using a forcing function
with regions of fast variations and since the pulse undergoes sig-
nificant reflections at the terminations during its propagation.
Fig. 2 represents the outcome of the adaptive algorithm. Each
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(a)

(b)

Fig. 5. Location of the active voltage wavelet coefficients larger than (a)� =

10 and (b)� = 10 .

dot in the plot represents the location of an active wavelet
coefficient automatically detected by the algorithm to be larger
than the threshold and consequently used for the
computations. It can be clearly seen from the figure that the
active coefficients crowd along the characteristic curves of the
TL equation that correspond to the regions of fast variations in
the solution. As time progresses, the amplitude of the reflected
waves dims to zero, and the corresponding adaptive represen-
tation needs less and less details to approximate it. This is the
reason why the density of the active coefficients diminishes as
the pulse is successively reflected. These results confirm the
high adaptivity guaranteed by the wavelet-based representation.

In order to quantify the degree of adaptivity and its depen-
dence on the cutoff threshold, we performed a study on a
nonuniform line whose solution is known analytically, the ex-
ponential line [4]. This line is characterized by exponentially
tapered per-unit-length inductance and capacitance

where the parametercontrols the rate of taper and are
the nominal per unit length inductance and capacitance at the

(a)

(b)

Fig. 6. (a) Voltage at the left (solid line) and right (dashed line) terminations
of a line with exponentially decreasing phase speed. (b) Location of the active
voltage wavelet coefficients.

edge . The nominal characteristic impedance of the line
is, therefore

The parameters of the line that are used here are H/m,
F/m, and , corresponding to a 1 : 4 impedance

stepping line with unitary delay time s. The termina-
tions are matched, and the line is excited by a trapezoidal pulse
voltage source (rise time T, duration T). The
analytical solution is computed in the frequency domain and
inverse FFT is used to recover the time domain response. The
exact voltages at the left and right terminations are depicted in
Fig. 3.

The same structure has been solved with the proposed
wavelet-based adaptive algorithm by setting the maximum
allowable refinement level to . Fig. 4(a) reports the
approximation errors on voltage and current obtained with
wavelet thresholding for different values of the threshold. The
error is here defined in norm, i.e., represents the maximum
absolute deviation in space and time between the exact and the
computed solution. Fig. 4(b) reports the sparsity index of the
adaptive approximation, defined as the percentage of active
coefficients used for the computations with respect to the total



1570 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

number of coefficients, plotted as a function of the threshold
. Highly sparse representations can be obtained at no loss of

accuracy. Indeed, the errors obtained with thresholding are
always comparable to the corresponding errors in the solution
without thresholding, indicated in Fig. 4(a), with solid (voltage)
and dashed (current) lines. Fig. 5 depicts the location of the
active wavelet coefficients in the plane for two different
values of the threshold. As for the uniform line, these plots
give a quick interpretation of the solution in terms of travelling
waves, which in this case are not simple translations of a single
pulse as the time increases, but are affected by “distributed”
reflections due to the nonuniformity of the line.

In order to show the generality and robustness of the proposed
scheme, we performed the analysis of a nonuniform line with a
nonuniform phase speed. This example could model propaga-
tion in media characterized by a continuous variation of the con-
stitutive parameters. The line is characterized as follows. The
(normalized) per-unit-length parameters are

H/m F/m

These parameters lead to an exponentially increasing nominal
characteristic impedance (from up to ) and to an expo-
nentially decreasing nominal phase speed,

We consider a nonmatched line with nominal reflection coef-
ficients at the left and right ends equal to and

, respectively. With these load conditions, the input
voltage pulse undergoes significant reflections at the line ends.
The voltage waveform used in the following is a 1 V step func-
tion with rise time equal to 0.3 s. The resulting voltages at the
left and right terminations are plotted in Fig. 6(a), while the
location of the active wavelet coefficients (using a threshold

) are plotted in Fig. 6(b). It should be noted that these
coefficients follow the characteristic curves of the TL equa-
tions, tracking the location of the singularities (i.e., the points
where the derivative of voltage and current is discontinuous).
These curves are significantly bent, with a tangent at a fixed
equal to . The figure clearly shows the sparsity in the
overall representation of the solution and the high adaptivity of
the method.

We proceed now with two examples of lines with nonlinear
and dynamic terminations. The first is a uniform scalar TL
with normalized characteristic impedance and delay time

excited by a unitary step generator with rise
time and unitary internal resistance and loaded with
a capacitor and a diode in parallel. We chose this
simple validation example because it can be readily analyzed
with SPICE. Fig. 7(a) shows the voltages at the two line ter-
minations, indicating excellent agreement between the wavelet
and the SPICE simulations. Fig. 7(b) shows the location in
the plane of the active wavelet coefficients actually used
for the computations. Also in this case, it can be noted that
very few coefficients are needed and that these coefficients are

(a)

(b)

Fig. 7. (a) Normalized voltages at the terminations of a scalar TL excited by
a step generator and loaded with a capacitor and a diode. (b) Locations of the
significant voltage wavelet coefficients actually used for the computation of the
solution.

located around the characteristic curves along which the fast
variations of the solution occur.

The second example is a more realistic structure, depicted in
Fig. 8. It consists of two nonparallel PCB lands over a refer-
ence ground plane. The voltage pulse is a 5 V step with
rise time ps. The cross section of the interconnect is
electrically small throughout the significant frequency spectrum
of this waveform, therefore, a quasi-TEM propagation of the
fields can be assumed and (1) and (2) are valid (see [12]). The
crosstalk voltages at the left and right terminations are reported
in Fig. 9(a), while the locations of the active voltage wavelet co-
efficients are reported in Fig. 9(b). Also in this case the solution
was computed by using very few coefficients.

VII. CONCLUSION

A discretization scheme for the transient simulation of
NMTLs loaded with arbitrary nonlinear and dynamic networks
has been presented. The scheme is based on a weak formulation
of the equations employing biorthogonal wavelet systems as
trial and test functions. The particular wavelet bases employed
in this work, namely biorthogonal piecewise linear-spline
wavelets, leads to a fourth-order scheme in both space and time.
The key advantage of this formulation lies in the possibility
of adaptively selecting a minimal number of basis functions
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Fig. 8. Typical printed circuit board (PCB) configuration (top view) with nonparallel traces and termination networks. The width of the traces is 0.2mm. The
structure is above a reference ground plane and a dielectric substrate 0.6 mm high with" = 4:7.

(a)

(b)

Fig. 9. (a) Crosstalk voltages at the left (continuous line) and right (dashed
line) terminations of the interconnect of Fig. 8. (b) Locations of the active
voltage wavelet coefficients actually used for the computations.

to represent the solution at each time iteration. The intrinsic
hierarchical nature of wavelet approximations leads indeed to
a very sparse representation of the solution at each time step,
thus allowing computations through a time–space adaptive
discretization. The presented numerical examples demonstrate
the high degree of adaptivity exploited by the proposed algo-
rithm. As a consequence, the scheme allows significant savings
of memory occupation and computing time with respect to
more standard nonadaptive discretization schemes. Further
research is in progress to extend the algorithm to transient
EM field computations in higher dimensions as well as more
complicated geometries.

APPENDIX A
INTEGRALS OFWAVELETS

Here we will show how integrals involving products of
scaling functions and wavelets can be computed at machine
precision without the need of any quadrature formula. The
original formulation with the related mathematical proofs can
be found in [7]. The key fact allowing for this procedure is the
presence in the integrals of only refinable functions or their
derivatives. All scaling functions and wavelets including duals
satisfy indeed a refinement equation [6], [8].

The general form of the testing integrals needed for the dis-
cretization of the NMTL equations can be reduced through suc-
cessive application of the refinement equations to

(15)

where is the spatial differentiation operator, ,
and are integers for any value of . The functions can
be either equal to or , while is the Haar scaling function.
Note that this procedure is possible only if the per-unit-length
parameters are expanded into a set of refinable functions, e.g.,

in (7). This is the reason why the approximation of the
per-unit-length parameters defined in Section II was included in
the discretization process.

Due to the properties of the functions in the integrand, it can
be shown that also the multivariate functionsatisfies a vector
refinement equation of the type

(16)

The above relation can be interpreted as an eigenvector problem
associated to the eigenvalue . The normalization of the
eigenvector depends on the number of differentiations in the in-
tegral and is detailed in [7]. The components of this eigenvector
coincide with the testing integrals.

APPENDIX B
BOUNDARY CONDITIONS AND STABILITY

The discussion in Section IV showed that the fourth-order
Runge–Kutta scheme is quite appropriate for time discretiza-
tion in conjunction with the proposed wavelet-based spatial dis-
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Fig. 10. Eigenvalues of the semidiscrete system arising from a normalized
scalar line withN = 50 nodes. All eigenvalues have negative real part.

cretization (see also the discussion in [17]). Here, we briefly
discuss the stability issues deriving from the termination of the
scheme with some boundary conditions. These details were not
reported in the main text not to interrupt the flow of the presen-
tation.

We note that the equivalence between wavelet-based dis-
cretization and fourth-order finite differences holds only for
internal coefficients. It can be proved that the modifications
of the scaling functions and wavelets and the edges of the
domain due to the interaction with the borders [15] lead to a
terminated scheme with reduced order at the edges. Therefore,
the terminated scheme is equivalent to high-order differences
at internal nodes (leading to small dispersion errors during the
propagation along the line) and to low-order differences at the
edges. If we consider the terminated scheme and perform a
stability analysis by looking at the eigenvalues of the semidis-
crete system (8) in the case of linear terminations, we get only
eigenvalues with nonpositive real part. This means that the
spatial wavelet discretization with terminations is stable. The
set of eigenvalues in the worst case of reflection coefficients

(either short-circuit or open-circuit terminations) is
depicted in Fig. 10. It should be noted that the location of these
eigenvalues in the complex plane is optimally suited to time
discretization schemes like fourth-order Runge–Kutta, which is
characterized by a stability region with approximately the same
shape. We remark that high-order border differences often lead
to late-time instabilities due to the presence of some eigenvalues
with positive real part (see, e.g., [24]). Consequently, the order
reduction at the edges must be regarded as an advantage since
it insures late time stability of the discretized system. These
considerations are well known in the literature. Further details
can be found in [24] and references therein.
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