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Wait’'s Complex-Image Principle Generalized to
Arbitrary Sources

Ismo V. Lindell Fellow, IEEE Jari J. Hanninen, and Risto Pirjola

Abstract—The well-known simple and remarkably accurate ap- in [10] so that also the charge distribution can be taken into ac-
proximate low-frequency (LF) complex-image method introduced count. Also, an approximate image for the vertical component
in 1969 by J. R. Waitto compute the effect of the ground to thefield - ¢ tha glectric current can be obtained. Another complex image

of a divergenceless horizontal current (vertical magnetic current) inciole f tical t tlv introduced b
is generalized to arbitrary current sources through the exactimage PMNCIPI€ Tor vertical currents was recently introduced by re-

formulation. The images of a vertical dipole, a horizontal current ~ Placing it through an equivalent horizontal divergence-free cur-
segment, and an oscillating point charge are first reduced to sim- rent system [6].

plified but asymptotically exact forms and, subsequently, interms  The outline of the paper is as follows. First, we review the ba-
of delta and step-functions to approximate image expressions that gjcq of the exact image theory for the planar interface and con-
also include Wait's image. The novel part of the image is tested nu- _. . f o
merically through a geophysical example. sider its LF asymptotlc form vyhem — 0. Ngxt, |j[ is shown_ _
that the exact image expressions can be simplified from infi-
nite series of Bessel functions to simple Bessel function for-
mulas which are asymptotically exact in the LF case. Finally,
by applyingé and step-function approximation to the image
|. INTRODUCTION functions, we obtain simple approximative image expressions

INCE its introduction in 1969 by J. R. Wait [1]-[3], of which Wait's image is seen to emerge as one example.

he complex image principle (henceforth, “Wait's image
principle”) has become very popular for computing geophys-
ical low-frequency (LF) fields due to atmospheric currenta. General Expressions

and other geo-electromagnetic (EM) sources above the eartr\;et us start from the exact image formulation given in [10]

The method is an extension of the classical image prindp%applied to the simple case of current soue in air above

aissomatild_ \.N'th the pe_rfelclztly ﬂject::cally Cond‘.’?“f‘g (PEGhe planar interface of a homogeneous ground with permittivity
plane and it is asymptotically valid when— 0. Wait's image e.€, and permeability.,...,. The electric field reflected from

principle is normally presented as the geometric image of tﬂ‘?e ground can be represented as radiated by an image current
original source in a PEC plane at a complex depth depending

L o rce in airJ;(r, ¢), a function of the position vecterand an
the conductivity of the ground and the frequency. The princip ﬁtegration parametef [10, eq. (7.261)]:
was later extended to the stratified ground by expressing the R '
complex depth in terms of the impedance of the stratified

ground [4]. In 1984, an exact form for the image theory was n(r)

Index Terms—Electromagnetic (EM) radiation, low-frequency
(LF) radio propagation effects, honhomogeneous media.

Il. IMAGE THEORY FOR THEPLANAR INTERFACE

) = 1
= — jkons <I+ EVV>

constructed and Wait's image principle was shown to emerge as 0

its asymptotic approximation [5], [19], [20]. In the formalism : // Gr—r' +uw.QJ(r', Q)dvV'd¢. (1)

of the given exact theory the image of a point source is a line V7o

source in complex space. Here, k, = wy/p,e, denotes the wavenumber and

Because Wait's image principle was defined for the verticab = \/u./¢. the wave impedance in the air regien> 0.
magnetic dipole (small horizontal current loop), it can be ag#(r) is the scalar Green function
plied to any horizontal current distributions provided the current ko D(x)
is solenoidal, i.e., it satisfie§ - J(r) = 0, and when the fre- G(r) = @77 D(r)=+/r-r. 2)
guency is low enough [8]. However, if the divergence of the hor- 4mD(r)
izontal current does not vanish, there is accumulation of chargg, complex arguments, the branch of the square root must be
and Wait's image does not give good results. Itis the purposeigken so that its imaginary part is nonpositive. This makes the
the present paper to derive an extension to Wait's image prireen function exponentially decaying with distance.
ciple from an asymptotic limit of the exact image theory given According to the original theory, the image source can be

expressed in the form [10, eq. (7.257)],
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The mirror reflection dyadi€ produces the mirror imagk. (r) f1,p)=—2 J2(p) 8(p). (13)
of the original source. The three scalar image functions denoted D

by FIM(O), FTE(Q), f1(¢) (prime denotes differentiation) de-
pend on the electric properties of the ground 0. Everywhere
the subscript denotes a component transverse tozlais.

To simplify the field expression, let us assume that the ori
inal source exists on a horizontal plane at the height A
above the ground, i.e., that the current function and its mirrQ
image are of the form

Because values of the Bessel functidpgp) decrease in magni-
' tude with increasing argument onlyifis real, we must choose
.the location of the image in the complexplane so thap =
93( = —jB(z + h) is real. The heaviside unit step function
[_p guarantees that the image exists onlygae 0, i.e., that it
arts from the mirror image point= —ha.
For large absolute values of the parameteve can simplify
the function (12) using known properties of the Bessel function

I@) =308z~ 1), Iee) =C-Ju(p)b(z+ D). (5) [12]. In fact, for || — oo we have

Here,J;(p) is a surface density source (dimension A/m) which 8 S Janlp) 2
may also have a vertical component. NowdHenctions(z—+h) flawp) = —— > ”T9(p) =—9(p)b(p) (14
can be integrated out in (1), which thus reduces to a threefold n=1
integral. Changing thé variable to— 2’ — h, (1) can be rewritten where the functio(p) and its derivative are
as
. = 1 =—4 =J - Jo(p)d 15
Eo(r) = — jkon, <I+ ﬁvv> 9(p) nz::ln . 1(®) = | Sp)dp (15)
1 J
Glo— i + (= DA @ o)== 51+ )] = -2 (16)
v
where the image source is of the form The functiong(p) appears essentially simpler thAfw, p) both
as an analytic expression and in its functional dependence on the
1 argumenp. As is seen from Fig. I(p) oscillates slightly when
() — | fTM TE .
Ji(r) = [f (Owau. + fTH(OT, K27 o(Qus Vf} approaching the value1 whenp increases. Its extremal values
_ are obtained at the nullg,, ps, ... of the function.J;(p) for
-C-Js(p), (=-z—nh (7)  p > 0. The first minimum |Sg(p1) —1.08 atp; ~ 3.832.

The Bessel functions satisfy the following integral relations
asource in the three-dimensional space. For the field integral (@)id for any integetn

to be bounded, it may be necessary to choose an integration path -
in the complexz’ plane. This can be interpreted as the image / ]2( ) dp = 1 / Jm(p)dp = 1. 17)
source existing in complex space. o P 27 Jo T

B. Image Functions Applied to the expansion (12), we obtain

For_t_he isotropic groun_d with relatlye permittivity and per / fa, p)d / pfla, p)dp = —2a
meabilitye,., .., the three image functions can be expressed in Cat 1 oo
terms of a two-variable functiofi(c, p) as [10] (18)

In some cases, the functigif«, p) can be approximated by a

FRE(C) = Z,, J—r 16(() B, §BO) (®) ¢ function. The form of the approximation
" 2c¢
, 6 —1 ‘ . fla, p) = — S(p—a—1) (19)
JNQ = = 8O = B e JBO (9) atd
" ) can be found by requiring that the first two moment integrals
ex—1 .
()= — iBf(e., jB J f(«, p)dp and [ pf(c, p)dp are the same on both sides of
fo(©) P fler, §BC) (19) 71,
pi—1 .
(e — c,,)jBf(“”’ 7B (10) [ll. GEOPHYSICAL APPROXIMATION
B=k, \/m (11) A. Asymptotically Exact Images

The image expressions can be simplified under three condi-
and f;(¢) is the derivative off,(¢). The function f(«, p) is  tions characteristic to geophysical problems: 1) the frequency is

defined by small; 2) the ground is nonmagnetic; and 3) has nonvanishing
conductivity. To approximate the previous expressions we set
8o a—1\" Jon(p) p = 1 and express the complex of the ground as
= — 9 T
feom =~ gy e () PP, i

a1 (12) Tt e, (20)
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Fig. 1. Graphs of the normalized functi¢n/2)f(«, p) for different real values of the parameter Fora — oo the limiting function isg(p). It can be
approximated by the negative step functiefi(p — 1).

wheree,.. > 1 denotes the real part of the relative permittivity. The other image functions dependQrthrough the function
Further, we write the parametét as f(e, p) and can be approximated for large values|f in
terms of the functiony(p) defined in (16) as

B =koe, —1= \/—jwuoo\/ 14+ (e = 1) (2D) P = — 60y - iBf(e, jBO)

e +1
e —1 3B . )
Assuming now nonvanishing conductivity and smalso that Moo Q- - 9(1BQE(BC)  (24)
T = o/we, > €. IS valid, the complex relative permittivity 1
€. = —j7 has a large magnitude. On the other hand, the wave- (O = — ¥ iBf(er, §BC)
number parameteB can be approximated by r
2jB . ,
~ — 22 g(iBOAGBC) (25)
B x /= jwpteo = ko\/—3T X kor/er. (22) er
2B . .
10y & = == [0ca(iBOIGBC)

Since the magnitudg3| need not be small i& happens to be
large, we make no further assumption at this point. =2k2¢'(jBC)O( BC). (26)

Let us now find the asymptotic forms for the previous image _ ) . .
functions in the limitje,.| — oo. First, the image functioff™® These expressions for the image functions are asymptotically

does not depend on and is simple enough in its exact form exact and replace the more elaborate forms (9), (10), valid for
general values of... This means saving in computer time.

JQ(JBC)QUBQ (23 B Approximate Images

¢ The previous image expressions can be further simplified by
approximating them through simpler functions. The simplest

Here and in the sequel, the step functi§riB¢) has a meaning possible functions in an integration are, of cougs#&nctions.

because, in our assumptigif3¢ = pis real. A function with values concentrated enough around some point

F(¢) = 4Bf(1, jBC) = =2
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can be approximated byseunction at a suitable location found z
by equating the first two moments of the function andbitsp-
proximation as was done for the functigif, p) in (19). htull
When the image functiofi™(¢) in (23) is approximated by z
the é function through (19) as
. . —ht
JTE(Q) =3Bf(1, §BC) Ji(2)
~ — jB6(p —2) ‘
(5 -3)
B B Fig. 2. Image of a vertical dipole consists of a dipole at the mirrorimage point
9 z = —h and a half-infinite line current obeying the image functjoh™ (—z —
- _ _ = h).
6 <§ 7 B) 27)
it is seen to lead to the celebrated Wait's image [1], [3]. ThljgaS the image
result was also obtained in [5], [7], [10], [19], and [20]. In trying 3:(0) = —wIL6(p) fT™M(— 2 — B) (35)

to do the same for the image functiofi$™(¢) andf,(¢) leads
to trouble because thg(p) function is not peaked and rather . . e . .
resembles a step fu:gio)n. However. its dperivative can be nWh|ch is a half-infinite line current starting from= —h Fig. 2.

. . en inserting the asymptotically exact function from (24) to
approximated by thé function. Because of (16) and (17) Wethe image of the vertical electric dipole (35), we have

have
/ g'(p)dp = / pg'(p)dp=—1 (28) Ji(r) = u.ILé(p)
0 0 e —1 2jB
and the approximation becomes : LT n 18 +h)+ -
1) g(=jB(z+M)6(—jB(z+ )] (36)
g (P)op) = - ~—b(p—1) (29) _ _ _ .
p Replacing now the function by the negative step function

in a manner analogous to that giving Wait's image. Thu¥/€ have the simple approximation
through integration we obtain the step-function approximation

for the functiong(p)é(p) as Ji(r) #u.ILS(p) [E’ _T_ 16(z +h) — 2‘ZB
g(p)b(p) = —6(p — 1). (30) O(=iB(z+h) —1)] (37)

These finally lead to the following approximations of the imag@hich is a combination of a dipole at the mirror image point and

functions, which forms an extension to Wait's image theory: & constant vertical line current in complex space. One should
note that this constant line current does not start from the mirror

S & = € — 16(() _ 2(739(‘7.309(].30 image pqintz = —h but, rather, from the complex point =
6 +1 € —h —1/4B.
6 —1 2iB . It is seen that in the limit; — 0 the second term vanishes
gl 18O+ ——0(iBC - 1) (31) and the first one approaches
2
£(0) ~ — % 6(iBC — 1) (32) Ji(r) — w ILS8(p)S(~ + R) (38)
k2 1 which is the reverted geometrical image of the vertical dipole
(O ~ —2k26(jB¢ — 1) = — E; ) <C — —B) (33) and corresponds to the image in a perfectly conducting (PEC)
J J half-space.

IV. APPROXIMATE IMAGE EXPRESSIONS B. Horizontal Source

Let us now apply the previous expressions to find image Applying (7) and (3) to a horizontal surface current source

sources corresponding to different source functibfys at the

heighth above the interface. Ir) =Js()8(z 1), w.-Js =0 (39)

A. Vertical Dipole leads to the image source of the form

A vertical current dipole of the momeif. at heighth
P ’ 3ilx) = J(o)f =2 = h) = [V T(o)f(—7 — ).

J(r) = w.IL6(p)8(% — h) (34) (40)
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The image is seen to consist of both horizontal and vertical cur- p
rents, in general. If the original surface current is solenoidal sat-
isfying V - Js(p) = 0, its mirror image is purely horizontal

3,(r) = 3. (0) S (=2 — h). (41) —d | @

In this case, the image is also solenoidal. For nonsolenoidal cur- —n dnlz
rents there exists concentration of surface chatgp), which
can be expressed from the conservation law as ! Jiu(2)

0:(p) = — -V - 3.(p) (42) *

Jw

(40) can now be written as Fig. 3. Image of a horizontal current line segment consists of a horizontal
surface current strip and two vertical current lines. They obey the respective

J,(r) = Js(p)fTE(—Z )+ %uzgs (0)f.(—=—h). (43) image functionsf™®(—z — h) andf/(—z — h).

As is seen from the above, the functigh$®(¢) andf’(¢) give z
the respective images of the solenoidal current and charge den-
sity parts of the horizontal current function.

1) Horizontal Current SegmentAs an illustration, let us
consider anz-directed line-current segment of leng2h and

|
|

magnitudel (Fig. 3) —af Ea z
I() = wl[0(w +a) — O(w — )]6(y)6(= — h).  (44) i .
The corresponding surface charge distribution B I I

1
0s(p) = == [0(x + a) = &(z — a)]6(y) (45)
equals two point charges at the ends of the segment. The heij-4. Approximate image of the horizontal current line segment consists of

zontal image component of the line current a horizontal line current image at the depth= —h’ = —h — 2/ B and two
vertical image dipoles at the depth= —h’’ = —h — 1/j B. Vertical images

Ja(r) = w I[0(z + a) — O(x — a)]é(y)fTE(_z — k) (46) correspond to the two charges at the endpoints of the original line current.

is an half-infinite strip of horizontal surface currentin the regiog. pgint Charge
|z] < a (Fig. 3). Under the geophysical approximation (27) we
can apply Wait's image theory and replace the current strip b
the current line image (Fig. 4) S

Equations (48) and (49) can be understood as image repre-
gntations of two point charges) with () = I/jw, occupying
the ends: = +q of the line current. From these expressions we
‘ N 2 can identify the image of a single time-harmonic point charge,
Jin(r) = o[z + a) — 0(z — a)l6(y)8 <Z +ht ;_B) " which although nonphysical as such, appears to be a useful con-
(47) ceptwhenthe effect of atmospheric charge accumulation is con-

sidered [6]. In fact, the image of the oscillating point charge
As a quick check, for the PEC case — oo, B — o0), the

negative mirror image of the current segment is obtained. o(r) = Q8(p)d(z — h) (50)
The vertical image component corresponding to the two point o
charges can be expressed as the vertical line current
J(r) = —w. 2[5 § s(y)f! h) (48 Jig(r) =u Mé( ) fo(=2z—h) (51)
in(r) = —w. 5[0z +a) = 8(z — a)]6(y) fo(~= — h) (48) it =Tz AP oz =),

consists of two half-infinite vertical line currents at the edgds the geophysical approximation we can first write the image
x = +a of the current strip. Applying again the approximates the asymptotically exact vertical line current
image, the line currents can be replaced by the vertical current

dipo|es Jiq(r) ~ uZ2JwQ6(p)g/(_JB(Z + h’))
2wQ Ji(—jB(z+ h))
21 1 — L
Bfe) = . Zg 8o+ @) = oo — lews (= o5 ). =w )= (52)
(49) and in the vertical dipole approximation as

For the PEC limit the vertical image of the charges vanishes
becauseéB| — cc.

Jig(r) =~ —uz%é(p)é <z +h+ JLB> . (53)
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Fig.5. Real and imaginary components of the fiBig =) (in nano Teslas) at the ground= 0 due to a current wave in ionosphere for time paramiBter 20 s.
Crosses: exact computation; solid lines: field from asymptotically exact image; dashed lines: field dpproximated image.

V. NUMERICAL TEST Exact values of the componed®, at the surface of the
ﬁound were based on a formulation without image concepts

above, a numerical test was made to check the image theory ] and the fast Hankel transform [17] which was applied

a typical geophysical problem. A horizontal line current abO\}g actual numerical computation. In Fig. 5 depicting the field

the earth was assumed with parameter values correspondin%%lges’ the points (crosses) corresponding to the exact field are

an auroral electrojet current in the ionosphere. The line curr en to practically coingide with the SOI.id curve representing
was not assumed constant but rather as a wave of the form 1€1d values computed with the asymptotically exact image ex-

pression. Thus, the asymptotically exact image reproduces the
) exact results within the accuracy of the figure. The approximate
6-function image (the dashed line) is also seen to give quite
good accuracy, which shows us that, in practical computation,

with the numerical valueg = 10° A, h = 100 km, ¢ = 10=¢ : .
1/m. For such a wave the divergence does not vanish and th:g@n be relied on for the present values of parameters. Because

are accumulating charges along the current. The time peri (?dé futnct:;)r;hap:p;romma:]es the exa}::t |mtﬁge functtlpn, one cant
(inverse frequency) of the ELF current was taken tdbe 20 understan at for such cases when the exact image 1S no

s. The conductivity of the homogeneous flat ground was chosérY concentrated, it must lead to errors in field computation

tobes = 10~ 1/0m. Because fields at the ground may inducte a close range of points. A more detailed discussion on these

in overhead lines currents large enough to saturate transforn{grlgt'ons must, however, be left to a subsequent paper.

resulting in blackouts in power systems, field computation is of
practical interest [14], [15].

As was seen above, the image of the current consists of botiThe well-known complex image method introduced in 1969
horizontal and vertical parts. Because the horizontal part is cdoy J. R. Wait, applicable to horizontal solenoidal currents above
ered by Wait's image, it can be omitted and only the effect of thke planar interface of the ground in the LF approximation, was
novel vertical image component is of interest. It is quite easityeneralized to allow also nonsolenoidal horizontal and vertical
seen that the magnetic-field componétyt, which is parallel to currents. All approximate image expressions were derived from
the original current and Wait's image, is solely caused by tliee exact image theory introduced in 1984. In the LF approx-
vertical image. Thus, it can be used as an indicator to validateation, the image expressions were first given an asymptoti-
the approximative vertical image component. cally exact limiting form, simple enough for accurate compu-

To convince the reader on the quite complicated formul

J(r) = u,le 7§(x)8(2 — h) (54

VI. CONCLUSION
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