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Impedance-Type Boundary Conditions for a Periodic
Interface Between a Dielectric and a Highly

Conducting Medium
Christopher L. Holloway, Member, IEEE,and Edward F. Kuester

Abstract—Using the homogenization method, we derive a gener-
alized impedance-type equivalent boundary condition for the elec-
tromagnetic (EM) field at a two-dimensional (2-D) periodic highly
conducting rough surface with small-scale roughness. The results
obtained in this paper generalize ones obtained previously for the
case of a perfectly conducting rough surface. We will show that
the coefficients in this equivalent boundary condition can be inter-
preted in terms of electric and magnetic polarizability densities. We
also show that when the roughness dimensions are small compared
to a skin depth of the conducting region (a smooth interface), the
generalized impedance boundary condition given here reduces to
the standard Leontovich condition. Results for the reflection coef-
ficient of a plane wave incident onto a 2-D conducting interface are
presented. We show the importance of the boundary-layer fields (as
used in this study) over that of classical methods when calculating
the reflection coefficient from a highly conducting rough interface.
This work will lead to an analysis of the effects of surface rough-
ness on power loss in MIMIC circuits.

Index Terms—Conducting materials, impedance boundary con-
ditions, nonhomogeneous media, periodic boundary conditions.

I. INTRODUCTION

T HE problem of theoretically describing the interaction be-
tween electromagnetic (EM) waves with a rough surface

is an old one, with the first attempts dating back at least as far
as those of Lord Rayleigh. We refer the reader to [1] for a brief
review of the literature. Scattering from ocean waves or from
rough terrain are but a few of the applications to which the re-
sults of such a problem might be applied [2]–[4]. More recently,
there has been interest in modeling accurately the effect of the
surface roughness of finitely conducting metal on the losses pro-
duced in microwave structures (see, e.g., [5]–[9]). However, in
microwave circles, only qualitative descriptions of roughness ef-
fects rather than quantitative modeling tools for use in precise
designs have been available up until now.

The Rayleigh-Rice technique is a perturbation method that
assumes the height of the surface roughness is small compared
to a wavelength and also that the slope of the roughness is
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small (which means that the height scale of the roughness is
small compared to its width scale). Sanderson [7] has used the
Rayleigh–Rice method in his treatment of roughness effects on
metallic loss.

When the slope of the roughness is not small, Biot [10] and
Wait [11] proposed a method by which the roughness was char-
acterized by a random distribution of protrusions or “bosses”
from an otherwise plane perfectly conducting surface. Each boss
has an effect on the scattered field expressed in terms of its po-
larizabilities, whose density is used to obtain a boundary condi-
tion relating the Hertz potential to the field at the plane surface.
Unfortunately, in this theory only the bosses may have finite
conductivity; losses in the plane on which they lie are absent.

There are various other results for different roughness pro-
files found throughout the literature for imperfectly conducting
surfaces. Morgan [5] and Baryshnikovet al. [8] solve a qua-
sistatic eddy-current problem for a two-dimensional (2-D) pe-
riodic rough surface, with a view to computing the additional
losses due to surface geometry. The problem of rough interfaces
with superconductors has also been discussed in the literature
using this method [12]–[15]. Attempts to apply fractal theory
to the analysis of roughness effects have created a new research
area known as fractal electrodynamics. A good account of this
work to the present date can be found in [16].

Until the present, only equivalent boundary conditions for
perfectly conducting rough surfaces have been developed; no
one as yet has developed an accurate equivalent impedance type
boundary condition for a general rough interface of small pe-
riod. In this paper, the technique of homogenization is used to
analyze periodic rough surfaces in order to determine an equiv-
alent impedance type boundary condition for conducting inter-
faces. The results presented here are an extension of recent work
[1], where homogenization was used to derive boundary condi-
tions for perfectly conducting periodic surfaces.

The problem of interest is a 2-D periodic interface between
a dielectric and a highly conducting medium [as shown in
Fig. 1(a)]. Due to the geometry of the rough surface, one
expects that the field should exhibit variations related to the
periodicity of the roughness. Close to the rough interface,
the total field should be composed of both a localized or
boundary-layer field and an effective field. The effective field
is what remains after we move a few periods away from
the surface. By separating the boundary-layer field from the
effective field (through homogenization), it is possible to derive
an equivalent boundary condition for the effective field. Hence,
the EM scattering from a rough periodic interface can be
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approximated by applying the equivalent boundary condition
to an effective smooth surface [as shown in Fig. 1(b)]. This
equivalent boundary condition along with Maxwell’s equations
are all that is needed to determine scattering and reflection
from a rough interface. If desired, the boundary-layer fields can
later be reconstructed from the effective fields and associated
boundary conditions.

In previous applications of the homogenization method to
rough surfaces with finite conductivity [17]–[19], the Leon-
tovich impedance boundary condition [20] was imposed on the
rough surface before homogenization was carried out. When
the skin depth in the conductor is comparable to or greater
than the length scale of the surface roughness, however, the
Leontovich boundary condition can no longer be regarded as
valid and so these results cannot be expected to be accurate.
In this paper, effective or equivalent generalized impedance
boundary conditions (EGIBCs) for the effective fields at a 2-D
rough periodic interface with a highly conducting medium are
determined using the method of homogenization. Section two
presents the derivation of the equivalent boundary condition
for the effective fields. In section three, it is shown that for
a smooth interface, the generalized impedance boundary
condition presented here reduces to the standard Leontovich
surface impedance [20]. The final section shows results for a
TM-polarized plane wave incident onto such a surface. In the
process, we show the importance of using the boundary-layer
fields compared to classical methods [21] when calculating the
reflection coefficient from rough interfaces.

II. DERIVATION OF THE EGIBC

The EGIBC for the field at a rough interface to a highly con-
ducting medium is determined here by the method of homoge-
nization. This work is an extension of recent work, in which a
perfectly conducting periodic rough boundary was treated [1].
The development of the EGIBC given here is in many ways
similar to that used in [1] and we will omit some details when
they can be found in the earlier work. This section is divided
into several subsections, each covering different aspects of the
derivation. The first subsections involve expanding the fields in
powers of (where is the period of the structure and is
the free-space wavenumber) and determining boundary condi-
tions for the different field components. This leads finally to an
impedance type boundary condition for the effective fields.

A. Asymptotic Expansion of Maxwell’s Equations

Assume that an EM field is incident onto a 2-D rough inter-
face with a highly conducting medium as shown in Fig. 1(a).
Due to this roughness, there are two spatial length scales, one
(the free space wavelength) corresponding to the source or
incident wave and the other corresponding to the microstruc-
ture of the roughness. The fields will exhibit a multiple-scale
type variation that is associated with the microscopic (local-
ized behavior) and macroscopic (global behavior) structures of
the problem. In contrast with the problem treated in [1], here
there are fields in the conducting region. Maxwell’s equations
are written as

(a)

(b)

Fig. 1. (a) Geometry of a rough conducting interface. (b) Flat interface where
the equivalent boundary condition is applied to the effective field.

(1)

where the total fields and (which contain both
the localized and global behaviors) obey the constitutive equa-
tions

(2)

The material parameters are equal toand in the dielectric
region above the interface and toand in the conductor re-
gion below the interface. When needed, we will consistently use
a subscript or on a quantity to indicate its value in the dielec-
tric region or the conductor region respectively. These material
properties may be complex in lossy regions.

Similar to [1], a multiple-scale representation for these fields
is used

(3)

and so on. Here

(4)

is theslowspatial variable, is the dimensionlessslowvariable
given by [1]

(5)
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and is a scaled dimensionless variable referred to as thefast
variable and defined as

(6)

where is the period of the roughness, which is small compared
to all other lengths in the problem. The slow variablechanges
significantly over distances on the order of a wavelength, while
the fast variable shows changes over much smaller distances
comparable to .

Microscopic variations with should be expected close to
the boundary, but once away from the boundary this behavior
should die out. This suggests a boundary-layer field representa-
tion for the localized terms. The total fields can be expressed in
a form making this boundary-layer effect explicit as follows:

(7)

etc. Here and are the boundary-layer terms and due to
the periodic nature of the interface, these fields are periodic in

(or ). and are the “nonboundary-layer” fields
(to be referred to henceforth as the effective fields) in the di-
electric region. In the conductor, the fields will exhibit a rapid
decay away from the interface due to strong skin effect. We will
assume that the skin depth in the conductor is of comparable
size to the period , so that the fields in the conductor are ex-
pected to exhibit only boundary-layer behavior (meaning that
the effective fields vanish there). Further,

and as (8)

where . Note that the boundary-layer terms are func-
tions of both thefast and slow variables, while the effective
fields are functions of theslowvariables only.

In this analysis it is assumed that the roughness profile has
no variation in , nor hence in . Since the sources or the
incident fields are also assumed to be independent of, the
boundary-layer fields will also be independent of. Further-
more, since the boundary-layer fields decay rapidly as the ver-
tical coordinate moves away from the surface (as expressed in
terms of the variable), it can be shown ([22, pp. 49–53]) and
[1] that the boundary-layer fields must be independent of the
variable (all variations in the vertical direction are incorporated
into the variable). Thus, the boundary-layer fields are func-
tions of only four variables: the slow variables represented
succinctly by the position vector and
the components of transverse to, i.e.,

(9)

Before we proceed with the homogenization technique, we
need to decide how to handle the large magnitude of. For a
good conductor, we have

In this situation, standard homogenization will not be valid (see
[23] and [24]) and a so-called dense or stiff method of homog-

enization must be used. The largeness ofmust be quantified
relative to a small dimensionless parameterdefined as

If the skin depth is to be of the same order as(the period of
the roughness) [24], we must have

(10)

where is a complex constant of order one

For a “good” conductor, can be approximated
in this case by

(11)

where is the skin depth in the conducting region

(12)

The del operator must be expressed in terms of the fast and
slow scaled variables, as presented in [1]. In this way, Maxwell’s
equations become

(13)

where

is the speed of lightin vacuo. The constitutive equations (2)
become

(14)

where the upper quantities in the curly brackets apply to the di-
electric region and the lower ones to the conductor region (keep
in mind that the effective fields vanish in the conductor). Here

is the relative permittivity in the dielectric and are
the relative permeabilities of the dielectric and conductor, re-
spectively.

Now, the boundary-layer terms vanish as by (8).
Thus, from (13) the following is obtained for the fields in the
dielectric, away from the boundary:

(15)

where

(16)
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But since and are independent of, (15) and (16) are true
for all in the dielectric. Removing the effective fields from (13)
and (14) by means of (15) and (16), we obtain for the boundary-
layer fields

(17)

along with

(18)

For this problem, we are interested in the case when the period
is small compared to a wavelength, which corresponds to
. Thus, it is useful to expand the fields in powers of, i.e.,

(19)

and similarly for , , , and
. With some hindsight,

it can be seen that the expansion formust start at order
(at least in the conductor region), with coefficient . The
zeroth-order effective field will contain the incident field
as well as any zeroth-order scattered field. By substituting
these expansions into (15), (17), (16) and (18) and grouping
like powers of as in [1], it can be shown that each order
of effective fields ( and ) satisfies Maxwell’s
equations (15) and the constitutive equations (16) individually.
For the boundary layer fields

(20)

and furthermore, by taking the fast divergence of these curl
equations and employing some vector identities:

(21)

for . We adopt the convention that orders of
the boundary-layer fields not appearing in the expansion (19)
are identically zero, e.g.: and

.
Since the constitutive equations (18) for the boundary-layer

fields intermix orders of differently in the conductor than in
the dielectric, it is convenient to write them out separately for
each region. In the dielectric, we have

(22)

In particular, we see that . In the conductor region,

(23)

From this we observe that . We see that the lowest-
order fields and in the dielectric are 2-D static
fields which are periodic in . The lowest-order fields in the
conductor are and . They obey the classic eddy
current problem

(24)

with the constitutive equations

(25)

as discussed by Landau and Lifshitz [25]. The electric fields
can be eliminated from (24) and (25) and from the field equa-
tions in the dielectric to give the equations for the magnetic field
at lowest order. In the conductor, the field is governed by
Helmholtz’ equation, while it is a magnetostatic field in the di-
electric:

in the dielectric, and

in the conductor

(26)

B. Boundary Conditions Applied to the Conducting Interface

The boundary conditions for the fields must now be applied.
The tangential field is examined first: on the rough interface

(see Fig. 2) we have

(27)

As in [1], we assume that the skin depth, the period and the
height of the roughness are comparable and both small com-
pared to other length scales in the problem. Hence, we can de-
fine the surface by

(28)

for some function is a function which has period one in.
The normal unit vector to the rough surface which appears
in (27) can then be expressed as

(29)

Note that the unit normal is a function of the fast variables only.
The eventual goal of this analysis is to determine an equiva-

lent boundary condition for the effective fields at a plane located
near the roughness profile (say, the plane—see Fig. 2).
If the height of the roughness profile is of the same order as,
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Fig. 2. Fictitiousy = 0 plane along the top of the roughness profiles.

the effective fields can be evaluated in the boundary-layer by
extrapolation relative to a reference level (let us say, the
top of the roughness profile for the moment) with the aid of a
Taylor series in [1]. Using this Taylor series and the asymp-
totic expansions for the fields, (27) is written as

(30)

where . By grouping powers of , we obtain

for (31)

and

for (32)

These conditions contain additional boundary-layer field terms
from the conductor region as compared to those in [1].

For the normal field, we have

(33)

Extrapolating the effective fields to the reference level,
we have

(34)

and

(35)

Applying the boundary condition and grouping powers of, we
get

for (36)

and

for (37)

For the tangential fields, we have

(38)

Proceeding as above, we obtain

for (39)

and

for

(40)

Likewise, the boundary conditions for the normallead to

for (41)

and

for

(42)

C. Investigation of the Lowest Order Boundary-Layer Terms

We next investigate each of the lowest order boundary-layer
terms. In the dielectric, we have the electrostatic problem

(43)

with constitutive equation

(44)

and boundary condition

(45)

where is defined in Fig. 3. The magnetic field, on the other
hand, is determined from the eddy current problem:

(46)

with the constitutive equations

(47)
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and boundary conditions

(48)

where is defined in Fig. 3.
The electrostatic problem (43), (44) and (45) is identical to

the one encountered in [1]; from the results of that paper we
have

(49)

and thus, has only a -component. Likewise, it can be shown
that

(50)

To zeroth order, then, the tangential effectiveand the normal
effective fields see the rough interface as a smooth perfect
conductor.

The slow dependence of the zeroth-order boundary-layer
fields can be factored out such that only a canonicalfast de-
pendence of these fields remains; for details see [1]. As argued
there, the effective electric field at the reference plane
acts as a constant amplitude as far asis concerned and as such
can be factored out of the equations. Thus, by linearitycan
be expressed as

(51)

where is a function of the fast variables only.
The magnetic field problem is more involved since ap-

pears both in the dielectric and in the conductor, resulting in the
coupled set of equations given in (46), (47), and (48). Although

has no -component, in general both and
. Thus, by linearity can be expressed as

(52)

where is the -field produced by the unit effec-
tive field alone (so that the superscriptor de-
notes the polarization of the corresponding effective field). As
in [1], it will prove convenient to introduce related normalized
magnetic fields by

(53)

with or as appropriate to the region and a normal-
ized -field by

(54)

in the dielectric region.
By inspection of (46), it can be seen that

has only a -component and that has only components
transverse to. Further, it can be shown using a similar argument
as in [1] that and thus that in . Since

Fig. 3. Closed surface over which to apply Stokes’ theorem.

and are functions of the fast variables only and
and are independent of, (51) and (52) confirm

that and are independent of.
With these definitions, (43) produces the following boundary

problem for :

(55)

with constitutive equation

(56)

and boundary condition

(57)

which is the same static field problem foras obtained for a
perfectly conducting rough surface in [1]. All results pertaining
to from [1] can thus be used here as well.

By (52), there are two possible polarizations for the normal-
ized magnetic field. We obtain the equations for each from (46),
(47), and (48). For the-polarization

(58)

with constitutive equations

(59)
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and boundary conditions

(60)

For the -polarization we have

(61)

with constitutive equation

(62)

and boundary condition

(63)

In the curl equations (20) for the first-order boundary-layer
fields in the dielectric, we encounter the “slow curls” of the ze-
roth-order boundary-layer fields. With and each factored
as the product of a function ofand a function of , it is now
possible to evaluate and . From (51), (52), (53)
and (54)

(64)

With these expressions, the terms of (20) for the fields in the
dielectric can be written as

(65)

where

is the wave impedance of free space.

D. Equivalent Boundary Condition for the Effective Fields

At this point, we have obtained boundary conditions for the
zeroth-order boundary-layer and zeroth-order effective fields.
The boundary values of the first-order effective fields are ob-
tained next, from which an equivalent boundary condition for
the total effective field will be determined. Just as the conditions
for the zeroth-order effective fields did not require information
about the zeroth-order boundary-layer fields, so the conditions
on the first-order effective fields will require only knowledge of
the zeroth-order boundary-layer fields.

We first integrate (32) over the boundary contour , pro-
ceeding as in [1] to compute

(66)

where is the area under the period cell (i.e., the shaded area
between the conductor surface and the reference plane
as shown in Fig. 2). The last two integrals in (66) can be ex-
tended to and respectively by application of a general-
ized Stokes’ theorem [1]. Then (46) and theterms of (20) are
used to evaluate , which leaves us with

(67)

From (51), (52) and (53), then, we have finally

(68)

From Maxwell’s equations for the effective field in the dielec-
tric, it can be shown that

(69)

With this result, the boundary condition (68) can be expressed
as

(70)

The total effective field on the plane is expressed to
first order in as

(71)

Recalling (49), we have that the total effective-field on the
plane is

(72)

Then from (72) and from the fact that and
, the boundary condition for the effective field can

be written in terms of the original unscaled variables as

(73)
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In [1] it is shown that the integral of over has only a
component; as stated above only has a component and in
Appendix A it is shown that the quantity

has only an component. Thus, (73) can be written

(74)

where the subscripts and on represent the- and -com-
ponents.

The coefficients in this boundary condition can be interpreted
as dyadic surface electric and magnetic polarizability densities

and (see Appendix B). The relevant components
of these dyadics can be expressed in terms of dimensionless
parameters through and

, where

(75)

and

(76)

With these polarizability densities, the boundary condition can
be expressed simply as

(77)

This effective generalized impedance boundary condition
(EGIBC) has the same form as the boundary condition for
a perfectly conducting rough surface presented in [1]. The
difference between the two is that the magnetic polarizability
densities for this work are complex, where in [1] they were
purely real.

Written in this manner, this impedance boundary condition
has the same form as the generalized impedance boundary con-
ditions (GIBCs) for planar metal-backed dielectric layers pre-
sented in [26, ch. 5]. It can be shown, using Maxwell’s equa-
tions as well as the expressions for the fields in terms of Hertz
potentials, that the boundary condition obtained by Biot [10]
and Wait [11] can be rewritten in a form like (77). Our version
is to be preferred: 1) because it does not require the introduction
of Hertz potentials and 2) the whole interface may be lossy, not
just the “bumps” or bosses protruding from an otherwise plane
perfectly conducting surface.

In summary, the EGIBC can be used to model the behavior
of the effective EM field near the periodic interface between
a dielectric and a highly conducting medium in the following
manner. The actual rough interface is replaced with an equiva-
lent smooth surface located at the plane. The boundary

Fig. 4. Two-dimensional rectangular profile.

condition given in (77) is then applied at this plane. All the ef-
fects of the roughness profile as well as the finite conductivity
are incorporated in this boundary condition. As the period of the
roughness get smaller, the boundary-layer fields become more
localized; their effect on the total fields and on the boundary
condition of the effective fields disappears and the case of a
smooth impedance interface is obtained (i.e., the Leontovich
surface impedance [20]), as shown in the sequel. The parame-
ters and in this boundary condition depend on the
parameter and the field quantities , and , which
must be obtained numerically and are governed by (55), (58),
and (61).

III. PLANE CONDUCTING INTERFACE

In this section, we obtain the parameters , and
of the EGIBC (77) for the case of a plane conducting inter-

face. The area under one period cell is clearly . From
[1], the electric polarizability density for a plane surface (take
the case of no cover layer therein) is found to be:

(78)

For the plane interface, then, the EGIBC reduces to

(79)

which is a Leontovich (impedance) type boundary condition for
a highly conducting surface.

For a plane interface, the two eddy current problems given in
(58) and (61) are simple and can be solved analytically. Leaving
out the details, it can be shown that for this case

(80)

where is related to the skin depthby (11). The EGIBC for
the effective fields corresponding to a plane interface thus re-
duces to

(81)
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which is the standard Leontovich condition [20] with surface
impedance

(82)

It is remarkable that this condition can be viewed in terms of
magnetic polarizability densities as we do here, a fact that does
not seem to have been reported previously.

In [27], the impedance boundary condition presented in
this paper is used to calculate the power loss associated
with rough conducting interfaces. Results for conducting and
superconducting surfaces are shown and compared to other
results presented in the literature. In the following section,
the impedance boundary condition is applied to determine the
reflection coefficient of an polarized plane wave incident
onto a rectangular profile.

IV. REFLECTION COEFFICIENT OF AN POLARIZED PLANE

WAVE FROM A ROUGH CONDUCTING INTERFACE

Assume an polarized plane wave is incident onto the 2-D
profile shown in Fig. 1, such that the total field is given by

(83)

Following a similar procedure as [1], the reflection coefficient
is expressed as

(84)

This expression is true for a general 2-D rough conducting in-
terface. It illustrates that the reflection coefficient depends on
the surface itself only through the electric and magnetic polar-
izability densities of the rough interface.

The reflection coefficient predicted from this expression has
been calculated for the rectangular roughness profile shown in
Fig. 4 with and (all media are assumed
to be nonmagnetic for the results presented in this paper:

). The value of is simply the area under one of the
roughness periods as defined earlier; here, . On the
other hand, and must be determined numerically;
is calculated as indicated in [1] and found to be
for this geometry.

The magnetic polarizability densities and are de-
fined in (76), which involves integrals of the fields , which
are governed by (58) and (61). These eddy current problems
present some unusual features, which are addressed in a sep-
arate publication [28]. A finite-element program was written to
compute the magnetic fields of the eddy current problem [24]
and from those, the magnetic polarizabilities. In Fig. 5, the real
part of is plotted against . We see that, rather than ap-
proaching zero for large , it approaches instead, the
value for a perfectly conducting surface. The behavior of the
imaginary part of , normalized to its value for a plane con-
ducting interface, is shown in Fig. 6. As , this nor-
malized value approaches 2 (the factor by which the transverse
path length over the rough surface exceeds that of the plane sur-
face per period). This agrees with the results of [17]–[19] which
started from the application of a Leontovich boundary condition

Fig. 5. The real part of� versusp=� , with w=p = 0:5 andh=p = 0:5.

Fig. 6. The imaginary part of� normalized to� =2p (the imaginary part
of � for a plane surface), versusp=� , with w=p = 0:5 andh=p = 0:5.

directly on the rough surface, rather than consideration of the
fields within the conductor as we have done here. We see that
for moderate or small values of , those results are no longer
valid. Moreover, the real part of is not accurately predicted
by the method of [17]–[19] for any value of unless com-
prises only a small part of its total value.

With and in hand, for the reflection coefficient
given in (84) can be computed. Fig. 7 shows the phase of
for various with an incidence angle equal to 0. When
becomes large, Fig. 7 indicates that the phase ofapproaches
42.8 , the same value obtained in [1] for the case of a perfectly
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Fig. 7. The phase ofR versusp=� , with w=p = 0:5; h=p = 0:5 and
� = 0 .

Fig. 8. The phase ofR versusp=�, with w=p = 0:5; h=p = 0:5, and�
ranging from 0 to 90 .

conducting rough surface. Fig. 8 shows the phase offor an-
gles of incidence from to . Also shown on this
plot are the results obtained in [1] for a perfectly conducting
surface. As expected, the results presented here for large
approach those of a perfectly conducting surface. Large
corresponds to the situation where there is very little field pen-
etration into the conducting region and the profile behaves as a
perfectly conducting surface in this limit.

For the case when is small, we can compare the results
presented here to those obtained using an effective medium ap-
proach. Small corresponds to the situation where there is
deep field penetration into the conducting profile. To examine

(a)

(b)

Fig. 9. (a) Two-region representation of the rectangular roughness profile. (b)
Representation of region 1 as an effective medium with permittivity� and
permeability� .

this limit, the rectangular profile in Fig. 4 is represented as a
layered two-component composite medium [see Fig. 9(a)]. Re-
gion 1 consists of alternating slabs of dielectric and con-
ducting media and has height. Region 2 is a semi-in-
finite conducting medium. For this small limit, this rect-
angular profile can be modeled as an anisotropic homogeneous
region [see Fig. 9(b)] with effective material properties [29].
The effective material properties of alternating slabs of mate-
rial (where one slab is highly conducting) for are given
by Rytov [30]; for a normally incident -polarized plane wave,
we need these elements of the effective permittivity and perme-
ability tensors

(85)

and

(86)

Using this expression for the material properties of region 1 and
assuming that a plane wave is incident onto the layered media,

is then calculated using classical layered media expressions
[21]. Fig. 10 compares the effective medium model to the results
obtained from (84). The effective medium model works well
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Fig. 10. Comparisons of the effective-medium model to the results obtained
from (84) withw=p = 0:5; h=p = 0:5, and� = 0:0 .

Fig. 11. The magnitude ofR versusp=� withw=p = 0:5; h=p = 0:5, and
� = 0:0 .

for small values of (which is based on a zeroth-order ap-
proach which ignores the boundary-layer fields), as illustrated
in Fig. 10. We conclude that the boundary-layer effects are less
important in this case and field interactions with such an inter-
face can be accurately determined from classical methods [21],
with the interface handled as an effective medium. The same
is not true, however, for large . This point was also illus-
trated in [31], where a finite-difference time-domain (FDTD)
model was used to show that the reflection coefficient of a con-
ducting wedge obtained from an effective material properties
model correlates to the full-wave solution (FDTD) only when
the conductivity of a wedge absorber is sufficiently small. It is

shown in [31] that for high conductivities, the effective medium
model fails. Thus, the boundary-layer effects presented in this
paper are very important in analyzing EM problems with highly
conducting rough interfaces.

Fig. 11 shows results for the magnitude of the reflection co-
efficient. We see that as gets very large, the magnitude of
the reflection coefficient approaches 1. This is expected because
as gets large, the skin depth becomes very small compared
to the period and the problem approaches that of the perfectly
conducting rough surface in which the magnitude of the reflec-
tion coefficient becomes one. This figure shows a strong dip in
the reflection coefficient for , where the magnitude
is about 0.36. This type of dip in the reflection coefficient has
also been observed for similar problems in optics [32] and [33].
These results suggest that a metallic absorber, a frequency selec-
tive surface (FSS) or a photonic bandgap (PBG) material could
be designed using appropriate choices for the roughness dimen-
sions. Such structures could have wide applications and will be
the topic of future research.

V. CONCLUSION

In this paper, we have presented the derivation of a general-
ized impedance type boundary condition for a 2-D conducting
periodic interface using the technique of homogenization. This
equivalent boundary condition along with Maxwell’s equations
are all that are needed to determine scattering and reflection
from a rough interface. The advantage of homogenization above
other techniques is that it allows one to obtain parameters for pe-
riodic structures in a systematic manner. In addition, one could
in principle recover the field close to the interface by suitable
inclusion of the boundary-layer fields.

The validity of the impedance boundary condition derived
here is illustrated by showing results for the reflection coef-
ficient for an -polarized plane wave incident onto a 2-D
rough interface. In [1] it was shown that the reactive part of
this boundary condition (or essentially and the real part of

) was handled properly. The calculations given here show
that the results for the polarization approach the correct
value for both small and large . They are the first steps
needed to analyze the effects of surface roughness on power
loss in MIMIC circuits. Although in this paper we have not
shown results for the other polarization, in [27] calculations for
the power loss in MIMIC circuits based on the theory given
here are presented, which agree very well with other results in
the literature. We have shown in the present paper that for a
plane conducting interface, the EGIBC reduces to the standard
Leontovich surface impedance condition. We have also shown
both that the boundary-layer effects are very important in
analyzing highly conducting EM interfaces and that the use of
classical methods cannot accurately predict these effects.

APPENDIX A
INTEGRALS OF THEZEROTH-ORDERMAGNETIC FIELDS

A vector potential representation ofis possible, which will
be used here to show that
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only has an component. Since in and in
, we can express in either region in terms of a vector

potential with a single component along, i.e.,

(87)

where is periodic in and may be discontinuous across .
A boundary condition on may be deduced from the one in (60)

on (88)

Following a similar procedure as in Appendix A of [1], it can
be shown from (88) that

constant (89)

Having found that is constant on the boundary, we
can now evaluate the requisite integral. Using the potential rep-
resentation given in (87), we have

(90)

and

(91)

Since is constant on the boundary and
, we have

(92)

Therefore, this quantity has only ancomponent.

APPENDIX B
MAGNETIC POLARIZABILITY DENSITIES

As in [1], the coefficients in the EGIBC can be identified
with surface densities of electric and magnetic polarizability.
The electric polarizability density is the same as in [1], so we do
not repeat the derivation here. For the magnetic polarizability,
the procedure is similar to that used in [1], so we will present
only highlights of the derivation here. Let be
the conduction current in the conducting region. The magnetic
dipole moment associated with this current is

where the integral is carried out over the entire conducting
region. Likewise there may a magnetization current equal
to , where the magnetization density is given by

. This current contributes a magnetic
dipole moment

Finally, there is a surface magnetization current equal to
at the interface between conductor and

dielectric, whose dipole moment is

The total magnetic dipole moment is thus

(93)

Using some vector identities, the-component of (93) can be
shown to be

(94)

A closed surface integral over the boundary of the conducting
region (including surfaces at infinity) arises during the deriva-
tion of (94). It reduces to one over the finite part of the boundary

only, due to decay of the field at infinity. We now convert
the integrals to ones in the fast variables. The surface dipole den-
sity is then identified as

(95)

which further transforms to

(96)

Thus, with a unit effective field , the -component
of the magnetic polarizability per unit area is

(97)

in agreement with (76).
The -component of (93) is handled similarly (keeping in

mind the necessity to multiply the expression by two in order
to account for the effect of currents at infinity which are not
explicitly included in the expression for [1]). We arrive at

(98)

so that

(99)

again in agreement with (76).
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