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Scattering Characteristics of Two-Dimensionally
Periodic Impedance Surface

Ruey Bing HwangMember, IEEE

Abstract—We present here an exact formulation for the three-di- is an effective way to model complex structures [16]-[20]; it
mensional (3-D) boundary-value problem of plane wave scattering replaces the original complex structure with surface impedance
by a two-dimensionally (2-D) periodic impedance surface inauni- g4 that the problem complexity can be greatly reduced. For
form medium. The scattering characteristics of such a structure . I . -
are rigorously analyzed in terms of the complete set of both TE- examplle, Su and Ifmg [20_] utilized the genetic algorllthm to
and TM-polarized plane waves in the uniform medium. Extensive determine the equivalent impedance boundary condition for
numerical results are given to illustrate physical phenomena asso- material-coated corrugated gratings. Furthermore, Wait [16]
ciated with the structure. had shown that the IBC is not only applicable to a medium

Index Terms—mpedance boundary condition, periodic having a large refractive index, but also is suitable for layered
impedance boundary condition, scattering and diffraction, two-di- media, embedded wire grids, and even layers in which the

mensionally (2-D) periodic impedance surface. contrast in refractive index approaches unity. In fact, the case
of a one-dimensionally (1-D) periodic reactive surface had
I. INTRODUCTION been employed successfully as a model for the analysis of

) o wave phenomena associated with periodic structures; for the

T HE scattering of waves by periodic structures has longst time, Wood's anomalies were then explained on a rigorous

been a subject of continuing interest, and extensive thgssis [2]. The guidance characteristics of surface waves along
oretical and experimental results are available in the ”teratuéecorrugated surface have been thoroughly studied by many
[1]-{4]. Over the past few decades, two-dimensional (2-Dythors by using the model of impedance surface [24]-[26],
frequency-selective surfaces (FSSs) have found numergygie some new and interesting guidance characteristics of
aspects of applications [5]-[7]. In particular, the class of 2-B.p periodic impedance surface have been examined recently
periodic structures that are also known as the photonic bandggm_ Since the equivalent impedance boundary conditions
(PBG) structures has attracted considerable attention in recgfi well studied for some canonical structures, including the
years [8]-[10]. Many authors have presented the analysis Qiriodic ones [21]-[23], we concentrate here on the study of the
planar structure consisting of multiple gratings. To mentiogeattering characteristics of the 2-D periodic surface impedance
a few, a pair of perfectly conducting lamellar transmissiofhat will be expressed in terms of a double Fourier series.
gratings separated in space and oriented with orthogonal perigpecifically, we present in this paper an algorithm for ana-
odicity were analyzed, with detailed numerical data for use §%ing 2-D periodic multilayer structures that are characterized
a solar-selected element [11]. Multilayered periodic structurgg periodic IBCs with a particular attention paid to the relation-
had been analyzed on the basis of the generalized scattegRgh petween their scattering and guiding characteristics. Such a
matrix theory [12]. Scattering characteristics of 2-D photonigodel is intended for the study of wave phenomena associated
crystals modeled by a finite stack of dielectric grids of infinitgy;in 2-p periodic structures. It had been shown [20] that the
extension were studied by using integral theory [8]. Noponegase of impedance surface can be formulated rigorously by the
et al. [13], synthesized 2-D periodic structures to achieVigiethod of mode matching as a three-dimensional (3-D) electro-
1 x N beam splitters of the transmission type. A rigorougagnetic (EM) boundary-value problem. The total fields above
treatment of scattering characteristics of bigratings has begg planar impedance surface can be expressed in the form of
reported, with some potential applications proposed [14]. TRRuple Fourier series, with each space harmonic appearing as
transmission response was tailored by the synthesis of fin@;{e|0|ane wave consisting of both TE and TM constituent plane
artificial lattices carrying passive metal-dielectric unit cell§,ayes. After invoking the periodic impedance boundary condi-
[15]. Most of the research listed above is based on a rigorosn on the planar surface, the input—output relations between
formulation and needs large computer resources. On the Otff incident and reflected waves can be obtained and then the
hand, thempedance boundary conditidfBC) approximation scattering characteristics will be also realized.

Based on the exact approach described above, we have carried
out extensive numerical results to identify and explain physical
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Il. STATEMENT OF PROBLEM

The approximation of impedance boundary condition can |
realized by examining a popular structure, the corrugated s
face, which has been thoroughly studied in various textboo
and articles [24]-[26]. For example, a corrugated metal slab t
a series of vertical slots, as shown in Fig. 1. Each slot can
regarded as a parallel-plate waveguide with a short-circuit t¢
mination. At the top surface of the corrugated metal slab, the
are two alternating regions in each unit cell; one is the mel
surface and the other is an air opening. The former acts a
short circuit, while the latter contains the effect of all the mode
of the parallel-plate waveguide. Thus, an equivalent impedar
may be assigned to replace the structure underneath the top
face; hence, the top surface can be regarded as having a periodic
variation of the impedance. Fig. 1. Corrugated metal surface.

Referring to Fig. 2, the interface between the air region and
the periodic layer can be viewed as an impedance surface for
the fields in the air region. Such a surface impedance depends
on the physical as well as structural parameters below the sur-
face. Fig. 3 depicts the scattering of a plane wave by a planar
impedance surface that is periodic in two dimensions. For sim-
plicity, the space above the surface is taken to be air of infinite
extent. Such a structure is intended as a model for the study of
wave phenomena associated with the class of multilayer peri-
odic structures. In the literature, the case of 1-D periodic reactive
surface had been successfully employed as a model for the anal-
ysis of wave phenomena associated with periodic structures; for _ . . .

) . , . . . Fig. 2. Typical configuration of 2-D periodic structure.
the first time, Wood’s anomalies were explained on a rlgorou§
basis [2]. As an extension, we consider here a periodically per-
turbed surface impedance with the spatial variation given by

2D Periodic Impedance Surface

2 2
Z(z, y) = Zs 1+26mcosﬂ +26ycosly
“ n=+1
2 2
+46 4y Cosﬂcos%y 1)
a
Z, =R, + jX,. 2) n=-+2

Here, Z, is the average surface impedance, with the surface re
sistanceR; and the surface reactancé; 6, 6,, andé ,,

are the modulation indexesa;andb are the periods in the-

and y-direction, respectively. Such a characterization may be
regarded as the first-order approximation of a double Fouriel
series for a general 2-D periodic surface impedance; if needec Surface

more terms may be included and the ensuing analysis can still

be applied. We observed that the scattering problem posed Héfe3- Scattering of plane wave by 2-D periodic impedance surface.
may be analyzed rigorously, as explained in Section Ill.

¥ x-axis 2D Periodic Impedance

rection, to be denoted by thenth harmonic for simplicity, the
. METHOD OF ANALYSIS tangential-field components can be written as

Referrir:jg to Fig.d3, an incic:ent plage wave i]:s scatterrt]ad by tp% % E tmn(p, 2)

2-D periodic impedance surface and a set of space harmonics ., iy py 1 .

is generated in each of the two directions of periodic variation. — [ Vi (2) F @ mn Vi ()] - exp(=jk mn - p) (33)
In the air region, each space harmonic appears a plane wavlafin (0, 2)
which the tangential field components may be generally repre-= (@’ 1/, (%) + & n I ()] - exp(—=jk tmn - p)  (3D)
sented as a superposition of the TE- and TM-polarized plane B

waves with respect to the-direction. For themth space har- where the single and double primes denote the TE- and TM-po-
monic in thez-direction and thesith space harmonic inthedi- larized waves, respectively,...,, is the transverse propagation
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vector,p is the transverse coordinate vector, afg,, anda” .., In the Appendix, it is shown in mathematical details that the
are unit vectors related to transverse propagation constant bgbove boundary condition yields a set of linear matrix equations

= S0 (42) V() =Z[DOVL©0) + XEI0)] (92)
tmn
, ;2o X ki VI(0) = Z[X*VL(0) + DD I(0)]  (9b)
A mn =20 XAy = —5—— (4b)
ktrnn .
_ where theDs andX's are matrices related to the structural as
with well as the incident-wave parameters andtreeand/s are un-
known vectors to be determined.
E vn =kemz o +kyny o (5a) Let f/,, andf” . be the amplitudes of the incident TE and
K = ko 5in 6 cOS  + 2mm (5b) TM modes, respgctiyely, gnd lgt,,, andg . . be those of the
a reflected modes in air region. At= 0, the voltage and current
Koyn = ko sin @ sin ¢ + 2”7” (5c) Waves vectors are given by
Here, k.., andk,, are the propagation constants of thgh VO =f+g (10a)
space harmonic in the-direction and thesth space harmonic 1(0) :Y(a)(f —g) (10b)

in they-direction, respectively. And,, is the propagation con-

stant of the plane wave in the incident region, wil@nd ¢ o\ 0y (a) is the admittance matrix in the air regiofiis a su-

are the elevation and azimuthal angles of the incident Waveplgrvector withf’ and f” as its subvectors that are formed by

the spherical coordinate, respectivety, y,, andz,, stand for ", P . . -
. : a' . andal, ~as theirmnth elements, respectively, and simi-
the three unit base vectors of the rectangular coordinate SyStfar

Furthermore, théd’s and/s represent the vertical variations o betzvgc:n?a?gm (9) and (10), we can obtain the relationship
the electric and magnetic fields of thenth harmonics, respec- g
tively, and can be written generally as a superposition of the g=Tf (11)
forward and backward traveling waves as - -
wherel is the reflection matrix of the 2-D periodic impedance
Vinn(2) = frn €xp(—jkzmn2) + gmn exp(+ik-mnz)  (6@)  surface. Heref is supposed to be a known column vector for
Lion(2) = Yo [frum €Xp(—kzmnz) — Gmn exp(+jk-mnz)] @ given set of the incident space harmonics; with the reflection
(6b) matrix computedyg is determined by (11) for the amplitudes
of the space harmonics reflected from the periodic impedance
wheref,,, andg,,.,, are the amplitudes of the forward and backsurface back into the air region.
ward traveling waves, respectively. It is noted that the primes
over the field quantities are omitted here for simplicity; these IV. NUMERICAL RESULTS AND DISCUSSIONS
expressions hold for either singly or doubly primed quantities
denoting the TE- and TM-polarized fields. Finalky,,, and
Y,.» are the longitudinal propagation constant and the wave
mittance of thennth harmonic in air region, respectively,
they are given by

' Based on the exact formulation described in the preceding
section, we are now in a position to carry out both qual-
itive and quantitative analysis of scattering characteristics
andyt the 2-D periodic impedance surface. First, we shall in-
voke the concept of small perturbation to develop approxima-
tion techniques by which the first-order solutions can be con-

Famn =\ K3 = Ko — K (72)  structed conveniently. This allows us to identify in an easy
I manner various physical effects associated with the structure

7% for TE modes in hand and this will be particularly useful for practical de-
Yon = Z’;O (7b) sign considerations. Second, for a numerical analysis, the in-
2, for TM modes. finite system of equations for the Fourier amplitudes has to
zmn be truncated to a finite order and the numerical accuracy has

So far, all the parameters needed for the field representationédne carefully studied. It should be noted that it would be
(3) have been defined and what remains to be determined is @§g€ential to employ techniques to ensure the more rapid con-
set of amplitudes of the backward traveling wayssor a given Vvergence of the numerical process for the truncation of the
set of amplitudes of the incident waves that travel in the forwafgsulting infinite matrix [22], [23]. After the numerical ac-
direction, fs in (6). curacy is assured, extensive numerical data are obtained to
With the EM fields of each space harmonic representédentify systematically all possible physical processes asso-
above, the total EM fields in the air region can then be writte§iated with the structure under investigation and to explore
as a superposition of all the space harmonics and they &ffential applications. We present here some numerical re-

then required to satisfy the boundary condition at the perioditllts from a parametric study on the general characteristics
impedance surface at= 0 of plane-wave scattering by 2-D periodic impedance surface.

For the numerical analysis in this section, the two periods in
zo X E(p, 2 =0) = Zs(z, y)H(p, » = 0). (8) - andy-direction are chosen to be identical. The lossy surface
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impedance is chosen to B8 = 0.001 + ;0.5 (normalized to .

0.1

the wave impedance of the plane wave in the free space). Final 095 - c . g _G
. . Normalized Incident Power : Py =1
the modulation indexes are chosen tothe= 6, = 0.1 and 53 S el o
8z, = 0.05. We shall investigate the effect of the elevation 5 os- f s
angle, the azimuth angle, and the wavelength of the incider HI 08 £ 0.995 000t =
wave. o OPE : \I LT:J
. . e = orp 0% ! K(1.01) 4 0.0001 famt
Before embarking on an elaborate computations, it is instruc ! —
. . . . . . . . 0.65
tive to examine first the limiting case of vanishing modulation g o % ! oo §
indexesé , = 6, = 64, = 0. In the absence of the periodic L sl om ! i IS
perturbations, we have a uniform impedance surface for whic o ek, o6 0 0371 N ,885 09 ! ;.‘ n L teos o
the guiding characteristics are well known. In particular, for e 5 os} as_b_' Lo "o ! i \\ 2
B . g) - - .
lossless reactive surface, the propagation constant of the surfe W 8=8,=0.1 | / e 2
wave is given explicitly by & OBE 5, =005 ETE // ~
03 — 0=300 ----- TE-TM : L 5 1e-008
025 F & — Y H(0.99)
k2, = k2 4+ k2 = k2n? (12) et B
7 b Y 1 o 0-20,6 0.65 0.7 0.75 0.8 085 0.9 0.95 1 1.05 1.116-009
1+ —, for TE mode withX, <0 Wavelength (1)

n2, = X2 (13)

1+ X2, for TM mode with X, > 0
TA s Fig. 4. Variation of reflected power versus wavelength; TE plane wave

incidence.
where X, is the surface reactance normalized to the free-space

wave impedance, = 120 #{2. ng, May be interpreted as the
effective refractive index of the surface wave. It is noted that .
the TE surface wave exists only for capacitive surface and Th
surface wave for inductive surface. In such a special case, tr 09
dispersion curve representing the relationship betwgeand

ky is a circle of the radiug,,.

We have carried out considerable numerical experiments witl
various parameters of the incident wave as well as the 2-D pe
riodic impedance surface; however, only a few sets are selecte
here to exhibit the interesting phenomena that may take place i
the presence of a 2-D periodic impedance surface. Figs. 4 ar
5 shows the reflected intensity versus wavelenygtf the in-
cident wave, for the incident angte= 30° and¢ = 0°. The
designations of the curves are as follows: the solid line is for the
reflection efficiency with copolarization (TE-TE or TM-TM), 02
while the dashed line is for that of cross polarization (TE-TM or o oTmmteem L
TM-TE). Furthermore, we observe that there exist many region “ 06 o7 om o8 oss 05 0% 1 105 1
of sharp variation along the curves, as marked by the characte Wavelength (1)
from A to F in Figs. 4 and 5.

To explain the unusual _behaVior of reflection CharaCteriStiCﬁg. 5. Variation of reflected power versus wavelength; TM plane wave
we recall that the normalized transverse propagation constabience.
can be obtained from (5) as

C E G

o

3
2

Reflected Power (TM - TE )

0.8
E 0.001
07 F
0.0001

0.6
1e-005

0.5

1e-006

0.4 1e-007

1e-008

0.3

Reflected Power ( TM - TM )

1e-009

1e-010

the frequency. Among these intersection points, A, C, E, H,
Etmn . AN . . A2 and | determine the frequencies for the conditions of the phase
k. - <Sm9COS¢ - mg) - <sm95m¢ - HZ) matching between the harmonics and the guided wave. Hence,
(14) it is expected that strong couplings from the incident wave to
Graphically, the transverse propagation constant are plottedhie guided wave may take place in the vicinities of these points.
Fig. 6, for the eight diffracted order¢m = +1,n = 0), Withthe resistive loss of the impedance surface, such couplings
(m=-2,n=+41),(m=-2,n=-1),(m=-2,n=0), resultinthe anomalous absorption, as will be further discussed.
(m=0,n=-1),(m=0,n=+41),(m = -1, n = —1), Onthe other hand, the intersection points B, D, F, and G deter-
and(m = —1,n = +1). Itis noted that forp = 0°, some mine the cutoff conditions of various space harmonics and some
harmonics may follow the same curve with multiple labels. Fustrong reactions should be expected in the vicinities of these
thermore, the propagation constant of the surface wave givengmints. Finally, it is interesting to observe that the two points
(13) is plotted with the long-dashed line and so is the cutoff codesignated by the H and | actually coincide with each other.
dition with the short-dashed line. Here, we have nine intersebadging from the curves, a coflow passive coupling or direc-
tion points between the set of solid lines and the long-dashiohal coupling should take place there; therefore, the two point
line as marked in alphabetical order from A to | according tshould split, with one at a wavelength slightly smaller and the
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For the cutoff conditions at the points B, D, F, and G in
Fig. 6, we observe that those at points B and D do not have
any visible effect on reflected power in either Fig. 4 or 5.
This can be attributed to the fact that the harmonics involved
are of the higher order and the effect should be small. On
the other hand, the variations in the vicinities of the points
marked by F and G are quite pronounced, is evident in both

135

S Figs. 4 and 5. These are due to the cutoff conditions of the

BT lower order space harmoni¢sn = 0, n = +1) and (m =

2 oo —1,n = £1) and are known as the phenomena of Wood's
09 ¢ anomaly of the Raleigh type.
085 Zs=0.001+j0.5 Although not shown here, we have also performed calcula-
08 - a=b=10 tions for the reflected power under various conditions. However,
075 0=30.0 the general behavior of the anomalous absorption as a function
o7t ¢=0.0 of the incident elevation and azimuth angles is similar to those
065 = in Figs. 4 and 5 and they are not shown. In summary, the plots
06 Tl : : o S —— of the dispersion curve, the cutoff condition and the wavenum-

086 0.65 0.7 0.75 0.8 085 09 0.95 1 1.05 11

bers for the relevant harmonics are very easy to do and this pro-
vides a plausible physical basis for the investigation of the plane
wave scattering by a periodic impedance surface, as demon-

, - . strated above.
Fig. 6. Variation of transverse wavenumber versus wavelength for various

space harmonics.

Wavelength (1)

. _ L V. CONCLUSION
other slightly greater than 1.0. With these predictions based on

physical intuition, we can explain easily the scattering charac-We have presented a rigorous treatment to the 3-D boundary-
teristics of the periodic impedance surface. value problem of plane wave scattering by a planar 2-D periodic

We observe that there exist sharp variations of the reflecté@Pedance surface since the 2-D periodic structure is replaced
power at some wavelengths, as marked by C, F, G, H, anob}’, a 2-D periodic IBC on a virtual surface. The formulation of
for the TE-incidence case. It is noted that the number inside tiie Problem is based on the rigorous method of mode matching.
parentheses after each character indicates the exact wavelefyginerical results are systematically carried out to illustrate the
On the other hand, Fig. 5 shows that in addition to those at ifeflected characteristics; in particular, Wood's anomalies asso-
wavelengths marked in Fig. 4, there are sharp variations at t@igted with 2-D periodic impedance surface are carefully exam-
more wavelengths, as marked by A and E, for the TM-inciden#ized and are shown to provided a mechanism for the anomalous
case. By inspection, every wavelength marked in Figs. 4 affsorption of incident wave. Most importantly, the additional
5 can be identified clearly with those wavelengths marked Rgriodicity in they-direction may results in more coupling con-
Fig. 6, except the two points B and D at which no sharp reacti@ifions between space harmonics and surface wave supported

to the incident wave is observed. The physical explanation BY the impedance surface. As an example, this mechanism may
these phenomena are given below. be employed to reduce the radar cross section in further study.

Consider first the coupling of an incident wave to the guided
wave. It is recalled that for the parameters under consideration,
the structure supports only the TM surface wave. We observe

that corresponding to the intersection point A and E in Fig. 6, we have shown that the tangential electric and magnetic fields

the direct coupling from an incident wave to the guided wavg the air have been expressed as a superposition of plane waves
can take place only with a TMincidence case, but not otherwisgs given by (3) and (4); to repeat, they are

Furthermore, for the special case of the incident argle 0°,
the propagation constant in thedirection is equal to zero for
two harmonicgm = 1, n = 0) and(m = —2, n = 0). This 2o X Ei(p, 2) = > _ [@/mn - Vi (2) + @l - Vit ()] - 0 n

APPENDIX

means the uniformity in the-direction of the fields associated m,n
with these harmonics and the cross-polarization coupling to the (A1)
guided wave should be of a higher order effect and its effect H(p, 2) = Z (@ om0 (2) 4+ @ - T (2)] - 0
on the scattering characteristics does not show up in the case of - -
the TE incidence. This explains the sharp variations marked by (A.2)

A and E appearing in Fig. 5 for TM incidence case, but not in
Fig. 4 for TE incidence case. It is interesting to observe that in
the scattering results, the two points H and | do split sufficiently
far apart in wavelength due to the coflow coupling between twubstituting (A.1) and (A.2) into (A.3) and then, taking the inner
set of harmonics, as expected. product withg’ ,,, ,, on both sides of the resulting equality, we

L mn = eXp(—jE tmn ° B)
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obtain the following relationships between the harmonic amptie the structural as well as the incident parameters. Finally, ex-

tudes of the voltage and current:

Vi, n(0)

m,n

LS N (OF ek ()]

60 K L O+ KD 10, (0)]

by (K il a0+ K2 1 (0)]
(0)]

1,1 1,2
+ 69 |:Kr(n,n2|—1‘[;n,n+l (0) + Kr(n, nzl—l zl, n+1

1,1
+ 6“931 |:Kr(n—l),n—l :n—l,n—l(o)
1,2
+Kr(n—l),n—l ;:l—l,n—l(o):|

80y [KSY i lia 1, n42(0)
+K£71L21), m1 D1 nt1 (0)}
+ b ay |:Kr(71—7|—11),n71‘[r/n+1,n—1(0)
S SR Y (R (0]

1,1
+ 6 zY |:Kr(n+l), n—+1 ;n-l—l, n+1 (0)

1,2
+Kr(n,—|—1), n+1 ;;l+1,n,+1(0):| (A3)
form, n = —co0.. + 0
where
1,1
Kr(n,:lzl), nEl — <a—/"lyn |a—/7n:|:1,n:|:1> (A4)
and
1,2
Kr(nzl:l), ntl — <a_/rn,n |a_//m,:|:1,n:|:1> . (A5)

We may now fix the integetn and group the harmonics ac-

cording to the index to form the new vector relationship

Y.V ,.(0)
=DEVL L (0) + KOS N g1 (0) + KT 1 (0)
A XD (O KA T i (0)+ K2 T 1 (0).
(A.6)

Similarly, taking the inner product witt” ,,, ,, and performing
the same process as the above, we obtain

Y. V" ,.(0)
= Dg?f Q)I_N m(O) + Kg-q?l)l_// m+1(0) + KE;?—Ql)I_H mfl(o)
+ XL O+ KT g1 (0)+K ST 1 (0)
(A.7)

whereV’,,.(0), I’ ,,,(0) andl” ,,,(0) are column vectors with

Vinn(0) andImnEO) as theirnth elements, respectively, and ma-
trices D&Y, x§? KD and K42 are matrices related

k1t

pressing them in the form of supermatrix and supervector by
collecting all the elements according to the indexin (A.6)
and (A.7), we have the desired results shown in (9).
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