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Analysis of Transient Scattering From Composite
Arbitrarily Shaped Complex Structures
Tapan Kumar Sarkar, Fellow, IEEE, Wonwoo Lee, and Sadasiva M. Rao, Fellow, IEEE

Abstract—A time-domain surface integral equation approach
based on the electric field formulation is utilized to calculate the
transient scattering from both conducting and dielectric bodies
consisting of arbitrarily shaped complex structures. The solution
method is based on the method of moments (MoM) and involves the
modeling of an arbitrarily shaped structure in conjunction with the
triangular patch basis functions. An implicit method is described
to solve the coupled integral equations derived utilizing the equiva-
lence principle directly in the time domain. The usual late-time in-
stabilities associated with the time-domain integral equations are
avoided by using an implicit scheme. Detailed mathematical steps
are included along with representative numerical results.

Index Terms—Electromagnetic (EM) scattering, integral equa-
tions, transient EM analysis.

I. INTRODUCTION

WHEN broad-band information is desired it is more ef-
ficient to solve for the electromagnetic (EM) scattering

problem in the time domain. Some of the early analytical works
in transient EM problems were based on physical optics to
obtain the approximate impulse response from conducting flat
plates, spheres, and prolate spheroids [1], [2]. A time-domain
solution for an infinite cylindrical antenna was performed by
Wu [3]. Rigorous expressions have also been obtained for a
dipole in the presence of a conducting wedge [4], an infinite
circular cylinder [5], a semi-infinite cone [6], and a circular
disk [7] to name a few.

Mitzner [31] and Shaw [32] applied the marching-on-in-time
method for solving integral equations. Bennett extended the for-
mulation using an integro-differential equation obtained by en-
forcing the boundary conditions of the tangential field compo-
nents on the surface of the scatterer could be solved for directly
in the time domain [8]. Thus, Bennett generalized the tech-
nique from acoustics and EMs. This technique has been labeled
the marching-on-in-time (MOT) algorithm or the time-domain
integral-equation (TDIE) technique. Like method of moments
(MoM), the MOT method discretizes the scatterer into segments
or patches. The time axis is generally divided into equal incre-
ments. With this method, the currents on the scatterer at a cer-
tain time are related to the currents on the scatterer at

. This is because the “effect” of a current requires a finite
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time to “travel” to the observation point. By properly choosing a
time step, an explicit solution for the present-time currents may
be obtained which may be solved recursively. So, once the cur-
rents at are determined, the time is incremented to the next
interval and the procedure is repeated. Since the present-time
currents are functions of previously occurring currents, the cur-
rents need to be stored in a current history matrix.

In this work, the transient scattering from arbitrarily shaped,
composite three-dimensional (3-D), developed bodies is consid-
ered using the time-domain integral equation (TDIE). TDIE has
been solved earlier using the MOT techniques for conducting
structures [8]–[15]. However, only Tijhuis [16], Vechinski and
Rao [17], [18], and Mieras and Bennett [19] used the technique
to calculate scattering from dielectric structures. In [16] and
[25], a domain formulation for inhomogeneous objects was con-
sidered as opposed to the surface formulation described here. In
particular, Mieras and Bennett solved the 3-D dielectric body
problem. However, their mathematical formulation resulted in
the simultaneous solution of four integral equations. Further-
more, their usage of rectangular patches restricted the modeling
capabilities.

Even though the use of triangular patches to model arbitrary
surfaces [20]–[22] provides flexibility, the problem with the
TDIE is that it becomes unstable for late times. During the last
few years many methods [23]–[28] have appeared in the liter-
ature that deal with the numerical instability problem. What is
needed is a satisfactory scheme which will work under all cir-
cumstances is still elusive.

That is why an implicit scheme [29], [33], [34] has been ap-
plied to take care of late-time instabilities. Transient scattering
from an aircraft is presented to illustrate the efficacy of this pro-
cedure. The aircraft has a nose which is made of dielectric and
the remainder is conducting as shown in Fig. 1.

In Section II, the time-domain electric field integral equa-
tion is presented. Section III describes the triangular patch basis
functions and in Section IV the numerical implementation is de-
veloped. Section V contains the expressions for the far scattered
field. Section VI presents numerical examples followed by Sec-
tion VII, the conclusion.

II. SURACE INTEGRAL EQUATION

In this section, we describe the development of integral equa-
tions in terms of unknown equivalent currents on the conduc-
tors/dielectric bodies illuminated by a transient EM pulse using
the equivalence principle.

Consider a system of finite length, finite or zero-thickness
conductors situated in the presence of several dielectric bodies
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1626 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

(a)

(b)

Fig. 1. (a) An aircraft. (b) Locations on the aircraft where the transient currents
are computed.

as shown in Fig. 2. The whole system is immersed in free-
space and is illuminated by a transient pulse. In the present for-
mulation, the central idea is that we treat each conductor and
each dielectric body as if it is immersed in free-space. Thus,
we consider a combination of conductor-dielectric interface as
two bodies separated by zero distance. In this way, we treat all
dielectric bodies as closed structures whereas the conducting
bodies may be open or closed. Since there may be zero-thick-
ness conductors we employ only the electric field formulation
to treat both conductors and dielectrics.

For the sake of presentation, we assume that there is one con-
ducting body and one dielectric body. However, the formulation
is quite general and can be used to analyze multiple complex
structures.

Fig. 2. Conducting and dielectric bodies in a homogeneous medium.

By using the equivalence principle, we replace the conducting
structures by an equivalent surface currentradiating in free-
space. On all the conductor surfacesthe tangential compo-
nent of the electric field must approach zero. The total tangen-
tial electric field on the conducting surface must be zero. The
regions exterior and interior to the dielectric body are character-
ized by medium parameters ( ) and ( ), respectively.
It may be noted that the incident field is defined to be that which
would exist in space if the structure was not present. Further,
we assume that the dielectric body is a closed body so that a
unique outward normal vector can be defined unambiguously.
We employ the equivalence principle [19], [30] to split the orig-
inal problem into two separate ones. The first one is where the
fields are equivalent external to the body and the second one is
where the fields are equivalent internal to the body. The original
problem is shown in Fig. 3 and the equivalent exterior problem
in Fig. 4. In the first case, we establish the restriction that only
the fields exterior to the body remain the same. Therefore we
are free to choose what the interior fields are to be. For sim-
plicity, the interior fields are set to zero, and then the interior
material parameters are set to be the same as those external to
the body. Now, since the tangential components of the fields are
not continuous across the dielectric surface(in the equivalent
problem), equivalent electric currents and magnetic currents

are required to make up for the discontinuity. Since these
currents now radiate in a homogeneous unbounded medium, one
can use the free space Green’s function to compute the fields,
utilizing the vector and scalar potentials. So, if we take any point

just inside the surface , then we require that the sum of the
incident field and the scattered field (due to the currents&

) add to zero. Let designate points just inside the surface
, then the total electric fields satisfy

on (1)

where the superscript “” refers to a surface internal to and
“ ” denotes a surface external to.
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Fig. 3. Original problem.

Fig. 4. External equivalence problem.

Similarly, we can form an equivalent interior problem as
shown in Fig. 5. In this case, the external fields are set equal to
zero and, hence, the exterior material parameters are the same
as the interior parameters of the dielectric body. As before
equivalent currents along the surface internal toare set up
to satisfy the discontinuity in the fields. It turns out that these
equivalent currents are just the negative of the currents for
the exterior equivalent problem. Here, we require that these
currents radiate zero fields external to the body.

Therefore, a set of coupled integral equations may be written
for the tangential component of the total electric field in terms
of the equivalent currents on the conducting structure and
and on the dielectric structure given by

(2)

(3)

(4)

where represents the incident field and the subscripts “”
and “ ” represent the fields of the exterior and interior equiv-
alence models evaluated at the boundaries of the equivalence

Fig. 5. Internal equivalence problem.

regions in the limits as they are approached from their comple-
mentary regions, respectively. Hence

(5)

(6)

where and are the magnetic and electric vector poten-
tials, respectively, and is the electric scalar potential given
by

(7)

(8)

(9)

For the exterior region (denoted by), the signs in (5) and
(6) is “ ,” whereas when the interior region (denoted by),
then the sign in (5) and (6) is “+.” is the surface of integration.

is the velocity of wave propagation in medium.
is the distance from the field pointto the source point . The
electric surface charge densityis related to the electric surface
current density by the continuity equation given by

(10)

Note that in (7), refers to either or when exterior
region. However, when interior region, because for
this case affects only the internal fields. Also, note that the
time retardation depends upon the medium in which the
field is evaluated. By using (10), (9) may be rewritten as

(11)
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By enforcing the continuity conditions, we note that on the sur-
face , and on the surface we have

where the subscript “ ” refers to the tangential components of
the fields. Thus, we derive the following set of integral equations
for the composite body problem given by

for

(12)

for

(13)

for (14)

The integral equation described by (12)–(14) is the electric field
integral equations (EFIE) since we enforced the continuity con-
dition on electric field only.

III. D ESCRIPTION OF THEBASIS FUNCTION

In this work, the given complex structures are approximated
by planar triangular patches. The triangular patches have the
ability to conform to any geometrical surface or boundary,
permit easy descriptions of the patching scheme to the com-
puter and may be used with greater densities on those portions
of the surface where more resolution is desired. Assuming a
suitable triangulation for the scattering structure, two sets of
basis functions are defined to approximateand as follows.

Fig. 6 shows two triangles and , associated with the
th edge of a triangulated surface modeling the surface of a

body. Points in may be designated either by the position
vector , or by defined with respect to the free vertex of.
Similar remarks apply to the position vectorin except that
it is directed toward the free vertex. It is assumed that the index

and, thus, the reference direction for the positive current
associated with theth edge is from to .

Referring to Fig. 7, we define the two vector basis functions
associated with theth edge as

otherwise

(15)

and

otherwise

(16)

Fig. 6. Geometrical description of the basis function.

Fig. 7. Triangles associated with an edge.

where and are the height of the edge from the free vertex
and the unit normal vector to the plane of triangle, respec-
tively. Similar remarks apply to the quantities in triangle.

The electric current and the magnetic current on the
scattering structure may be approximated in terms of the two
basis functions as

(17)

where and represent the number of edges, discounting
the boundary edges in the triangulated model of the conducting
and the dielectric object, respectively. Thus, for a composite
body problem, we have unknowns in the MoM
solution procedure. It may be noted that the functionsare the
functions described in [20]. The functions are point-wise or-
thogonal to in the triangle pair and usage of this orthogonality
property provides a better stability in the numerical solution.

IV. NUMERICAL SOLUTION PROCEDURE

First of all, for the numerical solution we divide the time axis
into equal intervals of and refer . Next, we assume
that all the current coefficients are zero for which implies
that we are seeking a causal solution. We also assume that, when
calculating unknown coefficients and at , the
coefficients for all the previous time instants are known.
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Next, by approximating the time derivative in (12)–(14) and
using the standard backward difference formula, we have at

for (18)

for (19)

for (20)

Notice that in (18)–(20), the right-hand side consists of known
quantities, i.e., the incident field and the vector potential at

.
We now solve (18)–(20) by applying the Galerkin’s method

in the MoM context and hence the testing functions are same as
the expansion functions. By choosing the expansion functions

also as the testing functions and defining the inner product
for two real vector functions and by

(21)

we have

for (22)

for (23)

for (24)

Consider the testing of the vector potential and the gradient
of scalar potential in (22)–(24). Here, we have

(25)

(26)

(a)

(b)

(c)

Fig. 8. (a) Electric currents on the conducting structure. (b) Magnetic current
on the dielectric part. (c) Electric current on the dielectric part.

Next, we consider the evaluation of .
Using (5) and extracting Cauchy principal value from the curl
term, we may rewrite as

(27)



1630 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 10, OCTOBER 2000

(a)

(b)

(c)

Fig. 9. (a)x component of the scattered far-field along� = 0; � = 0

(backward),� = 0; � = 180 (forward) and� = 90 ; � = 90 (side).
(b) y component of the scattered far-field along the three previously defined
directions. (c)z component of the scattered far field along the three previously
defined directions.

where represents (5) with term removed from the
integration. Also, in the first inner product term of the right hand

sided of (27), the positive sign is used when and
and negative sign otherwise.

The next step in the MoM procedure is to substitute current
expansion functions defined in (17) into (22)–(24), and this pro-
cedure yields the following set of equations given by

(28)

for and

(29)

for . In (28) and (29), we have

(30)

(31)

(30)

for or and

(33)

Again note that, in (32) the first term on the right-hand side is
positive if and , and negative otherwise.

The integrals in (30)–(33) can now be evaluated by invoking
the triangular basis functions. This results in

(34)

(35)
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(36)

by replacing the double integrals by single integrals on the
primed variables and adopting a one point integration at the
centroid of the respective triangles for the unprimed variables.

Last, we consider the inner product term in (32). We note that
if edges and do not lie on a common triangle, then the result
is zero. If they lie on a common triangle, then let us assume for
illustration the , or as in Fig. 4. The contribution
from to the inner product is

(37)

where , and represent the length of theth edge, posi-
tion vector to the centroid of the triangle, and area of the triangle

, respectively.
Next, we consider the left-hand sides of (28) and (29). Upon

close examination, it is clear that depending on the choice of
, many terms under the summation signs are known and can

be moved to the right-hand side. These are the terms for which
. Moving these terms to right-hand side, we

can develop a single matrix equation given by

(38)

Note that the elements of matrix in (38) are formed by the
potential terms when . Furthermore, note that
the matrix is a sparse matrix and its sparsity depends upon
the choice of . Also, the elements of the matrix are not
functions of time and, hence, need to be computed only once at
the first time step. We also note that the computation of the ele-
ments of involves some type of interpola-
tion in time. In this work, we simply chose linear interpolation
although more complex interpolations are possible. Finally, the
equivalent electric and magnetic currents induced on the scat-
terer may be obtained at each time step by solving (38).

V. EVALUATION OF THE FAR SCATTERED FIELDS

Once the transient currents on the scatterer have been deter-
mined, we can calculate the far scattered fields. These fields may
be thought of as the superposition of the fields due to the elec-
tric currents only and with the fields due to the magnetic currents
only.

The scattered magnetic field due to the electric currents alone
at a point is given by

(39)
where . Taking the curl operator inside the integral
results in

(40)

Since we are restricting ourselves to the far field, , so
we can neglect the second term in (40). Further, we may write

(41)

where , and is a unit vector in the direction
. Therefore

(42)

where represents all the edges. For far-field calculations, we
can make the following approximations: , for magnitude
terms where . The time derivative of
the current is approximated with a finite difference as shown in
(43) at the bottom of the page and the integral may be carried
out analytically to give

(44)

Finally, combining (42)–(44), the normalized far magnetic
field is given by (45) at the bottom of the next page and the
electric field

(46)

where is the wave impedance in the medium surrounding the
scatterer and the subscriptrefers to the electric currents.

(43)
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We designate (45) and (46) as

(47)

(48)

The scattered fields from the magnetic current is given by

(49)

where the subscript refers to the magnetic currents. By fol-
lowing a similar analysis as that for the electric currents, we can
show (50) at the bottom of the page and

(51)

(52)

(53)

Finally, the total fields scattered from the dielectric body may
be obtained by adding (48) and (52), and (47) and (53) to obtain

(54)

(55)

VI. NUMERICAL RESULTS

Typical numerical results are presented for EM scattering
from complex composite structures. The first structure consid-
ered in this section is an aircraft. The nose part of the aircraft
is made of dielectric shown in Fig. 1 and the remainder of the
structure is conducting. The dielectric constant of the nose has

, and . It is illuminated by a Gaussian
plane wave which is given by

(56)

where

(57)

with m and m.
(The unit m denotes a light meter. A light meter is the length of
time taken by the EM wave to travel 1 m. Assuming the medium
to be free space this amounts to 1m ns.) The field
is incident nose on and is arriving from and . The
incident electric field is -polarized. The time step (
m) is chosen larger than the time step given by the Courant

condition in order to generate the implicit solution.
We first consider the transient currents at several points (on

the dielectric nose, conduction bodies, tails, and wings). The
transient electric currents on the conducting structures are given
in Fig. 8(a). The magnetic and electric currents on the dielectric
structures are shown in Fig. 8(b) and (c) along with the incident
electric field, respectively.

Finally, the far-radiated electric field from the structure is
plotted in Fig. 9 for different angles of scattering. Fig. 9(a)
plots the component of the scattered electric far fields along

(back side), (forward) and
(side). Fig. 9(b) depicts the component

of the electric far-fields along the three previously mentioned
directions. Observe that thecomponent of the field along the
side is approximately zero. Finally, Fig. 9(c) provides thecom-
ponent of the far scattered fields along the three previously de-
fined directions. Please note that only in the side direction is the

component significant.
Second structure that is presented is a helicopter shown in

Fig. 10 and its whole body is conductor. A Gaussian plane wave
is given with m, and

m. The field is incident on the top and is arriving from
and , polarized, and with the time step

m. We also consider the transient currents at four points
(on the head, body, wing, and tail), and the transient electric
currents on the structure are given in Fig. 11. Observe that all
the currents on both structures are stable in the late time.

VII. CONCLUSION

Analysis of transient scattering from composite complex
structures is carried out by solving a set of coupled TDIEs.
The TDIEs are derived using the equivalence principle and
utilizing the continuity conditions on the electric field. For a
numerical solution, we employ the MoM in conjunction with

(45)

(50)
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Fig. 10. A helicopter and the locations where the transient currents are
computed.

Fig. 11. Electric currents on the helicopter.

planar triangular patch modeling. The method presented can
either be explicit or implicit depending upon the duration of
the time step. Please note that, in order for the solution to
be explicit the time step must be less than where

and represent the minimum distance between any
two patches and the velocity of the EM wave in the external
medium, respectively. However, explicit solutions are known to
develop instabilities for late time and, for this reason we choose
an implicit scheme which provides a stable solution.
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