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Abstract—The problem of electromagnetic radiation from a cir-
cular loop antenna of radius , carrying a current is considered.
The loop may be radiating in the presence of one or more of the
following objects: a centrally located dielectric or perfectly con-
ducting sphere of radius , a spherical dielectric shell of inner
radius and outer radius , a perfectly conducting spheri-
cally symmetric cap at radius , and another such cap at radius .
Typical geometric structures considered are shown in Fig. 1. It is
demonstrated how the presence of the sphere, shell, and caps can
change and direct the radiation pattern of the loop.

Index Terms—Circular loop, dielectric bodies, loop antennas,
radomes, spheres, spherical antennas.

I. INTRODUCTION

T HE electromagnetic field of a circular loop antenna in free-
space has been widely investigated [1]–[4] (see also the

references listed in [4]). Circular loops radiating in the presence
of dielectric material were studied. Examples are the insulated
loops [5], [6], the loop near a planar interface [7], [8], and the
loop near a model of the side of a human head [9]. The effect of
a perfectly conducting open spherical shell on the field not of a
loop but of a plane wave was treated in [10] and [11]. The effect
of perfectly conducting spherical caps on the field of a loop was
considered in [12]. In [13], spherically symmetric dielectrics
were used to modify the radiation pattern of a loop.

Consider the field of a circular loop antenna near symmet-
rically placed spherical dielectric and/or perfectly conducting
objects. These objects can be used to shape the radiation pat-
tern of the loop of radius . The particular dielectric and con-
ducting objects used are a centrally located dielectric or con-
ducting sphere of radius , perfectly conducting spherical
caps of radii and , and a dielectric shell of inner
radius and outer radius. Radiation patterns are obtained for
the three cases shown in Fig. 1.

The field of the circular loop radiating in any one of the three
environments shown in Fig. 1 is expressed as the field of an
electric vector potential where is the unit vector in the
radial direction from the origin at the center of the loop and
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where is the distance from the origin andis a solution to
the Helmholtz equation ([14], (6–26)). Due to symmetry, there
is no radially directed magnetic vector potential anddoes
not depend on the angle shown Fig. 1(c). For is
constructed to be finite at the origin. For each of regions

, and consists of both inward
and outward traveling waves, and consists of only outward
traveling waves in the region where . The exact solution
requires an infinite number of waves in each region so that
must have an infinite series representation in each of the five
regions.

We retain only the first terms of the infinite series repre-
sentation of in each region. For all cases shown in Fig. 1, all
boundary conditions except those at are that the tangen-
tial electric and magnetic fields are continuous at all dielectric
interfaces and that the tangential electric field vanishes on the
surface of the conducting sphere and on each side of each con-
ducting cap. At , the tangential electric field is continuous
and, with the electric currentof the loop viewed as the electric
current density on the surface of the sphere of radius,
the component of the magnetic field suddenly increases by
as passes through in the direction of increasing. Here,
is the unit vector in the direction and

where is the Dirac delta function.

II. FORMULATION

We want to obtain the far-field patterns for the three cases
shown in Fig. 1. In Case (a) shown in Fig. 1(a), the loop of radius

carrying the electric current radiates in the presence of a
dielectric sphere of radius and relative permittivity and
a dielectric shell of relative permittivity . Here,

is the distance from the center of the loop. In Case (b) shown
in Fig. 1(b), the loop radiates in the presence of a conducting
cap for at and a conducting cap for

at . In Case (c) shown in Fig. 1(c), the
loop radiates in the presence of a dielectric or conducting sphere
of radius , a dielectric shell , and a conducting
cap at .
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Fig. 1. Typical cases considered. (a) Dielectric sphere inside the loop and
radome outside. (b) Conducting caps atr = b < a andr = d > a. (c)
Dielectric and conducting objects around the loop.

In practice, the loop is driven by a voltage source at one point
on the loop, resulting in nonuniform loop current when the ra-
dius of the loop is one wavelength or more. In that case, the
current can be expanded into an even Fourier series as follows.

(1)

In this paper, the contribution due to the constant term is com-
puted. Moreover, an almost uniform current may be obtained by
multiple feeds and the results presented in our paper will be valid
for such excitation.

If the excitation is distributed, radiation resistance is not
clearly defined because there is no clearly defined reference
current. For this reason, no radiation resistances were com-
puted.

Due to symmetry, the electric field has no radial component
so that the electromagnetic field can be obtained from an elec-
tric vector potential where is the unit vector in the ra-
dial direction and is given by (2), shown at the bottom of the
page where is the Legendre polynomial of degree. Also,

, and are the alternative spherical Bessel functions
([14], Appendix D), and , and are
constants to be determined. Furthermore,is the wavenumber
in the region where is the wavenumber in the region
where , and is the wavenumber in the rest of
space. In the exact solution, . The approximate solu-
tions presented in this paper were calculated with . The
electric and magnetic fields obtained from are respectively

and where [14, (6)–(26)]

(3)

and

(4)

Here, , and are the unit vectors in the , and direc-
tions, respectively. Also, is the angular frequency andis the
permeability. The field component is not needed because we
will not impose any boundary conditions on it.

Case (a) is treated in this paragraph and the next four. At
is continuous for all and, assuming that the constant

loop current is expressed as , has a discontinuity equal
to

(5)

(6)

where and denote the limits as approaches
from above and below respectively. In view of (2), substitution
of (4) into (6) gives

(7)

(2)
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where is the intrinsic impedance of free-space. Multiplying
both sides of (7) by , then integrating from 0 to

, and next using [15, p. 489]

(8)

and [14, (E-25), (E-27)]

even
odd (9)

we obtain, upon replacement ofby

(10)

where is given in the Appendix.
Continuity of at , continuity of at , con-

tinuity of at , and continuity of at are ex-
pressed as

(11)

(12)

(13)

(14)

where is the intrinsic impedance in the dielectric shell.
Continuity of at and continuity of at are

expressed as:

(15)

(16)

where is intrinsic impedance in the dielectric sphere.
Equations (5) and (10)–(16) constitute a system of eight si-

multaneous equations involving the eight unknown coefficients
, and . This system is solved for

by first obtaining two equations involving only the unknowns
and and then solving these two equations for. The two

equations involving only the two unknowns and are ob-
tained by first using the two equations at to solve for in
terms of , then using the two equations at to solve for

and in terms of and . Next, the previously found ex-
pression for is used to express and in terms of only .
Then, the two equations at are used to solve for and
in terms of and . Next, the previously found expressions
for and are used to express and in terms of only

. These expressions are substituted into the two equations at
. Finally, these two equations, which now involve only

the unknowns and , are solved for . The procedure de-
scribed in the previous seven sentences is implemented by first
using (11) and (15) to obtain

(17)

where is given in the Appendix. Then, (5) and (10) are used
to obtain

(18)

(19)

Substitution of (17) into (19) gives

(20)

Next, (12) and (13) are used to obtain

(21)

(22)

where the ’s are given in the Appendix. Substitution of (18)
and (20) into (21) and (22) gives

(23)

(24)

where the ’s are given in the Appendix. Substituting (23) and
(24) into (14) and (16), we obtain

(25)

(26)

where the ’s and ’s are given in the Appendix. Solving
(25) and (26) for , we obtain

(27)

For

(28)

In the far zone where ([14], (D-24))

(29)

(28) reduces to

(30)

In Case (b), where the conducting caps are at and
, the region for which is “squeezed out” and the

unknown coefficients and that appeared in the expression
for the electric vector potential in this region in Case (a) are also
“squeezed out”. Equations (5) and (10) are valid as they stand,
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(a)

(b)

(c)

Fig. 2. Far-field patterns in the presence of dielectric bodies [Case (a)]. (a) A
dielectric sphere of radiusb, and" = 4:0 inside the loop. (b) A radome of
inner radiusc = 3:0 �, and" = 4:0 surrounding the loop. (c) A dielectric
sphere inside the loop and a radome surrounding the loop forb = 0:5 �; c =

1:2 �; d = 1:3 �, and" = 4.

(11) is valid with replaced by , and (14) is valid with ,
and replaced by , and , respectively:

(31)

(32)

Setting for at and enforcing
continuity of for at , we obtain

(33)

(34)

Enforcing continuity of for at and setting
for at , we obtain

(35)

(36)

Equations (33) and (34) complement each other to form a single
mixed boundary value equation. Similarly, (35) and (36) form
another mixed boundary value equation. First using (31), and
then using (5) and (10), we express , and in terms of

and . Using (32) to eliminate in favor of in our
expressions for , and , we express , and in
terms of and . Substituting these newly found expressions
into (33)–(36), we obtain

(37)

(38)

and

(39)

(40)

where , and are given in the Appendix.
Enforcing the composite equation consisting of (37) and its

complement (38) at equally spaced values ofbetween and
and enforcing the composite equation consisting of (39) and
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(a)

(b)

(c)

Fig. 3. Far-field patterns in the presence of conducting bodies [Case (b)]. (a)
One conducting cap atr = d = 1:5 �. (b) One complete sphere of radiusb
inside the loop. (c) A conducting cap atr = b and another conducting cap at
r = d for � = 90 ; � = 90 , andb = 0:5 �.

its complement (40) at the same values of, we obtain equa-
tions involving the unknowns .
In the far zone, is given by (30) where is the solution of
these equations.

In Case (c), (5), (10), and (12)–(14) hold. If the sphere is
dielectric, (11) and (15) hold. If the sphere is conducting, then

the tangential electric field is zero at so that (11) holds
with :

(41)

Continuity of tangential magnetic field at for
and gives

(42)

Setting the tangential electric field equal to zero at for
, we have

(43)

Equations (42) and (43) complement each other to form one
composite equation.

In Case (c), (17)–(25) are valid where is given by (A.2) if
the sphere is dielectric and by (A.18) if the sphere is conducting.
Substituting into (23) and (24) the solution of (25) for in
terms of , we obtain

(44)

(45)

With and given by (44) and (45), (42) and (43) are
seen to be one composite equation involving theunknowns

. If instead of the single conducting cap
shown in Fig. 1(c), there are two conducting caps at ,
one extending from , and the other extending
from , then the domain of (42) changes to

and the domain of
(43) changes to .

Enforcing the composite equation described in the previous
paragraph at equally spaced values ofbetween zero and,
we obtain equations involving the unknown ’s. In the
far zone, is given by (30) where is the solution of these

equations.

III. N UMERICAL RESULTS AND DISCUSSION

For various purposes, conducting or dielectric objects can be
located near a circular loop antenna to change or direct the radi-
ation pattern. All far-field patterns shown in Figs. 2–4 are plots
of where, with regard to (30),

(46)

where the right-hand side of (46) was calculated by taking the
uniform loop current to be mA on a loop of radius

where is the wavelength in free-space. The constantwas
chosen to render the maximum value of the computed right-hand
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(a)

(b)

(c)

Fig. 4. Far-field patterns in the presence of dielectric and conducting bodies
[Case (c)]. (a) A dielectric or conducting sphere inside the loop and a radome
surrounding the loop forb = 0:5 �; " = 2; c = 1:2 �; d = 1:3 �. (b) A
dielectric sphere inside the loop, and a conducting cap on the outside surface
of the radome forb = 0:5 �; " = 4; " = 2; c = 1:2 �; d = 1:3 �.
(c) A conducting sphere inside the loop, a radome surrounding the loop,
and a two-piece conducting cap on the outside surface of the radome for
b = 0:75 �; " = 2; c = 1:2 �; d = 1:3 � (unlike the one-piece cap that
covers� < � < � in Fig. 1(c), the two-piece cap covers both� < � < � ,
and� < � < � where0 � � < � < � < � � 180 ).

side of (46) unity for the loop radiating in free-space. So chosen,
volts.

A dielectric sphere of radius will change the shape of
the radiation pattern of the loop depending on the permittivity
of the sphere and its radius (see Fig. 2(a)). While a dielectric
shell (radome) of inner radius and outer radius pro-
tects the antenna from environmental effects, it could change
the radiation pattern considerably. However, when the thickness

where is the wavelength in the radome, the field
of the loop antenna seems to pass through the radome without
much alteration as seen in Fig. 2(b). In Fig. 2(c), the effect of
both dielectric spheres inside the loop and radome outside can
be seen as the relative permittivity of the radome increases. A
radome whose thicknessis small in Figs. 2(b) and 2(c) can be
approximated by a ohm impedance sheet [16]
where is the absolute permittivity of free-space andis the
relative permittivity of the radome. We have used this approxi-
mation which resulted in one less unknown coefficient. The ap-
proximate results so obtained were observed to be in excellent
agreement with the exact results when .

In Fig. 3(a), a conducting cap at behind the loop en-
hances the two forward lobes and degrades the two backward
lobes. The enhancement and degradation are most pronounced
when the cap is hemispherical and . In Fig. 3(b),
a conducting sphere of radius enhances the radiation at

when but enhances the main lobes and de-
grades the radiation at and near when . In
Fig. 3(c), conducting caps at and serve to enhance
the two forward lobes when .

In Fig. 4(a), the loop radiates in the presence of a conducting
or dielectric sphere inside as well as a thin radome outside.
Figure 4(b) shows radiation patterns of the loop in the presence
of a dielectric sphere inside and a radome as well as a conducting
cap outside. The loop whose patterns appear in Fig. 4(c) radi-
ates in the presence of a conducting sphere inside and a radome
outside with two conducting caps on its outside surface. One
cap extends from to , and the other extends
from to . The two main lobes are greatly en-
hanced when , and

, that is, when radiation can only escape from the part
of the outside surface of the radome for which .

IV. CONCLUSION

Radiation patterns of a circular loop of electric current in the
presence of spherically symmetric conducting or dielectric ob-
jects were computed. The presence of such objects could change
the radiation pattern of the loop current appreciably. However,
their effect on the pattern is very complicated.

APPENDIX

In (10)

even
odd

(A.1)
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In (17)

(A.2)

In (21) and (22)

(A.3)

(A.4)

(A.5)

(A.6)

In (23) and (24)

(A.7)

(A.8)

(A.9)

(A.10)

In (25) and (26)

(A.11)

(A.12)

(A.13)

(A.14)

In (38) and (39), is given by (A.1) and

(A.15)

(A.16)

(A.17)

In Case (c), (A.1)–(A.12) are valid if the sphere is dielectric.
If the sphere is conducting then (A.2) must be replaced by

(A.18)
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