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Wait’s Complex-Image Principle Generalized to
Arbitrary Sources

Ismo V. Lindell, Fellow, IEEE, Jari J. Hänninen, and Risto Pirjola

Abstract—The well-known simple and remarkably accurate ap-
proximate low-frequency (LF) complex-image method introduced
in 1969 by J. R. Wait to compute the effect of the ground to the field
of a divergenceless horizontal current (vertical magnetic current)
is generalized to arbitrary current sources through the exact image
formulation. The images of a vertical dipole, a horizontal current
segment, and an oscillating point charge are first reduced to sim-
plified but asymptotically exact forms and, subsequently, in terms
of delta and step-functions to approximate image expressions that
also include Wait’s image. The novel part of the image is tested nu-
merically through a geophysical example.

Index Terms—Electromagnetic (EM) radiation, low-frequency
(LF) radio propagation effects, nonhomogeneous media.

I. INTRODUCTION

SINCE its introduction in 1969 by J. R. Wait [1]–[3],
the complex image principle (henceforth, “Wait’s image

principle”) has become very popular for computing geophys-
ical low-frequency (LF) fields due to atmospheric currents
and other geo-electromagnetic (EM) sources above the earth.
The method is an extension of the classical image principle
associated with the perfectly electrically conducting (PEC)
plane and it is asymptotically valid when . Wait’s image
principle is normally presented as the geometric image of the
original source in a PEC plane at a complex depth depending on
the conductivity of the ground and the frequency. The principle
was later extended to the stratified ground by expressing the
complex depth in terms of the impedance of the stratified
ground [4]. In 1984, an exact form for the image theory was
constructed and Wait’s image principle was shown to emerge as
its asymptotic approximation [5], [19], [20]. In the formalism
of the given exact theory the image of a point source is a line
source in complex space.

Because Wait’s image principle was defined for the vertical
magnetic dipole (small horizontal current loop), it can be ap-
plied to any horizontal current distributions provided the current
is solenoidal, i.e., it satisfies , and when the fre-
quency is low enough [8]. However, if the divergence of the hor-
izontal current does not vanish, there is accumulation of charge
and Wait’s image does not give good results. It is the purpose of
the present paper to derive an extension to Wait’s image prin-
ciple from an asymptotic limit of the exact image theory given
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in [10] so that also the charge distribution can be taken into ac-
count. Also, an approximate image for the vertical component
of the electric current can be obtained. Another complex image
principle for vertical currents was recently introduced by re-
placing it through an equivalent horizontal divergence-free cur-
rent system [6].

The outline of the paper is as follows. First, we review the ba-
sics of the exact image theory for the planar interface and con-
sider its LF asymptotic form when . Next, it is shown
that the exact image expressions can be simplified from infi-
nite series of Bessel functions to simple Bessel function for-
mulas which are asymptotically exact in the LF case. Finally,
by applying and step-function approximation to the image
functions, we obtain simple approximative image expressions
of which Wait’s image is seen to emerge as one example.

II. I MAGE THEORY FOR THEPLANAR INTERFACE

A. General Expressions

Let us start from the exact image formulation given in [10]
as applied to the simple case of current source in air above
the planar interface of a homogeneous ground with permittivity

and permeability . The electric field reflected from
the ground can be represented as radiated by an image current
source in air, , a function of the position vectorand an
integration parameter [10, eq. (7.261)]:

(1)

Here, denotes the wavenumber and
the wave impedance in the air region .

is the scalar Green function

(2)

For complex arguments, the branch of the square root must be
taken so that its imaginary part is nonpositive. This makes the
Green function exponentially decaying with distance.

According to the original theory, the image source can be
expressed in the form [10, eq. (7.257)],

(3)

(4)
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The mirror reflection dyadic produces the mirror image
of the original source. The three scalar image functions denoted
by , , (prime denotes differentiation) de-
pend on the electric properties of the ground . Everywhere,
the subscript denotes a component transverse to theaxis.

To simplify the field expression, let us assume that the orig-
inal source exists on a horizontal plane at the height
above the ground, i.e., that the current function and its mirror
image are of the form

(5)

Here, is a surface density source (dimension A/m) which
may also have a vertical component. Now thefunction
can be integrated out in (1), which thus reduces to a threefold
integral. Changing thevariable to , (1) can be rewritten
as

(6)

where the image source is of the form

(7)

a source in the three-dimensional space. For the field integral (6)
to be bounded, it may be necessary to choose an integration path
in the complex plane. This can be interpreted as the image
source existing in complex space.

B. Image Functions

For the isotropic ground with relative permittivity and per-
meability , the three image functions can be expressed in
terms of a two-variable function as [10]

(8)

(9)

(10)

(11)

and is the derivative of . The function is
defined by

(12)

(13)

Because values of the Bessel functions decrease in magni-
tude with increasing argument only ifis real, we must choose
the location of the image in the complexplane so that

is real. The heaviside unit step function
guarantees that the image exists only for , i.e., that it

starts from the mirror image point .
For large absolute values of the parameterwe can simplify

the function (12) using known properties of the Bessel function
[12]. In fact, for we have

(14)

where the function and its derivative are

(15)

(16)

The function appears essentially simpler than both
as an analytic expression and in its functional dependence on the
argument . As is seen from Fig. 1, oscillates slightly when
approaching the value when increases. Its extremal values
are obtained at the nulls of the function for

. The first minimum is at .
The Bessel functions satisfy the following integral relations

valid for any integer

(17)

Applied to the expansion (12), we obtain

(18)
In some cases, the function can be approximated by a

function. The form of the approximation

(19)

can be found by requiring that the first two moment integrals
and are the same on both sides of

(19) [7].

III. GEOPHYSICAL APPROXIMATION

A. Asymptotically Exact Images

The image expressions can be simplified under three condi-
tions characteristic to geophysical problems: 1) the frequency is
small; 2) the ground is nonmagnetic; and 3) has nonvanishing
conductivity. To approximate the previous expressions we set

and express the complex of the ground as

(20)
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Fig. 1. Graphs of the normalized function(�=2)f(�; p) for different real values of the parameter�. For� ! 1 the limiting function isg(p). It can be
approximated by the negative step function��(p � 1).

where denotes the real part of the relative permittivity.
Further, we write the parameter as

(21)

Assuming now nonvanishing conductivity and smallso that
is valid, the complex relative permittivity

has a large magnitude. On the other hand, the wave-
number parameter can be approximated by

(22)

Since the magnitude need not be small if happens to be
large, we make no further assumption at this point.

Let us now find the asymptotic forms for the previous image
functions in the limit . First, the image function
does not depend on and is simple enough in its exact form

(23)

Here and in the sequel, the step function has a meaning
because, in our assumption, is real.

The other image functions depend onthrough the function
and can be approximated for large values of in

terms of the function defined in (16) as

(24)

(25)

(26)

These expressions for the image functions are asymptotically
exact and replace the more elaborate forms (9), (10), valid for
general values of . This means saving in computer time.

B. Approximate Images

The previous image expressions can be further simplified by
approximating them through simpler functions. The simplest
possible functions in an integration are, of course,functions.
A function with values concentrated enough around some point
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can be approximated by afunction at a suitable location found
by equating the first two moments of the function and itsap-
proximation as was done for the function in (19).

When the image function in (23) is approximated by
the function through (19) as

(27)

it is seen to lead to the celebrated Wait’s image [1], [3]. This
result was also obtained in [5], [7], [10], [19], and [20]. In trying
to do the same for the image functions and leads
to trouble because the function is not peaked and rather
resembles a step function. However, its derivative can be now
approximated by the function. Because of (16) and (17) we
have

(28)

and the approximation becomes

(29)

in a manner analogous to that giving Wait’s image. Thus,
through integration we obtain the step-function approximation
for the function as

(30)

These finally lead to the following approximations of the image
functions, which forms an extension to Wait’s image theory:

(31)

(32)

(33)

IV. A PPROXIMATE IMAGE EXPRESSIONS

Let us now apply the previous expressions to find image
sources corresponding to different source functions at the
height above the interface.

A. Vertical Dipole

A vertical current dipole of the moment at height

(34)

Fig. 2. Image of a vertical dipole consists of a dipole at the mirror image point
z = �h and a half-infinite line current obeying the image functionf (�z�
h).

has the image

(35)

which is a half-infinite line current starting from Fig. 2.
When inserting the asymptotically exact function from (24) to
the image of the vertical electric dipole (35), we have

(36)

Replacing now the function by the negative step function
we have the simple approximation

(37)

which is a combination of a dipole at the mirror image point and
a constant vertical line current in complex space. One should
note that this constant line current does not start from the mirror
image point but, rather, from the complex point

.
It is seen that in the limit the second term vanishes

and the first one approaches

(38)

which is the reverted geometrical image of the vertical dipole
and corresponds to the image in a perfectly conducting (PEC)
half-space.

B. Horizontal Source

Applying (7) and (3) to a horizontal surface current source

(39)

leads to the image source of the form

(40)
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The image is seen to consist of both horizontal and vertical cur-
rents, in general. If the original surface current is solenoidal sat-
isfying , its mirror image is purely horizontal

(41)

In this case, the image is also solenoidal. For nonsolenoidal cur-
rents there exists concentration of surface charge , which
can be expressed from the conservation law as

(42)

(40) can now be written as

(43)

As is seen from the above, the functions and give
the respective images of the solenoidal current and charge den-
sity parts of the horizontal current function.

1) Horizontal Current Segment:As an illustration, let us
consider an -directed line-current segment of length and
magnitude (Fig. 3)

(44)

The corresponding surface charge distribution

(45)

equals two point charges at the ends of the segment. The hori-
zontal image component of the line current

(46)

is an half-infinite strip of horizontal surface current in the region
(Fig. 3). Under the geophysical approximation (27) we

can apply Wait’s image theory and replace the current strip by
the current line image (Fig. 4)

(47)

As a quick check, for the PEC case , the
negative mirror image of the current segment is obtained.

The vertical image component corresponding to the two point
charges

(48)

consists of two half-infinite vertical line currents at the edges
of the current strip. Applying again the approximate

image, the line currents can be replaced by the vertical current
dipoles

(49)

For the PEC limit the vertical image of the charges vanishes
because .

Fig. 3. Image of a horizontal current line segment consists of a horizontal
surface current strip and two vertical current lines. They obey the respective
image functionsf (�z � h) andf (�z � h).

Fig. 4. Approximate image of the horizontal current line segment consists of
a horizontal line current image at the depthz = �h = �h� 2=jB and two
vertical image dipoles at the depthz = �h = �h� 1=jB. Vertical images
correspond to the two charges at the endpoints of the original line current.

C. Point Charge

Equations (48) and (49) can be understood as image repre-
sentations of two point charges with , occupying
the ends of the line current. From these expressions we
can identify the image of a single time-harmonic point charge,
which although nonphysical as such, appears to be a useful con-
cept when the effect of atmospheric charge accumulation is con-
sidered [6]. In fact, the image of the oscillating point charge

(50)

can be expressed as the vertical line current

(51)

In the geophysical approximation we can first write the image
as the asymptotically exact vertical line current

(52)

and in the vertical dipole approximation as

(53)
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Fig. 5. Real and imaginary components of the fieldB (x) (in nano Teslas) at the groundz = 0 due to a current wave in ionosphere for time parameterT = 20 s.
Crosses: exact computation; solid lines: field from asymptotically exact image; dashed lines: field from�-approximated image.

V. NUMERICAL TEST

To convince the reader on the quite complicated formulas
above, a numerical test was made to check the image theory for
a typical geophysical problem. A horizontal line current above
the earth was assumed with parameter values corresponding to
an auroral electrojet current in the ionosphere. The line current
was not assumed constant but rather as a wave of the form

(54)

with the numerical values A, km,
1/m. For such a wave the divergence does not vanish and there
are accumulating charges along the current. The time period
(inverse frequency) of the ELF current was taken to be
s. The conductivity of the homogeneous flat ground was chosen
to be m. Because fields at the ground may induce
in overhead lines currents large enough to saturate transformers
resulting in blackouts in power systems, field computation is of
practical interest [14], [15].

As was seen above, the image of the current consists of both
horizontal and vertical parts. Because the horizontal part is cov-
ered by Wait’s image, it can be omitted and only the effect of the
novel vertical image component is of interest. It is quite easily
seen that the magnetic-field component, which is parallel to
the original current and Wait’s image, is solely caused by the
vertical image. Thus, it can be used as an indicator to validate
the approximative vertical image component.

Exact values of the component at the surface of the
ground were based on a formulation without image concepts
[16] and the fast Hankel transform [17] which was applied
to actual numerical computation. In Fig. 5 depicting the field
values, the points (crosses) corresponding to the exact field are
seen to practically coincide with the solid curve representing
field values computed with the asymptotically exact image ex-
pression. Thus, the asymptotically exact image reproduces the
exact results within the accuracy of the figure. The approximate
-function image (the dashed line) is also seen to give quite

good accuracy, which shows us that, in practical computation,
it can be relied on for the present values of parameters. Because
the function approximates the exact image function, one can
understand that for such cases when the exact image is not
very concentrated, it must lead to errors in field computation
to a close range of points. A more detailed discussion on these
relations must, however, be left to a subsequent paper.

VI. CONCLUSION

The well-known complex image method introduced in 1969
by J. R. Wait, applicable to horizontal solenoidal currents above
the planar interface of the ground in the LF approximation, was
generalized to allow also nonsolenoidal horizontal and vertical
currents. All approximate image expressions were derived from
the exact image theory introduced in 1984. In the LF approx-
imation, the image expressions were first given an asymptoti-
cally exact limiting form, simple enough for accurate compu-
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tation. The final approximate image expressions were seen to
arise from these as and step-function approximations giving
Wait’s image among the results. The novel image term was ver-
ified through a numerical test.
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