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Impedance-Type Boundary Conditions for a Periodic
Interface Between a Dielectric and a Highly
Conducting Medium

Christopher L. HollowayMember, IEEEand Edward F. Kuester

Abstract—Using the homogenization method, we derive a gener- small (which means that the height scale of the roughness is
alized impedance-type equivalent boundary condition for the elec- small compared to its width scale). Sanderson [7] has used the

tromagnetic (EM) field at a two-dimensional (2-D) periodic highly gy |ejgh—Rice method in his treatment of roughness effects on
conducting rough surface with small-scale roughness. The results metallic loss

obtained in this paper generalize ones obtained previously for the . .
case of a perfectly conducting rough surface. We will show that ~ When the slope of the roughness is not small, Biot [10] and
the coefficients in this equivalent boundary condition can be inter- Wait [11] proposed a method by which the roughness was char-
preted in terms of electric and magnetic polarizability densities. We  acterized by a random distribution of protrusions or “bosses”
also show that when the roughness dimensions are small comparedfrom an otherwise plane perfectly conducting surface. Each boss
to a skin depth of the conducting region (a smooth interface), the . . .
generalized impedance boundary condition given here reduces to ha; a”,‘f‘f_feCt on the Scatt.erejd field expresged in terms of its pF"
the standard Leontovich condition. Results for the reflection coef- larizabilities, whose density is used to obtain a boundary condi-
ficient of a plane wave incident onto a 2-D conducting interface are tion relating the Hertz potential to the field at the plane surface.
presented. We show the importance of the boundary-layer fields (as Unfortunately, in this theory only the bosses may have finite
used in this study) over that of classical methods when calculating conductivity; losses in the plane on which they lie are absent
the reflection coefficient from a highly conducting rough interface. ’ - . )
This work will lead to an analysis of the effects of surface rough- There are various other-results for Q|fferent roughness .pro-
ness on power loss in MIMIC circuits. files found throughout the literature for imperfectly conducting
surfaces. Morgan [5] and Baryshnike¥ al. [8] solve a qua-
sistatic eddy-current problem for a two-dimensional (2-D) pe-
riodic rough surface, with a view to computing the additional
losses due to surface geometry. The problem of rough interfaces

. INTRODUCTION with superconductors has also been discussed in the literature

HE problem of theoretically describing the interaction bedsSing this method [12]-{15]. Attempts to apply fractal theory

T tween electromagnetic (EM) waves with a rough surfade the analysis of roughness effects have created a new research
is an old one, with the first attempts dating back at least as fi€a known as fractal electrodynamics. A good account of this
as those of Lord Rayleigh. We refer the reader to [1] for a bri¥fork to the present date can be found in [16]. N
review of the literature. Scattering from ocean waves or from Until the present, only equivalent boundary conditions for
rough terrain are but a few of the applications to which the r@€rfectly conducting rough surfaces have been developed; no
sults of such a problem might be applied [2]-[4]. More recent/)n€ as yet has developed an accurate equivalent impedance type
there has been interest in modeling accurately the effect of #fgundary condition for a general rough interface of small pe-
surface roughness of finitely conducting metal on the losses pFtd- In this paper, the technique of homogenization is used to
duced in microwave structures (see, e.g., [5]-[9]). However, ﬁpaly_ze periodic rough surfaces in ordgr to determme_an equiv-
microwave circles, only qualitative descriptions of roughness éflent impedance type boundary condition for conducting inter-
fects rather than quantitative modeling tools for use in precig@:es. The results presented here are an extension of recent work
designs have been available up until now. [1], where homogenization was used to derive boundary condi-

The Rayleigh-Rice technique is a perturbation method th#@ns for perfectly conducting periodic surfaces.
assumes the height of the surface roughness is small comparethe problem of interest is a 2-D periodic interface between

to a wavelength and also that the slope of the roughness?iglielectric and a highly conducting medium [as shown in
Fig. 1(a)]. Due to the geometry of the rough surface, one

expects that the field should exhibit variations related to the
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approximated by applying the equivalent boundary conditic
to an effective smooth surface [as shown in Fig. 1(b)]. Th
equivalent boundary condition along with Maxwell’s equation
are all that is needed to determine scattering and reflecti y
from a rough interface. If desired, the boundary-layer fields ci | p ‘
later be reconstructed from the effective fields and associal
boundary conditions.
In previous applications of the homogenization method -
rough surfaces with finite conductivity [17]-[19], the Leon- 0B;
tovich impedance boundary condition [20] was imposed on tl
rough surface before homogenization was carried out. Wh
the skin depth in the conductor is comparable to or greate:
than the length scale of the surface roughness, however, the @
Leontovich boundary condition can no longer be regarded i
valid and so these results cannot be expected to be accuri
In this paper, effective or equivalent generalized impedanc
boundary conditions (EGIBCs) for the effective fields at a 2-C
rough periodic interface with a highly conducting medium ar
determined using the method of homogenization. Section tv
presents the derivation of the equivalent boundary conditic
for the effective fields. In section three, it is shown that fo a 3 E ay
a smooth interface, the generalized impedance bounde ne el \ I
condition presented here reduces to the standard LEONtOV  ooocccmomammccccmomcaaode
surface impedance [20]. The final section shows results for ax
TM-polarized plane wave incident onto such a surface. In tt
process, we show the importance of using the boundary-lay

fields compared to classical methods [21] when calculating the

reflection coefficient from rough interfaces. (b)
Fig. 1. (a) Geometry of a rough conducting interface. (b) Flat interface where
the equivalent boundary condition is applied to the effective field.

Il. DERIVATION OF THE EGIBC

The EGIBC for the field at a rough interface to a highly con-
ducting medium is determined here by the method of homoge-
nization. This work is an extension of recent work, in which ghere the total field&?, HZ, DT andB? (which contain both
perfectly conducting periodic rough boundary was treated [}he |ocalized and global behaviors) obey the constitutive equa-
The development of the EGIBC given here is in many waygyg
similar to that used in [1] and we will omit some details when
they can be found in the earlier work. This section is divided DY = ET
into several subsections, each covering different aspects of the B = ,HT. )
derivation. The first subsections involve expanding the fields in
powers ofk,p (wherep is the period of the structure aig is  The material parameters are equatf@nd., in the dielectric
the free-space wavenumber) and determining boundary conéigion above the interface anddoand .. in the conductor re-
tions for the different field components. This leads finally to agion below the interface. When needed, we will consistently use
impedance type boundary condition for the effective fields. a subscript or c on a quantity to indicate its value in the dielec-
tric region or the conductor region respectively. These material
properties may be complex in lossy regions.

Assume that an EM field is incident onto a 2-D rough inter- Similar to [1], a multiple-scale representation for these fields
face with a highly conducting medium as shown in Fig. 1(ajs used
Due to this roughness, there are two spatial length scales, one N
(the free space wavelengiy) corresponding to the source or Ef(r,&) = ET <L, 5) 3
incident wave and the other corresponding to the microstruc- ko
ture of the roughness. The fields will exhibit a multiple-scalgng so on. Here
type variation that is associated with the microscopic (local-
ized behavior) and macroscopic (global behavior) structures of r = ra, +ya, + za (4)
the problem. In contrast with the problem treated in [1], here
there are fields in the conducting region. Maxwell’'s equatiori§ theslowspatial variablet: is the dimensionlesslowvariable
are written as given by [1]

V x HY = juD7T (1)

A. Asymptotic Expansion of Maxwell's Equations

V x ET = —jwBT t=k,r (5)
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and¢ is a scaled dimensionless variable referred to adabke enization must be used. The largeness.ahust be quantified
variable and defined as relative to a small dimensionless parametelefined as

E=- (6) v =kop.
wherep is the period of the roughness, which is small comparelf-h;hreoiglgniesz;h[zli]tov\?;IgL;Ti;\?gne orderpaghe period of
to all other lengths in the problem. The slow variablghanges '
significantly over distances on the order of a wavelength, while .G
the fast variable shows changes over much smaller distances €c =
comparable t@. .

Microscopic variations with¢ should be expected close towhereG is @ complex constant of order one
the boundary, but once away from the boundary this behavior G| ~ O(1).
should die out. This suggests a boundary-layer field representa-
tion for the localized terms. The total fields can be expressedmar a “good” conductor,, ~ —jo, /w; G can be approximated
a form making this boundary-layer effect explicit as follows: in this case by

ET = E(f) +e(f, ¢ 7 e 2t 2
() ( ) () G:kEPQG_%_,: <6£> (11)

(10)

12

etc. Heree, h, d andb are the boundary-layer terms and due to

the periodic nature of the interface, these fields are periodicWhereé. is the skin depth in the conducting region

& (orz/p). E, H, D andB are the “nonboundary-layer” fields 5

(to be referred to henceforth as the effective fields) in the di- S. =/ . (12)
electric region. In the conductor, the fields will exhibit a rapid WheOe

decay away from the interface due to strong skin effect. We will The de| operator must be expressed in terms of the fast and

assume that the skin depth in the conductor is of comparak|gw scaled variables, as presented in [1]. In this way, Maxwell's
size to the periogh, so that the fields in the conductor are exaquations become

pected to exhibit only boundary-layer behavior (meaning that
the effective fields vanish there). Further, V. X E+V.xe+ %Vg x e = —je(B + b)

—(cons 1
e.h,d and sz(e ( “'fy') aslé,| — o (8) VixH+Vixh+ -V, xh=je(D+d) (13)
124

where¢, = y/p. Note that the boundary-layer terms are funayhere
tions of both thefast and slow variables, while the effective

. . . 1
fields are functions of thelowvariables only. c=
In this analysis it is assumed that the roughness profile has VHofo

no variation inz, nor hence inc.. Since the sources or theis the speed of lighin vacuo The constitutive equations (2)
incident fields are also assumed to be independeidt othe pecome

boundary-layer fields will also be independentéof Further-
more, since the boundary-layer fields decay rapidly as the ver- D+d=e¢, { fgz } (E +e)
tical coordinate moves away from the surface (as expressed in vz

terms of thet,, variable), it can be shown ([22, pp. 49-53]) and
[1] that the boundary-layer fields must be independent ofjthe

variable (all variations in the vertical direction are incorporated

into the&, variable). Thus, the boundary-layer fields are func¥€re the upper quantities in the curly brackets apply to the di-
tions of only four variables: the slow variablgs 2) represented electric region and the lower ones to the conductor region (keep
succinctly by the position vectdy, = a,i +a.? = k,r, and in mind that the effective fields vanish in the conductor). Here

the componentés,.. £,) of ¢ transverse ta, i.e., -4 1S the relative permittivity in the dielectric and.q, 1+, are
the relative permeabilities of the dielectric and conductor, re-
e(fy, &y &y)- (9) spectively.
Now, the boundary-layer terms vanish|ds| — oo by (8).
Before we proceed with the homogenization technique, wéus, from (13) the following is obtained for the fields in the
need to decide how to handle the large magnitude, oFor a dielectric, away from the boundary:
good conductor, we have

2

B+b:uo{ﬁ"d}(ﬂ+h) (14)

rc

VixE=—jcB
Vi x H=jcD (15)

Ce

> 1.

ed
S o _ ~ where
In this situation, standard homogenization will not be valid (see

[23] and [24]) and a so-called dense or stiff method of homog- D =¢,64E; B = pu,u-qH. (16)
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But sinceE andH are independent &, (15) and (16) are true From this we observe tha?! = 0. We see that the lowest-

forall  in the dielectric. Removing the effective fields from (13prder fieldsej, hy, dj and b in the dielectric are 2-D static

and (14) by means of (15) and (16), we obtain for the boundarfields which are periodic irf.. The lowest-order fields in the

layer fields conductor aree}, he, d;! andb?. They obey the classic eddy

1 current problem

Vixe+ =V xe=—jcb L i
v Ve X e, = —jcb]

1
Vi X e+ ;vg xh =jed (17) Ve x he = jed*
‘ Ve b =0
along with ¢ -
Ve-d; 7 =0 (24)
€
d=c { gj } e with the constitutive equations
b = i, { brd } h. (18) At = e, Ge;
fre b2 = 101100 (25)

For this problem, we are interested in the case when the period . I i
is small compared to a wavelength, which corresponds as discussed by Landau and Lifshitz [25]. The electric fields

1. Thus, it is useful to expand the fields in powers.of.e. can be eliminated from (24) and (25) and from the field equa-
' ' tions in the dielectric to give the equations for the magnetic field

E ~ E°(r) + vE'(r) + O(1?) at lowest order. In the conductor, the field is governed by
e~ (T b0y &) + 0} (Lo, €0, 6,) + O02)  (19) Helmholtz’' equation, while it is a magnetostatic field in the di-

electric:
and  similarly for H(r), D(r), B(r), and
h(r,, &, €,),d(r,, &, &), b(r,, &, ). With some hindsight,
it can be seen that the expansion domust start at order ! Ve bg=0
(at least in the conductor region), with coefficiedt®. The in the dielectric, and
zeroth-order effective field will contain the incident field
as well as any zeroth-order scattered field. By substituting
these expansions into (15), (17), (16) and (18) and grouping
like powers of as in [1], it can be shown that each ordei the conductor
of effective fields £*, H?,D* and H?) satisfies Maxwell’s .
equations (15) and the constitutive equations (16) individually. (26)
For the boundary layer fields

VthOIO

(Vi+@)hl=0

V' Ve x et = —jcb’ — Vi x e B. Boundary Conditions Applied to the Conducting Interface

Ve x W't = jed’ — Vi x b’ (20)  The boundary conditions for the fields must now be applied.

. . The t tiakl field i ined first: on th h interf
and furthermore, by taking the fast divergence of these ugbe éggegié 2) Iv?/e rl]z\?éamme Irst-on the rough infertace

equations and employing some vector identities:
a, x [E] —El]

=0. 27)

Ve N (A v Y 9B,
Ve At = v d? (21) As in [1], we assume that the skin depth, the period and the
height of the roughness are comparable and both small com-
fori = —1,0,1,.... We adopt the convention that orders opared to other length scales in the problem. Hence, we can de-

the boundary-layer fields not appearing in the expansion (Iffje the surface by
are identically zero, e.ge™! = 0,d=2 = 0,b~! = 0 and
h!=o. F(&,&) =0 (28)

Since the constitutive equations (18) for the boundary-layer . . . . .
fields intermix orders of- differently in the conductor than in For some function/” is a function which has period one d.

the dielectric, it is convenient to write them out separately erhe normal unit vectoa,, to the rough surface which appears

each region. In the dielectric, we have In (27) can then be expressed as
VeF

df, = e erq€’ a, = . (29)
¢ = ocrd®a VeF]|
bl = popirahy. (22) . . : ;
Note that the unit normal is a function of the fast variables only.
In particular, we see that;* = 0. In the conductor region, The eventual goal of this analysis is to determine an equiva-
; 2 lent boundary condition for the effective fields at a plane located
d; = & Ge; near the roughness profile (say, the= 0 plane—see Fig. 2).

bl = jiopirehl. (23) If the height of the roughness profile is of the same order,as
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10 a, - dg|y§eaBs = a, - dg|f€(’)Bs —a, -D%r,)
foré € 9B;. (37)
For the tangentiaH fields, we have
a, x [Hy — H|

| op, =0 (38)

Proceeding as above, we obtain

17 ay, X hg|§caBs =a, X hg|§caBs —a, x H(r,)

for & € OB,, (39)
and

oL a"Xh‘11|feaBs =a, xh! —a, x H(r,)

. L ] cOB,
Fig. 2. Fictitiousy = 0 plane along the top of the roughness profiles. ¢

—&ya, X [aai} for £ € 9B;.
the effective fields can be evaluated in the boundary-layer by Y dy=0
extrapolation relative to a reference leyek 0 (let us say, the (40)
top of the .rou.ghness pr'ofile fpr the momgnt) with the aid of Bikewise, the boundary conditions for the nornialead to
Taylor series iny [1]. Using this Taylor series and the asymp- '

totic expansions for the fields, (27) is written as V0 a, - b3|geaBs —a,- bg|§eaBs —a, - B(r,)

a, x [E} — E!] foré € 9B, (41)

OB,

OE? and
=a, x E°(r, +an><e°—|—1/,lan><{—A} 1 _ 1 1
(ro) d €y a7 =0 v a"'bd|geaBs_a"'bC|geaB —a, -B(r,)
+van x B r,) + va, x eh—va, x ek +0(2) =0 ~a |G| wrceon.
(30) 99 Jy=o

(42)
wherer, = a,z + a.z. By grouping powers of, we obtain

V7 a, X €lecsp, = —an X E(r,) for{ € 0B, (31) C. Investigation of the Lowest Order Boundary-Layer Terms

and We next investigate each of the lowest order boundary-layer
va, x e}l|£€aBs = a, X eé|£€aBs —a, x El(rg) terms. In the dielectric, we have the electrostatic problem
a o
_gyanx{yEO} Ve -dg=0= &€ By
Y Jy=o Vexeg=0= €€ By (43)

foré € 9B,. (32)

.. . . ! with constitutive equation
These conditions contain additional boundary-layer field terms

from the conductor region as compared to those in [1]. d9 = e e.qe = £ € By (44)
For the normab field, we have

and boundary condition
a,-[Dy —Dl]|,; =0 (33)
a, X e2|f€aBS =-—a, xE(r,)=> £€dB, (45)

Extrapolating the effective fields to the = 0 reference level,
we have whereB, is defined in Fig. 3. The magnetic field, on the other

oD hand, is determined from the eddy current problem:
Df = [D"(r) + i)+ D (e + i+ & | 5 }
{ 9 |, Ve bG=0=¢€ By
+0?) (34) Vexhy=0= ¢ e By
and Ve x el = —jcb? = £ € B,
DT = %dgl +d° +vdl + 0. (35) Ve xhy =jed' = ¢ € B. (46)

Applying the boundary condition and grouping powers ofve  With the constitutive equations

et
g b9 = jiopnghl = € € By

ccop, =0 foré€an, (36) d;!' =¢,Gel = ¢c B,
and bl = pioprchy = & € B, 47

1. -1
v ay, - dy
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and boundary conditions

a, X h3|§eaBs =a, X hg|£EaBs —a,
x H°(r,) = £ € 9B,
ap - b3|geaBs = an- bg|§eaBs —an
-B(r,)|y=0 = £ € 9B,

a, -d;! =0=¢€B, (48)

(el

£COB,

whereB, is defined in Fig. 3.

The electrostatic problem (43), (44) and (45) is identical to
the one encountered in [1]; from the results of that paper we
have

a, x E°(r,) =0 (49)

and thusE? has only a-component. Likewise, it can be shown
that

a, -B°(r,) =0. (50)

To zeroth order, then, the tangential effectv@nd the normal
effective B fields see the rough interface as a smooth perfect
conductor.

The slow r dependence of the zeroth-order boundary-layer
fields can be factored out such that only a canorfiasi( de-
pendence of these fields remains; for details see [1]. As argued
there, the effective electric field? (r,) at the reference planeFig. 3. Closed surface over which to apply Stokes’ theorem.
acts as a constant amplitude as faf &sconcerned and as such
can be factored out of the equations. Thus, by lineasitgan €, ") andH(*) are functions of the fast variables only and

be expressed as E;(r,) andH’(r,) are independent gf, (51) and (52) confirm
thate® andh’ are independent af.
e’ =e; = E;(r,)E(&, &y) (51) With these definitions, (43) produces the following boundary

) ) ) problem foré&:
where¢ is a function of the fast variables only.

The magnetic field problem is more involved sinae ap- Ve D=0=¢€ By
pears both in the dielectric and in the conductor, resulting in the Vex E=0=¢ € By (55)
coupled set of equations given in (46), (47), and (48). Although
H°(r,) has noy-component, in general bot2(r,) # 0 and Wwith constitutive equation

Ho(r, 0. Thus, by linearityh® can be expressed as
4(1‘ ) 7£ y w p D=¢cq4& = 5 € By (56)

h? = Hro K™ (&, &) + HIG)H O 6) 62 404 poundary condition
whereH("* (€., ¢&,) is theh?-field produced by the unit effec-
tive field H; _(r,) = 1 alone (so that the superscripbr » de-
notes the polarization of the corresponding effective field). Ashich is the same static field problem féras obtained for a
in [1], it will prove convenient to introduce related normalizegberfectly conducting rough surface in [1]. All results pertaining
magnetic fields by to £ from [1] can thus be used here as well.
) ) By (52), there are two possible polarizations for the normal-
B = 1) (53) ized magnetic field. We obtain the equations for each from (46),

with zi,. = g OF 1. @S appropriate to the region and a normaF—M)’ and (48). For the-polarization

ized d-field by Ve B =0=¢e By
D= euf (54) VexHa=0= ¢ € Ba
(Vi+G)H™ =0=¢eB. (58)

a, X 8|566B3 = —a, X a, (57)

in the dielectric region. _ o _
By inspection of (46), it can be seen that*) = a7} with constitutive equations
has only az-component and that((*) has only components - -
. . - BY = g1 = £€eB
transverse te. Further, it can be shown using a similar argument d Hrdltq d
as in [1] thata, - h3 = 0 and thus thaH*) = 0 in By. Since B® =y, HY) = ¢ € B, (59)
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and boundary conditions wheresS, is the area under the period cell (i.e., the shaded area
between the conductor surface and the- 0 reference plane
a, x <H((lw) — H® ) = _a, xa, as shown in Fig. 2). The last two integrals in (66) can be ex-
§€OB; §€OB; tended toB. and B, respectively by application of a general-
) () @) _ ) ized Stokes’ theorem [1]. Then (46) and thfeterms of (20) are
o <Bd £€€0B, ke 5&685> = —tradnae (80 o evaluat®¥; x e', which leaves us with
For thez-polarization we have a, x E'(r,) = S,a, x {%EO} Vi x /B o5 dS;
=0 4
(VP+G)HP =0=¢e B, (61) !
— jc/ b? dSe. (67)
By+B.

with constitutive equation
From (51), (52) and (53), then, we have finally

B = i, H?) = € € B, (62) 9
a, X E1|y=0 = S,a, X {—AEO}
and boundary condition 9 1 y=0
H(Z) -1 (63) +/ £ ng X V,:EZ(I‘O)
¢ las, Ba ,
In the curl equations (20) for the first-order boundary-layer — 7o [H;)(ro) /B 5 B dSe
fields in the dielectric, we encounter the “slow curls” of the ze- atbe
roth-order boundary-layer fields. Wi, andh?, each factored + H(r,) / B d55:| : (68)
as the product of a function @¢fand a function o€, it is now Be

possible to evaluate; x e andV; x h§. From (51), (52), (53) From Maxwell’s equations for the effective field in the dielec-

and (54) tric, it can be shown that
Vi x €)== x Vi E(r,) {a;;} = Jnoptrd (3 H (ro) — a. Hy(r,)] + Vi Ey (r,).
Vi x hG = —Hy x ViH(r,). (64) y=0 69)
With these expressions, the terms of (20) for the fields in the ith this result, the boundary condition (68) can be expressed
dielectric can be written as as
Ve x e = € x ViE2(r,) — jn HI(r,)BS a, X E'|,—o
Ve x b} = Hy x V3HI(r,) + %E;(ro)D (65) = UBd £dSe + Soay} x ViES (1)
where — jn.HZ(r,) [u,,dsoam + / B d55:|
Ba+B.
Mo = \/';Z — jn.H(r,) [u,,dsoaz + /B BX dsf} . (70)
is the wave impedance of free space. The total effective field on thg = 0 Cplane is expressed to

first order inv as

D. Equivalent Boundary Condition for the Effective Fields
qa vndary --ondi ver a, X E(r,) = a, x [E°(r,) + vEX(r,) + 002 (71)

At this point, we have obtained boundary conditions for the
zeroth-order boundary-layer and zeroth-order effective field3ecalling (49), we have that the total effectikefield on the
The boundary values of the first-order effective fields are ofy-= 0 plane is
tained next, from which an equivalent boundary condition for
the total effective field will be determined. Just as the conditions
for the zeroth-order effective fields did not require informatioffhen from (72) and from the fact that= pk, and(9/0z) =
about the zeroth-order boundary-layer fields, so the conditiofis/k.)(9/0z), the boundary condition for the effective field can
on the first-order effective fields will require only knowledge o€ Written in terms of the original unscaled variables as
the zeroth-order boundary-layer fields.

a, x E(r,) = va, x El(r,). (72)

N a, x E[,—o
We first integrate (32) over the boundary contéuss, pro-
ceeding as in [1] to compute, x E* =p { {/ EdSe + Soay} x V,.E,(r,)
By
0
a, % El(ro) = S,a, X {—AEO} +/ a, x et dle — jwpeH,(r,) {u,,dsoax +/ B dsf}
Iy y=0 9Bs Ba+B.

- / a, x e} dl (66) — jwpeH . (r,) [u,,dsoaer / B dsf}}. (73)
OBs

<
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In [1] it is shown that the integral of over B, has only ay

component; as stated aboiE’ only has & component and in
Appendix A it is shown that the quantity o

/ B ds;
By+B. p ay
has only anc component. Thus, (73) can be written ~ > T
eV |
ay X E|y=0 . >
ax
:p{|:/ ((:y d55+50:| a, X VTEy(I‘O) . h
By
- jwuoal‘Hx(ro) |:N1’dSo +/ Bg(f) de:|
Bg+B. 80 ) ”c

- jwﬂoasz(ro) |:N1*dSo "l‘/ Bgz) de:| } (74)

<

where the subscripts and~ on 5 represent the- andz-com-
ponents.

The coefficients in this boundary condition can be interpretq;qlg. 4. Two-dimensional rectangular profile.
as dyadic surface electric and magnetic polarizability densities
aes and a,,s (see Appendix B). The relevant components

of these dyadics can be expressed in terms of dimensionl ggdmon given in (77) is then applied at this plane. Al the ef-

ects of the roughness profile as well as the finite conductivity

h eS,yy — ey, ¥mS,zx — mz . . . . .
paramet_ers throughes, ., Pltey, Qms, Patms and are incorporated in this boundary condition. As the period of the
UmS zz = PUmz, where .

’ ] roughness get smaller, the boundary-layer fields become more
ey = — &, dSe + So} (75) Iocall_z_ed; their effect on the total_ fields and on the boundary
L/ Ba condition of the effective fields disappears and the case of a
and i smooth impedance interface is obtained (i.e., the Leontovich
_ 1 (z) surface impedance [20]), as shown in the sequel. The parame-
Uz = — |56 + B dSe S >
| prd J B+ B, tersaey, thma ando, . in this boundary condition depend on the
r - parameterS, and the field quantitie§, B*), and8*), which
Omz = — | o + [ / 5; dsf} : (76) ' must be obtained numerically and are governed by (55), (58),

With these polarizability densities, the boundary condition cdannd (61).

be expressed simply as [Il. PLANE CONDUCTING INTERFACE

ay X Bro) = jwplasme By (vo) + acm. B (ro)] In this section, we obtain the parameteys,., cv,,,. , ey, and

— paeyay X Ve Ey(ro). (T7) s, of the EGIBC (77) for the case of a plane conducting inter-
This effective generalized impedance boundary conditidace. The are&, under one period cell is clearly, = 0. From
(EGIBC) has the same form as the boundary condition fg], the electric polarizability density for a plane surface (take
a perfectly conducting rough surface presented in [1]. Tliee case of no cover layer therein) is found to be:
difference between the two is that the magnetic polarizability o
densities for this work are complex, where in [1] they were ey = 0- (78)
purely real. For the plane interface, then, the EGIBC reduces to
Written in this manner, this impedance boundary condition )

has the same form as the generalized impedance boundary cdte ¥ E(ro) = jwptotirap [8e ma Hz(ro) + azam: H(r,)]
ditions (GIBCs) for planar metal-backed dielectric layers pre- (79)
sented in [26, ch. 5]. It can be shown, using Maxwell’'s equa-

tions as well as the expressions for the fields in terms of HeP’tvzlrl'.Ch ISa Leontqwch (impedance) type boundary condition for
ighly conducting surface.

potentials, that the boundary condition obtained by Biot [ﬂﬂ For a plane interface, the two eddy current problems given in

and Wait [11] can be rewritten in a form like (77). Our versio . . .
. ) . ; . 58) and (61) are simple and can be solved analytically. Leaving
is to be preferred: 1) because it does not require the introducti S .

: : out the details, it can be shown that for this case
of Hertz potentials and 2) the whole interface may be lossy, no

just the “bumps” or bosses protruding from an otherwise plane = — J fpee  (G—1) Q& (80)
perfectly conducting surface. e VG 2 P g

In summary, the EGIBC can be used to model the behaVWhereG is related to the skin depthby (11). The EGIBC for

of the effecﬂve EM.ﬂeId near th? per|od|F: mtgrface betwgeme effective fields corresponding to a plane interface thus re-
a dielectric and a highly conducting medium in the followin

Yuces to
manner. The actual rough interface is replaced with an equiva-

lent smooth surface located at the= 0 plane. The boundary ay x BE(r,) = —Z [a, H,(ro) +a.H.(r,)] (81)
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which is the standard Leontovich condition [20] with surfac

impedance 600

1435 ©2)

A, = .
5T 0.8, 5,00 —

It is remarkable that this condition can be viewed in terms 7
magnetic polarizability densities as we do here, a fact that dc 400 —
not seem to have been reported previously. .

In [27], the impedance boundary condition presented .— 300
this paper is used to calculate the power loss associa ; .
with rough conducting interfaces. Results for conducting ar @ ,4, |
superconducting surfaces are shown and compared to ot |
results presented in the literature. In the following sectio
. .. . . . 1.00 —
the impedance boundary condition is applied to determine t
reflection coefficient of anH polarized plane wave incident 7 S
onto a rectangular profile. 00— N T~ ]
IV. REFLECTION COEFFICIENT OF ANH POLARIZED PLANE -1.00 RN T T
WAVE FROM A ROUGH CONDUCTING INTERFACE 0.10 1.00 10.00

Assume arH polarized plane wave is incident onto the 2-C
profile shown in Fig. 1, such that the tot&l field is given by

H=a_H,[c"+ Rye V¥, (83)

Following a similar procedure as [1], the reflection coefficien
Ry is expressed as 200

14 jkp [aom — e, S qﬂ o0 |

1— jkp [225 — o, 222 180

Fig. 5. The real part ofv,,,. versusp/é., withw/p = 0.5 andh/p = 0.5.

Ry ~

This expression is true for a general 2-D rough conducting it 8
terface. It illustrates that the reflection coefficient depends c
the surface itself only through the electric and magnetic pola
izability densities of the rough interface.

The reflection coefficient predicted from this expression ha
been calculated for the rectangular roughness profile shown
Fig. 4 with./p = 0.5 andw/p = 0.5 (all media are assumed i
to be nonmagnetic for the results presented in this papet
itd = lo). The value ofS, is simply the area under one of the
roughness periods as defined earlier; hée= 0.25. On the
other handg., andc,,. must be determined numerically.,
is calculated as indicated in [1] and found todag ~ —0.043 1.00 T S R RE I
for this geometry. o010 1.00 o 10.00

The magnetic polarizability densities,,. andc,,, are de-
fined in (76), which involves integrals of the field#**), which
are governed by (58) and (61). These eddy current problefs 6. The imaginary part af... normalized to./2p (the imaginary part
present some unusual features, which are addressed in a Skp=- for aplane surface), versygé.., with w/p = 0.5 andh/p = 0.5.
arate publication [28]. A finite-element program was written to
compute the magnetic fields of the eddy current problem [2djrectly on the rough surface, rather than consideration of the
and from those, the magnetic polarizabilities. In Fig. 5, the refiélds within the conductor as we have done here. We see that
part of «e,,,.. is plotted against/é.. We see that, rather than apfor moderate or small values pf é.., those results are no longer
proaching zero for large/é., it approaches-S, instead, the valid. Moreover, the real part @f,,,. is not accurately predicted
value for a perfectly conducting surface. The behavior of th®y the method of [17]-[19] for any value pf é. unlessS, com-
imaginary part ofv,,., normalized to its value for a plane con-prises only a small part of its total value.
ducting interface, is shown in Fig. 6. A§'é6. — oo, this nor- With «,,. andea.,, in hand, for the reflection coefficiert s
malized value approaches 2 (the factor by which the transveggeen in (84) can be computed. Fig. 7 shows the phask gof
path length over the rough surface exceeds that of the plane $arvariousp/é. with an incidence angle equal t6.0Nhenp/§,.
face per period). This agrees with the results of [17]-[19] whidhecomes large, Fig. 7 indicates that the phageapproaches
started from the application of a Leontovich boundary conditiof2.8, the same value obtained in [1] for the case of a perfectly

2 (p/8) Im ot |
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Perfect conductor limit (42.8°)

Phase of Ry

-180.00 - T T
0.10 1.00 10.00

plé

Fig. 7. The phase of2x versusp/é., with w/p = 0.5,h/p = 0.5 and

o = 0°.

( ————  perfect conductor W

Fig. 8. The phase oRy versusp/é, with w/p = 0.5,h/p = 0.5, and¢

ranging from O to 90°.

conducting rough surface. Fig. 8 shows the phageofor an-
gles of incidence frong = 0° to ¢ = 90°. Also shown on this

Region 1
L )

Region 2 /
\; g, » M,

@)

Region 1 \L
Region 2 \

Fig. 9. (a) Two-region representation of the rectangular roughness profile. (b)
Representation of region 1 as an effective medium with permittiigy and
permeabilitygeqcr .

(b)

this limit, the rectangular profile in Fig. 4 is represented as a
layered two-component composite medium [see Fig. 9(a)]. Re-
gion 1 consists of alternating slabs of dielectrig, j+4) and con-
ducting(e., 1) media and has height Region 2 is a semi-in-
finite conducting medium. For this smal)/ .. limit, this rect-
angular profile can be modeled as an anisotropic homogeneous
region [see Fig. 9(b)] with effective material properties [29].
The effective material properties of alternating slabs of mate-
rial (where one slab is highly conducting) férs> p are given

by Rytov [30]; for a normally incidenH -polarized plane wave,
we need these elements of the effective permittivity and perme-
ability tensors

plot are the results obtained in [1] for a perfectly conducting N = w—/p + M (85)
surface. As expected, the results presented here for jeige Cozell  €c €d

approach those of a perfectly conducting surface. Larte and

corrgqunds to the situaFion wh_ere there is very little field pen- [asoff = MCE + pg <1 _ E) . (86)
etration into the conducting region and the profile behaves as a p p

perfectly conducting surface in this limit.

Using this expression for the material properties of region 1 and

For the case whep/é.. is small, we can compare the result@ssuming that a plane wave is incident onto the layered media,
presented here to those obtained using an effective medium &pr is then calculated using classical layered media expressions
proach. Smalp/é. corresponds to the situation where there iR1]. Fig. 10 compares the effective medium model to the results
deep field penetration into the conducting profile. To examirabtained from (84). The effective medium model works well



1670 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

shown in [31] that for high conductivities, the effective medium
model fails. Thus, the boundary-layer effects presented in this
paper are very important in analyzing EM problems with highly

‘ conducting rough interfaces.

Fig. 11 shows results for the magnitude of the reflection co-
efficient. We see that a%/5.. gets very large, the magnitude of
the reflection coefficient approaches 1. This is expected because
asp/é. gets large, the skin depth becomes very small compared
to the period and the problem approaches that of the perfectly
conducting rough surface in which the magnitude of the reflec-
tion coefficient becomes one. This figure shows a strong dip in
the reflection coefficient fop/§ =~ 1.25, where the magnitude
is about 0.36. This type of dip in the reflection coefficient has
also been observed for similar problems in optics [32] and [33].
These results suggest that a metallic absorber, a frequency selec-
! tive surface (FSS) or a photonic bandgap (PBG) material could
-180.00 ‘ \ w 1 ! be designed using appropriate choices for the roughness dimen-

0.00 040 080 120 sions. Such structures could have wide applications and will be
the topic of future research.

-80.00

-100.00 —

-120.00 —

Phase of R,
i

Fig. 10. Comparisons of the effective-medium model to the results obtained V. CONCLUSION
from (84) withw/p = 0.5, h/p = 0.5, and¢ = 0.0°. ) o
In this paper, we have presented the derivation of a general-

ized impedance type boundary condition for a 2-D conducting
1,00 periodic interface using the technique of homogenization. This
] equivalent boundary condition along with Maxwell’s equations
0.90 — are all that are needed to determine scattering and reflection
from arough interface. The advantage of homogenization above
other techniques is that it allows one to obtain parameters for pe-
riodic structures in a systematic manner. In addition, one could
in principle recover the field close to the interface by suitable
inclusion of the boundary-layer fields.

The validity of the impedance boundary condition derived
here is illustrated by showing results for the reflection coef-
ficient for an H-polarized plane wave incident onto a 2-D
rough interface. In [1] it was shown that the reactive part of
} this boundary condition (or essentiathy, and the real part of
040 — w ) Was handled properly. The calculations given here show

7 that the results for theéd polarization approach the correct
00 T T T T value for both small and large/é.. They are the first steps

000 500 1000 1500 23-/%0 2500 3000 3500 4000 needed to analyze the effects of surface roughness on power
loss in MIMIC circuits. Although in this paper we have not
shown results for the other polarization, in [27] calculations for
the power loss in MIMIC circuits based on the theory given
here are presented, which agree very well with other results in
the literature. We have shown in the present paper that for a
o plane conducting interface, the EGIBC reduces to the standard
for small values ofy/6 (which is based on a zeroth-order app ggntovich surface impedance condition. We have also shown
progch which ignores the boundary-layer fields), as illustrated, that the boundary-layer effects are very important in
in Fig. 10. We conclude that the boundary-layer effects are Ieéﬁ’alyzing highly conducting EM interfaces and that the use of

important in this case and field interactions with such an intefassical methods cannot accurately predict these effects.
face can be accurately determined from classical methods [21],

with the interface handled as an effective medium. The same
is not true, however, for largge/é. This point was also illus-
trated in [31], where a finite-difference time-domain (FDTD)
model was used to show that the reflection coefficient of a con-A vector potential representation Bfis possible, which will
ducting wedge obtained from an effective material properti®§ used here to show that
model correlates to the full-wave solution (FDTD) only when / B®@) dSe

By+B.

0.80 —

0.70 —|

IRql

0.60 —

0.50 —

Fig. 11. The magnitude d® versugp/é. withw/p = 0.5,h/p = 0.5, and
¢ = 0.0°.

APPENDIX A
INTEGRALS OF THEZEROTH-ORDER MAGNETIC FIELDS

the conductivity of a wedge absorber is sufficiently small. It is
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only has anr component. Sinc&; - B® = 0in By and in Finally, there is a surface magnetization current equdl,te-
B., we can expres8®) in either region in terms of a vector — (.. /pra — 1)a, X h° at the interface between conductor and

potential with a single component alongi.e.,
B =V, x (a,A) = —a, x V¢A (87)

whereA is periodic iné, and may be discontinuous acr@sBs.

Aboundary condition onl may be deduced from the one in (60)

a, - [(—az X VfAd) + (az X VgAd) =+ Nrdaa;] =0

ondB,. (88)

Following a similar procedure as in Appendix A of [1], it can

be shown from (88) that

(Aq — Ac)sp, = constant

Having found that4, — A. is constant on the boundary, we
can now evaluate the requisite integral. Using the potential r

resentation given in (87), we have

/ B dSe = —a. x | VeAqdSe
By

By

=a, X / a, Agdle (90)
OB3
and .
/ B dSe = —a, x / VA, dSe
B. B.
=—a, X / a, Acdle. (92)
aBg

SinceA, — A. is constant on the boundary agﬁng3 a, dlg =
a,, we have

/ B dS, = a, x / an(Ag — Ac) dle
By+B. dBs3
it _arn(Ad - Ac)|aF)'3-

Therefore, this quantity has only ancomponent.

(92)

APPENDIX B
MAGNETIC POLARIZABILITY DENSITIES

(89)

dielectric, whose dipole moment is
1 TC
= [“— —1} /rx (an x h°) dS.
2 Hrd
The total magnetic dipole moment is thus

m = L e /rx (V x ho)dV
2 Hord
_1 [“ _ 1} /r x (a, x h°)dS.  (93)
2 Hrd

Using some vector identities, thecomponent of (93) can be
shown to be

1

m, = —i/an -[(a. x r) x h?] dS + e

/ e dv.
Hrd ’

(94)

eR closed surface integral over the boundary of the conducting
region (including surfaces at infinity) arises during the deriva-
tion of (94). It reduces to one over the finite part of the boundary
dB; only, due to decay of the field at infinity. We now convert
the integrals to ones in the fast variables. The surface dipole den-
sity is then identified as

1
ms. :p{_§/33 Ay - [(az X 5) X hg] dlf
Hrc

/ R, ng}
Mrd JB, 7

which further transforms to

ms. = pH(r) {“— / H) dSe + 5(,} . (96)
Hord B.

Thus, with a unit effective field?(r,) = 1, thezz-component

of the magnetic polarizability per unit area is

1 .
/ B dSe + So}
B

+

(99)

AmS,zz = —P |: (97)

Hrd
in agreement with (76).

The z-component of (93) is handled similarly (keeping in
mind the necessity to multiply the expression by two in order
to account for the effect of currents at infinity which are not

As in [1], the coefficients in the EGIBC can be identifiedexplicitly included in the expression fen [1]). We arrive at

with surface densities of electric and magnetic polarizability.
The electric polarizability density is the same as in [1], so we do
not repeat the derivation here. For the magnetic polarizability,

msaz :pHg(ro) |: ! (98)

Hrd

the procedure is similar to that used in [1], so we will preseff that

only highlights of the derivation here. L&t= sE ~ V x h¢ be
the conduction current in the conducting region. The magnetic

dipole moment associated with this current is

%/rx(Vxhg)dV

/ B dSe + SO}
B.4+Bg
1

/ B dS; +S(,} (99)
Hrd JB.+B,

again in agreement with (76).

Am S xx = —P |:

ACKNOWLEDGMENT

where the integral is carried out over the entire conducting The authors would like to thank G. A. Hufford of the Insti-
region. Likewise there may a magnetization current equislte for Telecommunication Sciences for his careful review and
to V x M, where the magnetization density is given by€lpful suggestions in the preparation of this manuscript.

M =~ (p../p-a — 1)hS. This current contributes a magnetic

dipole moment

1 |:N7’c
2 Hrd

—1}/r><(V><hg)dV.
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