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Nonradiating and Minimum
Energy Sources and Their Fields:

Generalized Source Inversion Theory and
Applications

Edwin A. Marengo, Member, IEEE,and Richard W. Ziolkowski, Fellow, IEEE

Abstract—A new general framework for characterizing scalar
and electromagnetic (EM) nonradiating (NR) and minimum en-
ergy (ME) sources and their fields is developed that is of interest
for both radiation and source reconstruction problems. NR sources
are characterized in connection with the concept of reciprocity as
nonreceptors. Localized ME sources are shown to be free fields
truncated within the source’s support. A new source analysis tool
is developed that is based on the decomposition of a source and its
field into their radiating and NR components. The individual ra-
diating and reactive energy roles of the radiating and NR parts of
a source are characterized. The general theory is illustrated with a
time-harmonic EM example.

Index Terms—Inverse problems.

I. INTRODUCTION

T HIS paper characterizes, in a unifying general theoretical
framework, new and old results on nonradiating (NR) and

minimum energy (ME) sources [1]–[3] and their fields, with
applications to source analysis and reconstruction. We present
this framework in the context of the inverse source problem
(ISP) in which one seeks to reconstruct an unknown source from
knowledge of its radiated field outside the source’s support [2],
[4]–[14]. The general NR and ME source-field descriptions de-
rived in this paper apply to any source-field system (scalar or
electromagnetic (EM), time-harmonic, or transient) in an arbi-
trary linear medium (homogeneous or inhomogeneous) and sub-
jected to arbitrary boundary conditions. We also investigate the
unique decomposition of a source and its field into their radi-
ating and NR parts and the associated power budget.

In this paper, we build upon the lines of [13], [14], and for-
mulate the ISP in a general linear operator framework in Hilbert
space. The paper aims to develop a new physical picture of the
ISP and, in particular, of both NR and ME sources and their
fields rather than to address the associated computational as-
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pects. The general source inversion and NR and ME source re-
sults presented in this work are relevant to antenna analysis and
synthesis and to inverse scattering [15]. We also develop a new
source analysis tool based on the decomposition of a source and
its field into their radiating and NR components. The purpose is
to isolate the field and energy roles of the radiating and NR parts
of a source. In fact, a portion of this research was motivated by
the question, “Is the NR component of a source spurious? Or,
on the contrary, can it be useful to the overall performance of
an antenna?” A question of much interest is whether a source
can be modified by adding NR sources to it so as to minimize
its reactive power.

In Section II, we formulate the general theory in an-dimen-
sional spatial or spatial–temporal coordinate space. We establish
a new characterization of a NR source in terms of its interaction
with fields produced outside the NR source’s support. The new
characterization relies physically on the concept of reciprocity
and also leads to a number of new results on ME sources and
their fields. We show that ME sources must be free-fields trun-
cated within the source’s support. Some of our results are gen-
eralizations to arbitrary sources and fields of results derived be-
fore, for special cases, by Friedlander [16], Kim and Wolf [17],
and others [14], [18]. In Section III, we investigate the unique
decomposition of a source and its field into their radiating and
NR parts. A new form of power budget analysis is carried out
which isolates the radiating and reactive energy roles of the ra-
diating and NR source components. The general source-field
decomposition and power budget analysis is illustrated for a
time-harmonic current distribution in a one-dimensional (1-D)
free-space. The 1-D results apply to transmission lines and also
illustrate many of the general results of Section II. Section IV
provides some concluding remarks.

II. GENERAL THEORY

A. Review of the General Linear Operator Formulation

Consider a general complex-valued scalar or vector source-
field system described by a linear scalar or vector partial
differential equation (PDE)

(1)

where is a linear, scalar or dyadic partial differential (PD) op-
erator, and is the scalar or vector field produced by a scalar or
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vector source distribution of support in an -dimensional
space where denotes the space or space–time coordi-

nates of the problem at hand. Table I lists the relevant space or
space-time coordinates (or , respectively), field, source,
and second-order PD operator associated with source-field sys-
tems of interest for EM and acoustic applications.

We formulate the inverse problem of finding an unknown
source , known a priori to be nonzero only within a certain
space or space–time region (the source region) from knowl-
edge of the field in a certain field region disjoint to .
To address this problem on physically reasonable grounds, we
define the Hilbert space of square-integrable sources
of support (the solution space) and the Hilbert spaceof

data fields that are nonzero only within (the data space)
and assign to them the respective inner products

(2)

and

(3)

where denotes the complex conjugate. The data fieldis re-
lated to via

(4)

where is the scalar or dyadic Green function associated with
the PD operator and the given boundary conditions, whereas

is the field-masking function defined by

if
else.

(5)

We shall refer to the linear mapping defined by (4)
as “the propagator.”

The inverse problem in (4) admits a solution only if the data
field is in the range of
as defined by the Picard conditions [13]. This problem does not,
in general, admit a unique solution due to the possible presence
of nontrivial sources (to be referred to as “invisible sources”
[19]) in the null space of . Any

NR source of support whose field vanishes entirely
outside is classifiable as invisible. However, the converse
is not always true since, depending on the problem considered,
there might be sources generating vanishing fields in the rele-
vant observation region while generating nonvanishing fields
outside . An example arises in connection with the ISP with
discrete far-field data in which the far fields are specified for cer-
tain discrete observation directions. In general, there might be
sources generating nulls in the radiation pattern at
those particular directions while generating nontrivial far fields
at other directions.

As long as a solution to the ISP exists, one can always make
it unique by enforcing the additional constraint of minimizing
the source’s norm . The solution in question is
the usual ME solution [2], [9], and is given by the pseudo-
inverse of [13]

(6)

TABLE I
RELEVANT SPACE ORSPACE–TIME COORDINATES(r OR (r; t), RESPECTIVELY),

FIELD, SOURCE, AND PD OPERATORASSOCIATED WITHSOURCE-FIELD

SYSTEMS OFINTEREST FORELECTROMAGNETIC AND ACOUSTICAPPLICATIONS

where is the adjoint of , defined by

(7)

We find by using (2)–(4) and (7) that

(8)

where is the Green function of the adjoint problem associated
with (1) (see, e.g., [20, p. 870] and [21, ch. 9]) whereasis
the source masking function defined by

if
else.

(9)

The second of (8) follows from the reciprocity condition
(see, e.g., [20, p. 883]). The linear map-

ping backpropagates the data field into the source
region whereas and . Finally, to
conclude this review, if the data field is not physically realizable
from sources (i.e., ), then one can seek
approximate solutions, such as the usual least squares solution
of minimum norm in the orthogonal complement
of [22].

B. NR and ME Sources and Their Fields

Next, we derive a number of previously unknown funda-
mental results on NR and ME sources and their fields of interest
for both direct and inverse problems. We also show how some
of our general results lead to a number of previously known
results corresponding to special cases. We focus primarily
on localized sources, although some of the more general
results can be obtained by treating the sources in the sense
of distributions. In fact, we first consider general localized
sources; later, we specialize our more general results to,
localized sources.

1) A New Characterization of a NR Source:We let be
an arbitrary scalar or vector field that is completely contained
in a certain bounded region (so that if

). It follows immediately that is a (perhaps
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distributional) NR source of support such that its generated
field [1], [16]

if (10)

Moreover, it has been known for some time that any NR source
of support can be written in that form. Now, since re-
sides entirely within the NR source region, it then follows
from the generalized Green theorem (see, e.g., [20, p. 870–877])
that

(11)

for any function , where is the adjoint of the PD operator
(as defined, e.g., in [20, ch. 7] and [21, ch. 9]). The last inte-
gral in (11) is seen to vanish if (or, equivalently,

) for . We have thus found NR sources of
support to be orthogonal to all solutions (within the entire
source region , its boundary included) of the homoge-
neous form of the adjoint PDE of the corresponding source-field
system. Thus, if is a NR source of support and

if (12)

then

(13)

If the PD operator is formallyself-adjoint so that (see,
e.g., [23, p. 154]), as is the case for all the source-field systems
listed in Table I, then (12) takes the special form

if (14)

Kim and Wolf [17] arrived, by means of a different procedure,
at the orthogonality relation (13)–(14) for continuous scalar NR
sources in the context of the inhomogeneous Helmholtz equa-
tion (where ). Here, we have put forth that result
in a more general context (12)–(14), valid for any source-field
system.

In addition, we can use (12)–(13) to generalize a result previ-
ously derived by Friedlander [16] in the context of the inhomo-
geneous scalar wave equation (where ).
By noting that obeys if
and , one concludes from (12) and (13) that

if

For example, and can be a retarded and an advanced Green
function, respectively. One also deduces that if a source is NR
relative to a retarded Green function, then it must also be NR
relative to the corresponding advanced one and vice versa. This
generalizes Friedlander’s result [16, theorem 3.2 ] to any source-
field system. This includes systems whereis not formally self
adjoint.

The general orthogonality relation (12)–(13) or its formally
self-adjoint PD operator version (13)–(14) can be shown to be
both necessary and sufficient for a source of supportto be
NR. For the usual scalar and EM sources listed in Table I, this
can be stated as follows:A scalar or EM source of support is
NR if and only if it obeys the orthogonality condition(13) with
respect to all solutions of(14). That this condition is necessary
is precisely the statement made in connection with (12)–(14). To
show sufficiency, we note that obeys

if and so that from (13)–(14)

if

which is precisely the NR condition (10). The orthogonality
condition (13) and (14) thus provides a new characterization of
a scalar or EM NR source. An alternative proof of this result is
given in the Appendix.

Next, we specialize the new NR source results (12)–(14) to
NR sources of support . In particular, we show that the

conditions contained in (12) and (14) can be put in a slightly dif-
ferent but less restrictive form if the NR sources considered are
known to be not only localized but also . To accomplish this
goal, we note that if is a second-order PD operator, then the
vanishing for of the NR field associated with the
NR source automatically forces both and its
normal derivatives to obey homogeneous boundary conditions
on the boundary that bounds so long as the NR source
lacks single-layer and higher order singularities (as defined, e.g.,
in [24, ch. 1]) on , as is, in fact, the case, for NR
sources. The above-stated NR boundary conditions were de-
rived first by Gamlielet al. [25] for bounded scalar sources to
the inhomogeneous three-dimensional (3-D) Helmholtz equa-
tion and rederived later by Berryet al. [26] for the 1-D case.
These NR boundary conditions have also appeared in two recent
papers dealing with scalar NR sources and their fields [27], [28].
Now, the vanishing of on the boundary of enables
us to relax the previous results which apply to any NR source
confined within . In particular, when dealing with
sources, we need not require (12) and (14) to hold within the en-
tire source region (its boundary included), but instead
we require them to hold just in the interior of , its boundary

possibly excluded. Whether (12) and (14) hold or not on
is then inconsequential, as can be deduced from (11), be-

cause of the above-stated guaranteed vanishing ofon .
We have then arrived at the following version of (13) and
(14). Let be an homogeneous field solution in
the interior of so that if (the boundary

of excluded). Then, is an , scalar or EM
NR source of support , if and only if

(15)

for all . The result (15) is consistent with the orthogo-
nality relation since scalar
or EM backpropagated fields produced outside the NR
source’s support must obey , at least within
the interior of , as can be shown using (8) and (9). Because
of the truncation, within , of will
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contain, in general, single- and/or double-layer singularities on
, which in no way affect the validity of (15).

2) The Wave Nature of ME Sources and Their Fields:
ME sources of support are orthog-
onal to all NR sources . It thus follows from (11)
that any ME source must obey, within the interior of
the source region , its boundary excluded, the homoge-
neous form of the adjoint PDE of the corresponding source-field
system (since this and only this ensures the vanishing of the or-
thogonality integral in (11) with for arbitrary ).
One reaches the same conclusion from (6), (8), and (9). Thus,
for a formally self-adjoint PD operator

if excluding (16)

ME sources are therefore free-fields truncated within the
source’s support. By referring to Table I, one finds the
time-harmonic EM version of this previously unknown general
result to be (see Fig. 1)

if excluding (17)

The validity of (17) and of the scalar versions of (16) for
and has been corroborated, for

special cases, in [14] and [18].
The result (16) has two interesting previously unknown con-

sequences. In particular, it follows from (1) and (16) that the
fields produced by ME sources must obey
, where , in the interior of the source’s support.

For example, for time-harmonic EM problems, this means (see
Fig. 1)

if excluding (18)

We will use (18) in Section III in connection with source-field
decompositions. The following result applies to second-order
PD operators : It can be shown by using (16) and standard
Green function techniques that any nontrivialsource
of compact support having compactly supported first partial
derivatives within (so that vanishes along with its first par-
tial derivatives on the boundary of its support ) must pos-
sess a NR part in the Hilbert space . In particular,
no nontrivial solution of (16) exists that obeys the above-im-
posed continuity and differentiability properties on [the
only solution of (16) that obeys both homogeneous boundary
conditions simultaneously is ]. Now, since the re-
quirement (16) with must hold for a general source

to lack a NR part in the Hilbert space ,
one concludes that any source obeying the above-im-
posed properties must possess nontrivial projections
into the subspace of NR sources confined within , i.e.,
any such source must possess a NR part. This result has been
used and illustrated further in a recent treatment of the ISP with

Fig. 1. AnyL (D ) current distributionJ(r) can be uniquely decomposed
into the sum of a NR partJ (r) that generates a NR field confined entirely
within D and a purely reactive power plus a radiating ME partJ (r) that
generates an identical field as the total field forr =2 D and an identical real
power as the total source’s real power. The NR sourceJ (r) is related to its
confined NR fieldE (r) via J (r) = (LE )(r) whereL = (r �

r��k )=(i!�). The ME sourceJ (r) is a free-field truncated within the
source region and its field obeys in the source region an iterated homogeneous
vector wave equation(L E )(r) = 0. The reactive portion of the ME power
P is, in general, not trivial. It is due to energy storage associated with both
its internal field (corresponding to the source region) and its external field.

regularity constraints (in addition to the usual localization con-
straints) [29].

3) A Reciprocity Relation for NR Sources:Next, we show
how the result (15) and, in general, the more general result (13)
and (14) for scalar or EM sources can be regarded physically
as a manifestation of the well-known reciprocity property. In
particular, NR sources are shown to be also nonreceptors from
the points of view of both reaction and interaction.

The propagator describes the effect of a source located in
a certain source region on test sources (receptors, e.g., re-
ceiving antennas) located in a certain field region. In partic-
ular, the coupling between a scalar or vector source, say ,
confined within and a test source located in , is
described by

(19)

The quantity defined by (19) corresponds to what is
known in EMs as “the reaction of on .” This quantity ap-
pears in the usual Lorentz reciprocity theorem (see, e.g., [30, p.
326]). Another quantity of interest, the interaction power of the
two-source system , is defined by an orthogonality inte-
gral of the form (see [30, pp. 20–22; 28–31] and [31, p. 440] for
the EM case details)

(20)

To characterize NR sources in the role of receptors, we let
be a scalar or vector test source in the role of the radiator

and a NR source in the role of the receptor. By noting
that if (the boundary of excluded)
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as can be verified using (4) and (5), one finds from (15), (19),
and (20) that for any

(21)

This means that NR sources are also nonreceptors, i.e., they do
not interact energetically, with external sources and fields pro-
duced by external sources induce no reaction on them. The con-
cept of reciprocity draws the physical picture for this previously
unknown result. In particular, if a source does not radiate, then
it does not receive either.

III. A N APPLICATION TOSOURCEANALYSIS

Since ME sources are truncated free fields, the question
arises, “Can one build a ME source?” Yes. For instance, one
can build a wave-like source such as a traveling-wave antenna.
Interestingly, sources of the form of a transient plane wave have
received attention recently in connection with well-collimated
ultrawideband radiation [32], [33]. The next question is then:
Do ME sources outperform, perhaps by their lack of a NR
part, non-ME sources in a physically meaningful way? Or,
on the contrary, can one add NR components to a source
so as to enhance its radiation performance? These questions
apply to both radiation (transmission) and reception and, to
our knowledge, have never been addressed satisfactorily. To
address these questions, one must characterize the NR and
radiating (ME) components of a source energetically. This
section characterizes, for EM sources, the radiating and reactive
energy properties of the NR and ME source components. This
is accomplished by investigating the unique decomposition of
a source and its field into their NR and ME components and
the associated power budget. The general results are illustrated
for the special case of a time-harmonic, homogeneous source
in a 1-D space, which is applicable to transmission lines. The
1-D example also illustrates many of the general results of
Section II. In the following, attention is restricted to sources
in simply connected source regions.

A. General Power Budget Analysis

Consider an current distribution in free space
with a suppressed time dependence spatially supported
within a simply connected source volume. It is a well es-
tablished fact that any source, say a current distribution

, contained in a simply connected source region, can be
uniquely decomposed, in the Hilbert space , into
the sum of a NR and a radiating (ME) component (see, e.g.,
[13] and the projection theorem discussion in [34, p. 82]; see
also Section III-B of this paper). Analogously, the associated
total field can be decomposed into a NR and a ME part due to
the source’s NR and ME parts, respectively. These source-field
decompositions are schematically illustrated in Fig. 1, which
also shows some of the results derived in Section II-B. We find
that the total (real plus reactive) input powerassociated with

an source can be expressed as (see, e.g., [30, pp.
20–22; 28–31])

(22)

where and are the individual field
and power contributions due, respectively, to the NR and ME
components and of the total source . Note that the
ME power contains, in general, both real and reactive com-
ponents. Moreover, since the total and ME fields are identical
outside the source region, one deduces that ,
i.e., the real component of equals the total real power ex-
iting the source volume, also equal to the total real input power.
The NR power contributes nothing to the exiting power
and is purely reactive . The sum of the last two
cross-term integrals in (22) equals zero. To show this, we ex-
press as , where

and substitute this expression into the last two in-
tegrals in (22). One deduces by manipulations similar to those
used in Section II-B that

(23)

The sum of these cross terms is, thus, purely real; furthermore,
it must be zero in order to comply with energy conservation
as can be deduced from (22) since and

. We have thus found that , i.e.,
the total source’s input power equals the sum of the individual
NR and ME powers. Fig. 1 summarizes this new form of power
decomposition. To fully appreciate this result, one must bear in
mind that fields can be superposed at will, whereas, in general,
powers cannot. This is why we had to handle the cross-term con-
tributions above carefully.

B. Example in 1-D Space: A Homogeneous Source

The space-dependent part of the electric field
produced by a 1-D current distribution with a
suppressed time dependence, where

(24)

is given by (see, e.g., [21, p. 912])

(25)
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where . For a source of spatial support
(a strip of width centered about the origin), (25)

yields

if
if

(26)

where

(27)

For , the electric field is then determined by the forward
and backward plane wave amplitudes and , respectively.

1) A 1-D Inverse Source Problem:We consider next the ISP
of deducing an unknown source , of known support

, from knowledge of and . To compute the associ-
ated ME solution , we define the Hilbert space of
sources localized within to which we assign the inner
product

(28)

Similarly, we define the data vectors obeying
the square-summability requirement . We
also define the discrete Hilbert spaceof all such data vectors
and assign to it the inner product

(29)

The forward linear mapping (the propagator) is
found from (27) to be defined by

(30)

The class of invisible sources
is seen to coincide with the class of NR sources of sup-

port since the vanishing of automatically implies, in
view of (26), the vanishing of for . It then fol-
lows from the projection theorem (see, e.g., [34, p. 82]) and
well-known results derived in [13] that any source
can be uniquely decomposed into the sum of a radiating and
a NR part and , respectively, where
and are the orthogonal projections of into
and , respectively. We shall make use of this result next to
carry out the unique decomposition of the homogeneous source

into its radiating and NR parts.
The backpropagator , where , is

found from (28)–(30) to be defined by

(31)

where

if
else.

To determine the ME source consistent with a given
data vector, we use (30) and (31) in addition to (6) with the
substitutions and . One obtains, after
some manipulations, the result

(32)

where , which is identified to be a free-field
plane wave expansion truncated within the source’s support.

2) Special Case: A Homogeneous Source:The following
analysis, based on (32), aims to isolate the wave properties
and energetic roles of the radiating and NR components of the
unit-amplitude homogeneous source and its
field. One finds from (27) that for this source

(33)

The radiating component of , corre-
sponding to the Hilbert space of sources of support

is given from (32) and (33) by

(34)

where

The corresponding NR part is then

(35)

The term , hence, the radiating part of
defined by (34) vanishes if , i.e., a ho-
mogeneous source oscillating at those quan-
tized frequencies is purely NR. Therefore, the extension of the
smallest NR homogeneous source is for which the
source’s size coincides with the wavelengthof the field. On
the contrary, no frequencies exist at which the homo-
geneous source lacks a NR part. This is not
surprising since the homogeneous source does
not obey the ME source necessary condition (16) with

.
We have thus established the unique decomposition in the

Hilbert space of the homogeneous source
into its radiating and NR parts, and , respec-
tively. We consider next the corresponding field decomposition.
In carrying out the field decomposition, we shall also illustrate
the use of the ME field necessary condition (18). Equation (25)
yields the following expression for the total field produced
by the homogeneous source within the source’s
support:

if (36)
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Fig. 2. The radiating (thick solid line) and NR (solid line) parts of the
homogeneous sourceJ(x) = M (x) versusx=a, for (a) ka = �=6. (b)
ka = �=2. (c) ka = � (NR case). (d)ka = 1:5�. (e) ka = 2:5�. (f)
ka = 5:5�.

The field produced by the radiating part of the
homogeneous source is defined by (25), with the
substitution and (34). We obtain, for

(37)

The result (37) can be derived, alternatively, from (18) with the
substitutions and

, i.e.,

if

so that

if (38)

To solve for the unknown coefficients , we note
that the ME source defined by (34) is bounded
and piecewise continuous. This immediately forces
to be everywhere continuous (see Appendix A of [25]).
Therefore, the radiating field must be defined
by (24), (34) and (38) with the boundary conditions

Fig. 3. The field magnitude forjxj � a produced by the homogeneous source
J(x) = M (x) versusx=a (solid line). Also shown are the magnitudes of the
radiating (dashed line) and NR (dashed-dotted line) parts of the total field for
jxj � a. (a)ka = �=6. (b)ka = �=2. (c)ka = � (NR case). (d)ka = 1:5�.
(e) ka = 2:5�. (f) ka = 5:5�.

. One ob-
tains, for

(39)

Equation (39) can be shown, after some algebra, to reduce to our
previous result (37), as expected. The fields and
for are given by (26) with .
The NR field produced by the
NR part of the homogeneous source
vanishes for . On the other hand, for , the NR
field is explicitly defined by (36) and (39).

Fig. 2 shows plots of the spatial profile of the radiating
and NR parts of for versus ,
parameterized by . The radiating part of is
a standing wave truncated within the source’s support, as
expected. Fig. 2(a) illustrates the low-frequency nature of the
source decomposition in which the homogeneous source is
mostly radiating (as can be shown from (34) and L’Hopital’s
rule). Fig. 2(b) corresponds to the case. The ra-
diating part of the homogeneous source now vanishes on the
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Fig. 4. Dashed line: Real power radiated by the homogeneous source
J(x) = M (x) versuska=� (the value atka ' 0 is used as a reference for
normalization). This is also the real input power of this source. Solid line:
total reactive power due toJ(x). Dashed-dotted line: reactive power due to
J (x). Dotted line: reactive power due toJ (x).

boundaries and and, therefore, has compact
support in . This behavior holds, in general, only if

as can be verified from (34).
Fig. 2(c) corresponds to the smallest NR homogeneous source
wherein . Fig. 2(d)–(f) corresponds to
and , respectively. A gradual increase of the NR compo-
nent of the homogeneous source is observed asincreases.
This was to be expected since in (34) tends to zero
as . Fig. 3 shows plots of the spatial profile of the
magnitude of the radiating and NR fields associated with the
radiating and NR source components in Fig. 2. Also shown are
the total fields (magnitude only). As expected, the latter are seen
to coincide with the radiating fields on the boundaries

and . Fig. 4 shows plots of the real and reactive
power of the - self interaction as a function of . Also
shown are plots of the radiating and NR contributions to the
reactive power. The real power of the- self interaction
equals the time-averaged radiated power and is contributed
only by the radiating part of , as expected. On
the other hand, the reactive energy is contributed by both
the radiating and NR parts. The reactive contribution of the
radiating part decays rapidly for . This is not surprising
in light of the observations above since itself decays
rapidly for . Interestingly, the radiating and NR reactive
power plots in Fig. 4 suggest the possibility of modifying a
given source by adding a NR source to it, so as to reduce the
source’s overall reactive power. NR source additions have no
effect whatsoever neither on the original source’s exterior field
nor on its exiting power but can reduce, through their reactive
power contributions, the overall reactive input power (as seen,
e.g., at an antenna’s terminals). Ideally, one would want the
added NR source to fully suppress the ME source’s reactive
power contribution. These ideas are illustrated below.

Consider a modified source of the form

(40)

where and are the NR and ME sources defined
in the previous developments anda parameter that needs to
be chosen so as to minimize the source’s overall reactive power.
Note that independently of the value assigned to, the modified
source in (40) is “equivalent” to the homogeneous source

from which it was derived in the sense that both
produce the same external fields. Fig. 5 shows the value offor
which the imaginary part , i.e., a source
of the form (40) whose value of is chosen according to Fig. 5
possesses no reactive input power. This shows that NR sources
can be useful from an antenna design point of view. In the ex-
ample considered, the addition of a NR component tailored to
the given homogeneous source was found to fully suppress the
original source’s reactive power. The same result also shows that
ME sources are not necessarily optimal from a perfomance point
of view. It seems that, instead, sources of optimal performance
will contain, in general, both NR and ME contributions.

IV. CONCLUSION

This paper characterized in novel ways NR and ME sources
and their fields in the context of a general ISP formulation, with
applications to source analysis and reconstruction. The general
results developed in the paper apply to any source-field system
described in a spatial or spatial–temporal coordinate space by
a linear scalar or vector PDE, such as the usual scalar and EM
systems in a linear medium. Central to the general theory was
the reciprocity principle, which we used in different ways. This
principle has played a significant role in illuminating a variety
of problems in EMs and acoustics [35]. Our use of this prin-
ciple in Sections II-A and II-B can be regarded as yet a new
application of this powerful tool. In Section II-B, we derived
several previously unknown orthogonality relations among NR
and ME sources and homogeneous field solutions of the as-
sociated scalar or vector source-field system. The reciprocity
principle was pivotal then in establishing the physical nature of
those results. In particular, it was concluded that NR sources
are also nonreceptors, and vice versa (NR sources do not absorb
power from nor react to incident fields). The orthogonality of
a NR source relative to all homogeneous field solutions in its
support is then a manifestation of a NR source’s null receptive
nature. A NR source’s nonreceptive behavior and its orthogo-
nality to homogeneous field solutions are then, respectively, a
physical and a mathematical statement of the same property. We
also conclude that if a source is NR relative to a given Green
function, then it must also be NR relative to its associated ad-
joint and, in general, any Green function of the governing scalar
or vector PDE. It was also shown that ME sources take the
form of free-fields truncated within the source’s support, i.e.,
the ultimate sources of wave radiation are themselves waves.
Throughout the paper, an effort was made to show how some of
the new general results reduce to known results derived before
under special conditions.

Many of the general ISP concepts developed in the paper
were illustrated with a time-harmonic EM example. We also
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Fig. 5. Values of� for which the imaginary part=fP g = �=fP g.

developed a new source analysis tool based on the decompo-
sition of a source and its field into their radiating and NR parts.
The associated power budget analysis revealed previously un-
known aspects of the radiating and reactive energy properties
of a source’s radiating and NR components. It was found that
the total input power associated with a given source can be de-
composed into the sum of the individual power contributions
due to the source’s radiating and NR parts. This previously un-
known result isolates the energy roles of the radiating and NR
source components. It thereby opens the possibility of using NR
sources as a tool for antenna optimization. The latter possibility
was illustrated for a 1-D source by means of a simple source
construction procedure. We plan to investigate this possibility
further in the future in connection with antenna dipoles and ar-
rays.

APPENDIX

We develop here a proof of the EM form of (13) and (14). In
particular, we show that a localized current distribution
with a suppressed time-dependence and spatial support

is NR if and only if

(A.1)

where is any solution of the homogeneous vector wave
equation

if (A.2)

Let and be a radiating and a NR current distribution,
respectively, localized in disjoint bounded spatial regions
and . It is not hard to show by following a procedure analo-
gous to that employed in [30, pp. 324–325] to derive the Lorentz
reciprocity theorem that

(A.3)

where
and electric and magnetic fields produced by

, respectively;
and fields produced by ;

bounded spatial region enclosing both
and ;
surface that bounds ;
denotes a surface differential element over

;
unit vector in the direction of the outward-
normal to .

One arrives at the same result by using the vector analog of
Green’s second identity (see [36, p. 250]) and the representation

. By noting that the
regions and are disjoint and if , one
finds from (A.3) that

(A.4)

The necessary portion of the proof is completed by noting that
the field in (A.4) represents the most general solution of
(A.2) inside , i.e., the most general solution of (A.2) can be
synthesized via sources external tosuch as the current distri-
butions used in proving this result. To show sufficiency, we
note that any dyadic Green function of (A.2), say the outgoing
dyadic Green function , must obey

if and so that from (A.1)
if , which

completes the proof.
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