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Analysis of Transient Scattering From Composite
Arbitrarily Shaped Complex Structures

Tapan Kumar SarkaFellow, IEEE Wonwoo Lee, and Sadasiva M. Raellow, IEEE

Abstract—A time-domain surface integral equation approach time to “travel” to the observation point. By properly choosing a
based on the electric field formulation is utilized to calculate the time step, an explicit solution for the present-time currents may
transient scattering from both conducting and dielectric bodies be obtained which may be solved recursively. So, once the cur-

consisting of arbitrarily shaped complex structures. The solution ts att det ined. the ti A ted to th t
method is based on the method of moments (MoM) and involves the rents at, are determined, the ime 1S incremented to the nex

modeling of an arbitrarily shaped structure in conjunctionwiththe ~ interval and the procedure is repeated. Since the present-time
triangular patch basis functions. An implicit method is described currents are functions of previously occurring currents, the cur-
to solve the coupled integral equations derived utilizing the equiva- rents need to be stored in a current history matrix.

lence principle directly in the time domain. The usual late-time in- In this work, the transient scattering from arbitrarily shaped,

stabilities associated with the time-domain integral equations are ite th di . 1(3-D). d | d bodiesi id
avoided by using an implicit scheme. Detailed mathematical steps composite three-dimensional (3-D), developed bodies is consid-

are included along with representative numerical results. ered using the time-domain integral equation (TDIE). TDIE has
Index Terms—Electromagnetic (EM) scattering, integral equa- been solved earlier using the MOT .Fechmques for c;ondyctmg
tions, transient EM analysis. structures [8]-[15]. However, only Tijhuis [16], Vechinski and

Rao [17], [18], and Mieras and Bennett [19] used the technique
to calculate scattering from dielectric structures. In [16] and
. INTRODUCTION [25], a domain formulation for inhomogeneous objects was con-
HEN broad-band information is desired it is more efsidered as opposed to the surface formulation described here. In
ficient to solve for the electromagnetic (EM) scatterin§@rticular, Mieras and Bennett solved the 3-D dielectric body
problem in the time domain. Some of the early analytical worgoblem. However, their mathematical formulation resulted in
in transient EM problems were based on physical optics € simultaneous solution of four integral equations. Further-
obtain the approximate impulse response from conducting fl8ere. their usage of rectangular patches restricted the modeling
plates, spheres, and prolate spheroids [1], [2]. A time-domzapabilities.
solution for an infinite cylindrical antenna was performed by Even though the use of triangular patches to model arbitrary
Wu [3]. Rigorous expressions have also been obtained fodérfaces [20]-{22] provides flexibility, the problem with the
dipole in the presence of a conducting wedge [4], an infinitEDIE is that it becomes unstable for late times. During the last
circular cylinder [5], a semi-infinite cone [6], and a circulaféW years many methods [23]-{28] have appeared in the liter-
disk [7] to name a few. ature that deal with the numerical instability problem. What is
Mitzner [31] and Shaw [32] applied the marching-on-in-tim@€eded is a satisfactory scheme which will work under all cir-
method for solving integral equations. Bennett extended the fédmstances is still elusive.
mulation using an integro-differential equation obtained by en- That is why an implicit scheme [29], [33], [34] has been ap-
forcing the boundary conditions of the tangential field compdplied to take care of late-time instabilities. Transient scattering
nents on the surface of the scatterer could be solved for diredfigm an aircraft is presented to illustrate the efficacy of this pro-
in the time domain [8]. Thus, Bennett generalized the tecRedure. The aircraft has a nose which is made of dielectric and
nique from acoustics and EMs. This technique has been label@@ remainder is conducting as shown in Fig. 1.
the marching-on-in-time (MOT) algorithm or the time-domain N Section Il, the time-domain electric field integral equa-
integral-equation (TDIE) technique. Like method of momenion is presented. Section Il describes the triangular patch basis
(MoM), the MOT method discretizes the scatterer into segmergictions and in Section IV the numerical implementation is de-
or patches. The time axis is generally divided into equal incréeloped. Section V contains the expressions for the far scattered
ments. With this method, the currents on the scatterer at a dégld. Section VI presents numerical examples followed by Sec-
tain time¢ = #; are related to the currents on the scatterer #n VII, the conclusion.
t < t;. This is because the “effect” of a current requires a finite
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Fig. 2. Conducting and dielectric bodies in a homogeneous medium.

By using the equivalence principle, we replace the conducting
structures by an equivalent surface currgntadiating in free-
space. On all the conductor surfacesthe tangential compo-
nent of the electric field must approach zero. The total tangen-
tial electric field on the conducting surface must be zero. The
regions exterior and interior to the dielectric body are character-
ized by medium parameterg, .) and (g4, £4), respectively.

It may be noted that the incident field is defined to be that which
would exist in space if the structure was not present. Further,
we assume that the dielectric body is a closed body so that a
unique outward normal vector can be defined unambiguously.
We employ the equivalence principle [19], [30] to split the orig-
inal problem into two separate ones. The first one is where the
fields are equivalent external to the body and the second one is
where the fields are equivalent internal to the body. The original
problem is shown in Fig. 3 and the equivalent exterior problem
in Fig. 4. In the first case, we establish the restriction that only
the fields exterior to the body remain the same. Therefore we
are free to choose what the interior fields are to be. For sim-
plicity, the interior fields are set to zero, and then the interior
material parameters are set to be the same as those external to

Fig.1. (a)Anaircraft. (b) Locations on the aircraft where the transient curreriiye body. Now, since the tangential components of the fields are

are computed.

not continuous across the dielectric surfag€in the equivalent
problem), equivalent electric currerltg and magnetic currents

as shown in Fig. 2. The whole system is immersed in fregy, are required to make up for the discontinuity. Since these
space and is illuminated by a transient pulse. In the present fgfirents now radiate in a homogeneous unbounded medium, one
mulation, the central idea is that we treat each conductor aggl; yse the free space Green’s function to compute the fields
each dielectric body as if it is immersed in free-space. Thysiilizing the vector and scalar potentials. So, if we take any point
we consider a combination of conductor-dielectric interface gsj,st inside the surfac§y, then we require that the sum of the
two bodies separated by zero distance. In this way, we treatiﬁ ident field and the scattered field (due to the curréhts

dielectric bodies as closed structures whereas the conduc

tl‘{?l%) addto zero. Lef; designate points justinside the surface

bodies may be open or closed. Since there may be zero—thiglé— then the total electric fields satisfy
ness conductors we employ only the electric field formulation

to treat both conductors and dielectrics.

For the sake of presentation, we assume that there is one con- Ei.n =00nS, (1)
ducting body and one dielectric body. However, the formulation
is quite general and can be used to analyze multiple complekere the superscript"” refers to a surface internal t8,; and

structures.

“+" denotes a surface external §3.
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Fig. 5. Internal equivalence problem.

Fig. 3. Original problem. ) ] o ]
regions in the limits as they are approached from their comple-

mentary regions, respectively. Hence

e’ Ee
A,
E[J]=F——-FVo, (5)
¢ / ~ 5 1
1 N EM]=F—VxF, (6)
\ \ £y
1 . .
Maq /' I where A, andF, are the magnetic and electric vector poten-
Jd/ ’:"L - 1 tials, respectively, an@,, is the electric scalar potential given
’ 1 b
1 Uve; €Ee ] y
{ ; R
‘\ (0, 0) IS J <r’, t— c_)
/7 d A_,U r, t) = - —de/ 7
.~ . 0= [ = ™
[
M <r’, t— —)
Fig. 4. External equivalence problem. Fb(r, t) =, / Cy ds’ (8)
S 471'R

Similarly, we can form an equivalent interior problem as
shown in Fig. 5. In this case, the external fields are set equal to
zero and, hence, the exterior material parameters are the same
as the interior parameters of the dielectric body. As befofr+ = the exterior region (denoted ky, the signs in (5) and
equivalent currents along the surface internabgoare set up (6)is “—,” whereas whemr = the interior region (denoted hi),
to satisfy the discontinuity in the fields. It turns out that thesgien the sign in (5) and (6) is “+3 is the surface of integration.
equivalent currents are just the negative of the currents fgris the velocity of wave propagation in mediumi = |r—1/|
the exterior equivalent problem. Here, we require that thepethe distance from the field poimtto the source point’. The
currents radiate zero fields external to the body. electric surface charge densityis related to the electric surface

Therefore, a set of coupled integral equations may be writtgrrent density by the continuity equation given by
for the tangential component of the total electric field in terms
of the equivalent currentk, on the conducting structure add v.J— 9,
andM, on the dielectric structure given by Y

(-
By(r, ) = /S S N YA T 9)

€v

t
7=0
Note that in (7)J refers to eithed,. or J; whenv = exterior
[E: (3., Jq, My) + Ei““]t =0 res, (2) region. However, when = interior regionJ = J 4 because for
) o _ _ this casel; affects only the internal fields. Also, note that the
(B2 (Je, Ja, Ma) + E ]tan =0res, () time retardation®?/c,, depends upon the medium in which the
[E5(=Ja, —My)],an =0 r e ST (4) field is evaluated. By using (10), (9) may be rewritten as

whereE™® represents the incident field and the subscripts * v.3(v

1 . . . . . " - r, T — —
and ‘d” represent the fields of the exterior and interior equw—g) (v, 1) 1 / / cy
e\ = T
v S Jr=0

).
alence models evaluated at the boundaries of the equivalen A7 R drds’. (11)



1628 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

By enforcing the continuity conditions, we note that on the sur-
facesS., E2 = —E®° and on the surfacg,; we have

e, tan tan

Basis Function

- . +
EX, =—E&; E}

e, tan tan d, tan

=0

where the subscript4n” refers to the tangential components of
the fields. Thus, we derive the following set of integral equations
for the composite body problem given by

JdA 1 | ;

— 4+ Ve. + —VxF, = [E™° forr € S.

[ ot + T e, oo [ ]tan, re Normal Component
(12) Th of the Basis Function

JdA. 1 | i

O var lear] <, rees;

Ee Jtan 7 13) Fig. 6. Geometrical description of the basis function.

JdA, 1 |

——~+Vd;+—VxF =0 forre S;. 14

{ ot 4 €4 d_ tom d (14) + m® edge

The integral equation described by (12)—(14) is the electric field
integral equations (EFIE) since we enforced the continuity con-
dition on electric field only.

I1l. DESCRIPTION OF THEBASIS FUNCTION

In this work, the given complex structures are approximated
by planar triangular patches. The triangular patches have the
ability to conform to any geometrical surface or boundary,
permit easy descriptions of the patching scheme to the com-
puter and may be used with greater densities on those portibi§s?- Triangles associated with an edge.
of the surface where more resolution is desired. Assuming a
suitable triangulation for the scattering structure, two sets whereh? andaZl are the height of the edge from the free vertex
basis functions are defined to approximatandM as follows. and the unit normal vector to the plane of triang®, respec-

Fig. 6 shows two triangleg? and T, associated with the tively. Similar remarks apply to the quantities in triangig.
nth edge of a triangulated surface modeling the surface of aThe electric currenl and the magnetic curred¥I on the
body. Points in7? may be designated either by the positioscattering structure may be approximated in terms of the two
vectorr, or by p? defined with respect to the free vertexf. basis functions as
_Si_milgr remarks apply to the position \_/ecto'm T4 except thgt NotN, N,
it is directed toward the free vertgx. It. is assumed th§t the index J= Z Lf, M= Z M,.g, 17)

p < g and, thus, the reference direction for the positive current —
associated with theth edge is froni/’? to 77¢.

Referring to Fig. 7, we define the two vector basis functionghereN. and Ny represent the number of edges, discounting
associated with theth edge as the boundary edges in the triangulated model of the conducting

and the dielectric object, respectively. Thus, for a composite
body problem, we hav& = N, + 2N, unknowns in the MoM

0

n=1

};’p—g pLcI? solution procedure. It may be noted that the functifynare the
" functions described in [20]. The functiogs are point-wise or-
fulp) = § Ph pl €11 (15) thogonal tdf;, in the triangle pair and usage of this orthogonality
hi " " property provides a better stability in the numerical solution.

0, otherwise
IV. NUMERICAL SOLUTION PROCEDURE

and
First of all, for the numerical solution we divide the time axis
al x pb o € TP into equal intervals ofAt and refert; = jA¢. Next, we assume
i " " that all the current coefficients are zero fox 0 which implies
gn.(p) =< al x p? ¢ 9 (16) thatwe are seeking a causal solution. We also assume that, when
h Pr & 4n calculating unknown coefficients, () andM,,(¢) att = ¢;, the

0, otherwise coefficients for all the previous time instants are known.
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Next, by approximating the time derivative in (12)—(14) anc 4

using the standard backward difference formula, we have-at .t ey loe
tj 0.6¢ 0.04 §'
o m
) 2 o4y 2
At £ T 002 8
A, (r, t;) + (AOV O (r, t;) + — V x Fe(r, t;) goz §
L . € tan 5 o- 0 p
= [(AHE™ (r, t;) + Ac(r, t;-1)],,.  forreS. (18) g | §
A (r, t;) + (AHVE, (r, t;) + — V x F,(r, tj)} 2 4f ! : . (%
L . € tan 06f '\‘ I' 1-0.04
= [(AHE™ (r, t;) + A. (r, t;_1)] . forr e S; (19) ool g ]
i ’ 0.8 1-0.06
At ‘ . . , ,
Ag(r, tj) + (A)V ey (r, t;) + o V x Fy(r, tj)} o 20 40 60 80 100 120
L tan Time {Im}
= [Ad (I‘, tjfl)]mn forr € Sj (20) @
Notice that in (18)—(20), the right-hand side consists of known === Fiead] 0.01
quantities, i.e., the incident field and the vector potentidl-at —o.oosg
ti_1. - o.ooe-§
We now solve (18)—(20) by applying the Galerkin’s method 2 00043
in the MoM context and hence the testing functions are same a § 0002 2
the expansion functions. By choosing the expansion function: % o 5
f,, also as the testing functions and defining the inner product & §
for two real vector function§ andh by g2 |03
Z 04 100045
06 0.0068
(f, h) = / f-hdS (21) 08} {-0.008
s
o 20 e 60 o 10 120"
we have Time [Im}
(b)
(i, Ae (1, tj()z;; (£, (A)V O (r, ;) = 0.02 >
(0 B wr, 1) T e
Ee- 3 10.01 ;:3)
= (i (ADE™ (x, 1)) + (£, Ac (r, 1-2)) 3
forr e S, (22) % o005y
(£ Ac (1, 8)) + (i, (A (r, 1) -
At £ 0055
+ <fm, BDGF, (r, tj)> ; 00083
€ - 5
e. 0.01 E
= <fmv (AHE™ (r, tj)> + (fm; Ac (r, tjfl» __0'01;”
forre S, (23)
<fmv Ay (I‘, tj)> + <fmv (At)vq)d (I‘, tj)> "o 20 40 Tim?eo[lm] 80 100 12—802
At
+ <fm, % V x Fy(r, tj)> (©)
— <fm7 Ay (r, tj—1)> forr e S(—ii—' (24) Fig. 8. (a) Electric currents on the conducting structure. (b) Magnetic current

on the dielectric part. (c) Electric current on the dielectric part.

Consider the testing of the vector potentd] and the gradient

of scalar potentiaV®,, in (22)—(24). Here, we have Next, we consider the evaluation ¢f,,, (At/e,)V x F,).
Using (5) and extracting Cauchy principal value from the curl
term, we may rewritéf,,,, (At/e,)V x F,) as

(s Ay (1, £))) = /S £ - A, (v, t;) dS (25)
(£, (A)®,, (v, t;)) = (A) /S £, - VO, (r,t;) dS <fm, <§> V x F'v>

M At
= — (A) / @, (r, t;)V - £, dS. (26) = <fm, FAta, X ?> + <fm, <E—> V x E> (27)
) v
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5 : : . : sided of (27), the positive sign is used wheg S; andv = ¢
T Dackward and negative sign otherwise.

----- The next step in the MoM procedure is to substitute current
expansion functions defined in (17) into (22)—(24), and this pro-

cedure yields the following set of equations given by

O_
® Ne+Ng R:t:t N.+Ngy
% Z Arnn,e-[n <tj - rnn) Z Brnn e
n=1
S t;—(REE/ce) J\d RE=
‘ : /T . L(r)dr +n§=:l Cpun, e M, <tj - c””)
v Nc+Ng Rt
10 ) . . . = Frn,j + Z Arnn,e-[n <tjl - ﬂ) (28)
- C,
(o} 20 40 80 80 100 120 — e
Time [Im]
@) form=1,2,...N.+ Ny and
0.15 ; ++ t;—(REE fea)
f— ann K mn
- ts)i?;ékward Z Arnn dI <t - ) + Z Brnn d /
011 I forward |4 7=0
Na Rt
.": n=1 €d
.o — AL REE
FE = Z Arnn,d-[n <tj—l - rnn) (29)
0.05" ot Cd
0.1 form =1,2,..., Ng.In (28) and (29), we have
0.15 1
rnn v Nu / / 4 dS/ dS (30)
02 : : ' : : i |r B
“0 20 40 60 80 100 120 V- f
Time [Im] Brnn v = - / m dS/ dS (31)
v S -
(b) At
012 Crnnl/—:l:_< +At//
‘ N -_ bacajckward W gn
0.1r \ === si 1
W forward -V x [m} ds’ ds (30)
0.08f ! \ |
) 1
0.06 '," i forv = eorv = d and
0.04f { %
&}N 0.02F lll’ =|‘ Frn,j = (At) / fm . EinC (I‘, tj) ds. (33)
/I ‘I l”“\ S
ot — .
| ] / | Again note that, in (32) the first term on the right-hand side is
0.02 \ ! g g
i i positive ifr € S, andv = ¢, and negative otherwise.
i tive if S d d t th
004 Voo I The integrals in (30)—(33) can now be evaluated by invoking
-0.06 \‘.,--"' ] the triangular basis functions. This results in
_ o{ L L L L L
005 20 40 60 80 100 120 , ¢
Time [Im] Ay c+./ n 4s’
(C) mn, v I’Ll/ 2 [pnl s 47{' |r%_l|_ _ r/|
Fig. 9. (a)z component of the scattered far-field aleng= 0; ¢ = 0° £
(backward),p = 0; 6 = 180° (forward) andp = 90°; ¢ = 90° (side). +po - I — (34)
(b) y component of the scattered far-field along the three previously defined m s 4m |I‘$77 — /|
directions. (c) component of the scattered far field along the three previously
defined directions. At £, V,-f,
Brn,n, v = T T / 7&—1— - dS/
£y 2 S 47r|rm —r’|
where F represents (5) wittR = 0 term removed from the / Vs -t ds’ (35)
integration. Also, in the firstinner product term of the right hand s 4m |r%7 — r’|
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o= (At [ ct | pinc (rc-l— t») V. EVALUATION OF THE FAR SCATTERED FIELDS
m,3 = 2 m m oYy .
Once the transient currents on the scatterer have been deter-

mined, we can calculate the far scattered fields. These fields may
be thought of as the superposition of the fields due to the elec-

by replacing the double integrals by single integrals on tfieic currents only and with the fields due to the magnetic currents
primed variables and adopting a one point integration at tRBIY- o )
centroid of the respective triangles for the unprimed variables. 'N€ scattered magnetic field due to the electric currents alone
Last, we consider the inner product termin (32). We note thd & pointr is given by
if edgesm andn do not lie on a common triangle, then the result J <r,’ ‘_ _)
is zero. Ifthey lie on a common triandlé then let us assume for S(r, f) = 1 Vo A~ 1 v / e/ g
S

o5 BT (x5 t5)] (36)

illustration them, n = 1, 2, or 3 as in Fig. 4. The contribution H w L A
from 7’ to the inner product is (39)
whereR = |» — #’|. Taking the curl operator inside the integral
N N results in
Pm Pn
— =) = - py dS s
2 <hm’ h,, >T b, /T P Pu Hj(r, f)
_ (At [ [ra]* + [ral® + s pry
8A 12

_(rm+rn)'rc+rm'rn+ 4 R _ﬁ Ce

(37)

R
) VxJ(r’,t——) A R
M] - Ce LIV <r’, t— —) ds’.

(40)

_ Since we are restricting ourselves to the far figkd, > R, so
where’,,,, 7., andA represent the length of theth edge, posi- \ye can neglect the second term in (40). Further, we may write
tion vector to the centroid of the triangle, and area of the triangle
T, respectively. V xJ <r/7 t— E) _19 xR (41)

Next, we consider the left-hand sides of (28) and (29). Upon Ce Ce Oty
close examination, it is clear that depending on the choice \%eretr =t—(R/c.), andR is a unit vector in the direction
At, many terms under the summation signs are known and gan ,/ Therefore
be moved to the right-hand side. These are the terms for which N R
(REE/c,) > At. Moving these terms to right-hand side, we s (r £,) ~ Z 1 0l (t) / fi xR o (42)
can develop a single matrix equation given by I dre. Oty T R

k=1
whereN., represents all the edges. For far-field calculations, we
RE* can make the following approximation&: = r, for magnitude
DX =¥ @1+ X (621 72 ) | (38) iomawhers. = o), F ~ 1 <1/ & The tme deriatie of
the current is approximated with a finite difference as shown in

(43) at the bottom of the page and the integral may be carried
Note that the elements ¢f] matrix in (38) are formed by the out analytically to give

potential terms wheQR:E /c,) < At. Furthermore, note that A

L mn : . : fiu xar o lh g er | ey o o4
the [«] matrix is a sparse matrix and its sparsity depends upon T ds’ = o (pk + oy ) X ay. (44)
the choice ofAt. Also, the elements of the matrix,,,, are not T T ! !

functions of time and, hence, need to be computed only once aFinally, combining (42)—(44), the normalized far magnetic
the first time step. We also note that the computation of the efeeld is given by (45) at the bottom of the next page and the
ments ofX (¢, _; — (RE% /¢,)) involves some type of interpola- electric field

tion in time. In this work, we simply chose linear interpolation s . s A
although more complex interpolations are possible. Finally, the Ej (r; tn) = 1eHj (r, ) X ar (46)
equivalent electric and magnetic currents induced on the soaterer, is the wave impedance in the medium surrounding the

terer may be obtained at each time step by solving (38). scatterer and the subscriptrefers to the electric currents.

7>_r/-ﬁr T_r/'ﬁr
on(ty e =)~ bt - ———

~ e 43
ot, At (43)
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We designate (45) and (46) as
H3 = H) 440 + H3 48,
Ej =n.(H], 480 — Hj oay).

(47)

(48)

The scattered fields from the magnetic current is given by
E(r, t)

1 L Gy
:—VxFe:—in/—cedS’
S

Ee Ee 47
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with £, = +ay, k = —a,, 7= 30.0 /m andct, = 45.0 /m.
(The unitY/m denotes a light meter. A light meter is the length of
time taken by the EM wave to travel 1 m. Assuming the medium
to be free space this amounts térh = 3.335 64 ns.) The field

is incident nose on and is arriving frogn= 0° and® = 0°. The
incident electric field isc-polarized. The time stepft = 3.0

Zm) is chosen larger than the time step given by the Courant
condition in order to generate the implicit solution.

We first consider the transient currents at several points (on
the dielectric nose, conduction bodies, tails, and wings). The
transient electric currents on the conducting structures are given
in Fig. 8(a). The magnetic and electric currents on the dielectric

where theM subscript refers to the magnetic currents. By fOlsy ot res are shown in Fig. 8(b) and (c) along with the incident
lowing a similar analysis as that for the electric currents, we Cabctric field respectively

show (50) at the bottom of the page and

1
Hi (r, t,) = —a, x Ej4(r, t,) (51)
Tle
B :EJS\L 60 + EJS\L 45545 (52)
S 1 5 oy 5 oy
M = n_(_EJ\l, sA0 + B}y 08,). (53)

e

Finally, the total fields scattered from the dielectric body ma
be obtained by adding (48) and (52), and (47) and (53) to obtain

Ejor =(nH] 4+ E}y o) + (—nHj o + E}y 4)a (54)
S S 1 5 jay S 1 5 jay
Hi, =(Hj s — U_EM,qb)ae +(H7 4+ U—EM,e)%- (55)

VI. NUMERICAL RESULTS

Finally, the far-radiated electric field from the structure is
plotted in Fig. 9 for different angles of scattering. Fig. 9(a)
plots thex component of the scattered electric far fields along
¢ = 0; 8 = 0 (back side)y = 0; 6 = 180° (forward) and
¢ = 90°; 6 = 90° (side). Fig. 9(b) depicts thge component
of the electric far-fields along the three previously mentioned
directions. Observe that thecomponent of the field along the
ide is approximately zero. Finally, Fig. 9(c) providestlwom-
ponent of the far scattered fields along the three previously de-
fined directions. Please note that only in the side direction is the
z component significant.

Second structure that is presented is a helicopter shown in
Fig. 10 and its whole body is conductor. A Gaussian plane wave
is given WithE, = +a,, k = —a,, 7' = 72.0 m, andc¢t, =
108.0 /m. The field is incident on the top and is arriving from

Typical numerical results are presented for EM scattering = ¢° and# = 0°, z polarized, and with the time step\t
from complex composite structures. The first structure consid- 5.4 ym. We also consider the transient currents at four points
ered in this section is an aircraft. The nose part of the aircr@#in the head, body, wing, and tail), and the transient electric
is made of dielectric shown in Fig. 1 and the remainder of thgirrents on the structure are given in Fig. 11. Observe that all
structure is conducting. The dielectric constant of the nose k@& currents on both structures are stable in the late time.

e, = 10.0, 0 = 0 andp,. = 1. ltis illuminated by a Gaussian

plane wave which is given by VII. CONCLUSION

E™(r, t) = Eoi@—f (56) Analysis of transient scattering from composite complex
v structures is carried out by solving a set of coupled TDIEs.
where The TDIEs are derived using the equivalence principle and
4 . utilizing the continuity conditions on the electric field. For a
V= T(Ct —ctg—r-k) (57)  numerical solution, we employ the MoM in conjunction with
r—r -a, r—r - a,
1 X I tgayo) — )~ Do\ tnqy2) — T £y
H5 (r, t,) = — < < C = (pST 4 peT Ay 45
T J(r7 ) 47(; cAt 2 (pk +pk )Xa ( )
r—r - a, r—r - a,
e My | tovy2) — — )~ M th-1/2) — — ‘0
rEy(r, tn) = e : AL : : 2—T(P1C<+ +r ) xa  (50)
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Fig. 10. A helicopter and the locations where the transient currents are
computed.
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Fig. 11. Electric currents on the helicopter. [23]

planar triangular patch modeling. The method presented can
either be explicit or implicit depending upon the duration of[24]
the time step. Please note that, in order for the solution ts]
be explicit the time step must be less th&p,;,/c. where

Ry and e, represent the minimum distance between an3126
two patches and the velocity of the EM wave in the externa
medium, respectively. However, explicit solutions are known to
develop instabilities for late time and, for this reason we choosgn
an implicit scheme which provides a stable solution. [28]
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